Properties

Label 100.4
Level 100
Weight 4
Dimension 463
Nonzero newspaces 6
Newform subspaces 16
Sturm bound 2400
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 16 \)
Sturm bound: \(2400\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(100))\).

Total New Old
Modular forms 970 503 467
Cusp forms 830 463 367
Eisenstein series 140 40 100

Trace form

\( 463 q - 6 q^{2} - 8 q^{3} - 10 q^{4} - 35 q^{5} - 34 q^{6} + 32 q^{7} + 78 q^{8} + 198 q^{9} + 64 q^{10} + 40 q^{11} + 150 q^{12} - 276 q^{13} - 10 q^{14} - 172 q^{15} - 386 q^{16} - 108 q^{17} - 622 q^{18}+ \cdots - 3340 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(100))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
100.4.a \(\chi_{100}(1, \cdot)\) 100.4.a.a 1 1
100.4.a.b 1
100.4.a.c 1
100.4.a.d 2
100.4.c \(\chi_{100}(49, \cdot)\) 100.4.c.a 2 1
100.4.c.b 2
100.4.e \(\chi_{100}(7, \cdot)\) 100.4.e.a 2 2
100.4.e.b 2
100.4.e.c 2
100.4.e.d 8
100.4.e.e 12
100.4.e.f 24
100.4.g \(\chi_{100}(21, \cdot)\) 100.4.g.a 28 4
100.4.i \(\chi_{100}(9, \cdot)\) 100.4.i.a 32 4
100.4.l \(\chi_{100}(3, \cdot)\) 100.4.l.a 8 8
100.4.l.b 336

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(100))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(100)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)