Properties

Label 100.3.d.b
Level $100$
Weight $3$
Character orbit 100.d
Analytic conductor $2.725$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.72480264360\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Defining polynomial: \(x^{8} - x^{6} + x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{20}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{20} q^{2} + ( 2 \zeta_{20}^{3} - 2 \zeta_{20}^{7} ) q^{3} + 4 \zeta_{20}^{2} q^{4} + ( 4 - 4 \zeta_{20}^{2} + 8 \zeta_{20}^{4} - 4 \zeta_{20}^{6} ) q^{6} + ( -8 \zeta_{20} + 6 \zeta_{20}^{3} - 4 \zeta_{20}^{5} + 2 \zeta_{20}^{7} ) q^{7} + 8 \zeta_{20}^{3} q^{8} + ( -1 - 4 \zeta_{20}^{4} + 4 \zeta_{20}^{6} ) q^{9} +O(q^{10})\) \( q + 2 \zeta_{20} q^{2} + ( 2 \zeta_{20}^{3} - 2 \zeta_{20}^{7} ) q^{3} + 4 \zeta_{20}^{2} q^{4} + ( 4 - 4 \zeta_{20}^{2} + 8 \zeta_{20}^{4} - 4 \zeta_{20}^{6} ) q^{6} + ( -8 \zeta_{20} + 6 \zeta_{20}^{3} - 4 \zeta_{20}^{5} + 2 \zeta_{20}^{7} ) q^{7} + 8 \zeta_{20}^{3} q^{8} + ( -1 - 4 \zeta_{20}^{4} + 4 \zeta_{20}^{6} ) q^{9} + ( 4 - 8 \zeta_{20}^{2} - 4 \zeta_{20}^{4} - 12 \zeta_{20}^{6} ) q^{11} + ( 8 \zeta_{20} - 8 \zeta_{20}^{3} + 16 \zeta_{20}^{5} - 8 \zeta_{20}^{7} ) q^{12} + ( 4 \zeta_{20}^{3} + 2 \zeta_{20}^{5} + 4 \zeta_{20}^{7} ) q^{13} + ( -4 - 12 \zeta_{20}^{2} + 8 \zeta_{20}^{4} - 4 \zeta_{20}^{6} ) q^{14} + 16 \zeta_{20}^{4} q^{16} + ( 16 \zeta_{20}^{3} - 14 \zeta_{20}^{5} + 16 \zeta_{20}^{7} ) q^{17} + ( -2 \zeta_{20} - 8 \zeta_{20}^{5} + 8 \zeta_{20}^{7} ) q^{18} + ( -8 \zeta_{20}^{4} - 8 \zeta_{20}^{6} ) q^{19} + ( -20 \zeta_{20}^{4} + 20 \zeta_{20}^{6} ) q^{21} + ( 8 \zeta_{20} - 16 \zeta_{20}^{3} - 8 \zeta_{20}^{5} - 24 \zeta_{20}^{7} ) q^{22} + ( 8 \zeta_{20} - 10 \zeta_{20}^{3} + 4 \zeta_{20}^{5} + 2 \zeta_{20}^{7} ) q^{23} + ( 16 + 16 \zeta_{20}^{6} ) q^{24} + ( -8 + 8 \zeta_{20}^{2} + 12 \zeta_{20}^{6} ) q^{26} + ( -16 \zeta_{20} - 4 \zeta_{20}^{3} - 8 \zeta_{20}^{5} + 20 \zeta_{20}^{7} ) q^{27} + ( -8 \zeta_{20} - 24 \zeta_{20}^{3} + 16 \zeta_{20}^{5} - 8 \zeta_{20}^{7} ) q^{28} + ( 6 + 8 \zeta_{20}^{4} - 8 \zeta_{20}^{6} ) q^{29} + ( -20 + 40 \zeta_{20}^{2} - 28 \zeta_{20}^{4} + 12 \zeta_{20}^{6} ) q^{31} + 32 \zeta_{20}^{5} q^{32} + ( -24 \zeta_{20}^{3} - 8 \zeta_{20}^{5} - 24 \zeta_{20}^{7} ) q^{33} + ( -32 + 32 \zeta_{20}^{2} + 4 \zeta_{20}^{6} ) q^{34} + ( -16 + 12 \zeta_{20}^{2} - 16 \zeta_{20}^{4} ) q^{36} + ( -20 \zeta_{20}^{3} + 14 \zeta_{20}^{5} - 20 \zeta_{20}^{7} ) q^{37} + ( -16 \zeta_{20}^{5} - 16 \zeta_{20}^{7} ) q^{38} + ( -4 + 8 \zeta_{20}^{2} + 4 \zeta_{20}^{4} + 12 \zeta_{20}^{6} ) q^{39} + ( -22 + 12 \zeta_{20}^{4} - 12 \zeta_{20}^{6} ) q^{41} + ( -40 \zeta_{20}^{5} + 40 \zeta_{20}^{7} ) q^{42} + ( -16 \zeta_{20} + 2 \zeta_{20}^{3} - 8 \zeta_{20}^{5} + 14 \zeta_{20}^{7} ) q^{43} + ( 48 - 32 \zeta_{20}^{2} + 16 \zeta_{20}^{4} - 64 \zeta_{20}^{6} ) q^{44} + ( -4 + 20 \zeta_{20}^{2} - 24 \zeta_{20}^{4} + 12 \zeta_{20}^{6} ) q^{46} + ( 24 \zeta_{20} + 14 \zeta_{20}^{3} + 12 \zeta_{20}^{5} - 38 \zeta_{20}^{7} ) q^{47} + ( 32 \zeta_{20} + 32 \zeta_{20}^{7} ) q^{48} + ( -9 - 20 \zeta_{20}^{4} + 20 \zeta_{20}^{6} ) q^{49} + ( 28 - 56 \zeta_{20}^{2} + 60 \zeta_{20}^{4} + 4 \zeta_{20}^{6} ) q^{51} + ( -16 \zeta_{20} + 16 \zeta_{20}^{3} + 24 \zeta_{20}^{7} ) q^{52} + ( 20 \zeta_{20}^{3} + 34 \zeta_{20}^{5} + 20 \zeta_{20}^{7} ) q^{53} + ( -40 + 8 \zeta_{20}^{2} - 48 \zeta_{20}^{4} + 24 \zeta_{20}^{6} ) q^{54} + ( 16 - 32 \zeta_{20}^{2} - 32 \zeta_{20}^{4} + 16 \zeta_{20}^{6} ) q^{56} + ( -32 \zeta_{20}^{3} + 16 \zeta_{20}^{5} - 32 \zeta_{20}^{7} ) q^{57} + ( 12 \zeta_{20} + 16 \zeta_{20}^{5} - 16 \zeta_{20}^{7} ) q^{58} + ( 24 - 48 \zeta_{20}^{2} + 48 \zeta_{20}^{4} ) q^{59} + ( 58 + 52 \zeta_{20}^{4} - 52 \zeta_{20}^{6} ) q^{61} + ( -40 \zeta_{20} + 80 \zeta_{20}^{3} - 56 \zeta_{20}^{5} + 24 \zeta_{20}^{7} ) q^{62} + ( -8 \zeta_{20} + 26 \zeta_{20}^{3} - 4 \zeta_{20}^{5} - 18 \zeta_{20}^{7} ) q^{63} + 64 \zeta_{20}^{6} q^{64} + ( 48 - 48 \zeta_{20}^{2} - 64 \zeta_{20}^{6} ) q^{66} + ( 80 \zeta_{20} - 62 \zeta_{20}^{3} + 40 \zeta_{20}^{5} - 18 \zeta_{20}^{7} ) q^{67} + ( -64 \zeta_{20} + 64 \zeta_{20}^{3} + 8 \zeta_{20}^{7} ) q^{68} + ( -16 + 28 \zeta_{20}^{4} - 28 \zeta_{20}^{6} ) q^{69} + ( -4 + 8 \zeta_{20}^{2} + 36 \zeta_{20}^{4} + 44 \zeta_{20}^{6} ) q^{71} + ( -32 \zeta_{20} + 24 \zeta_{20}^{3} - 32 \zeta_{20}^{5} ) q^{72} + ( 64 \zeta_{20}^{3} - 98 \zeta_{20}^{5} + 64 \zeta_{20}^{7} ) q^{73} + ( 40 - 40 \zeta_{20}^{2} - 12 \zeta_{20}^{6} ) q^{74} + ( 32 - 32 \zeta_{20}^{2} + 32 \zeta_{20}^{4} - 64 \zeta_{20}^{6} ) q^{76} + ( 40 \zeta_{20}^{3} + 40 \zeta_{20}^{5} + 40 \zeta_{20}^{7} ) q^{77} + ( -8 \zeta_{20} + 16 \zeta_{20}^{3} + 8 \zeta_{20}^{5} + 24 \zeta_{20}^{7} ) q^{78} + ( -40 + 80 \zeta_{20}^{2} - 72 \zeta_{20}^{4} + 8 \zeta_{20}^{6} ) q^{79} + ( -55 + 28 \zeta_{20}^{4} - 28 \zeta_{20}^{6} ) q^{81} + ( -44 \zeta_{20} + 24 \zeta_{20}^{5} - 24 \zeta_{20}^{7} ) q^{82} + ( 48 \zeta_{20} + 2 \zeta_{20}^{3} + 24 \zeta_{20}^{5} - 50 \zeta_{20}^{7} ) q^{83} + ( -80 + 80 \zeta_{20}^{2} - 80 \zeta_{20}^{4} ) q^{84} + ( -28 - 4 \zeta_{20}^{2} - 24 \zeta_{20}^{4} + 12 \zeta_{20}^{6} ) q^{86} + ( 32 \zeta_{20} - 20 \zeta_{20}^{3} + 16 \zeta_{20}^{5} - 12 \zeta_{20}^{7} ) q^{87} + ( 96 \zeta_{20} - 64 \zeta_{20}^{3} + 32 \zeta_{20}^{5} - 128 \zeta_{20}^{7} ) q^{88} + ( 62 + 80 \zeta_{20}^{4} - 80 \zeta_{20}^{6} ) q^{89} + ( 12 - 24 \zeta_{20}^{2} - 4 \zeta_{20}^{4} - 28 \zeta_{20}^{6} ) q^{91} + ( -8 \zeta_{20} + 40 \zeta_{20}^{3} - 48 \zeta_{20}^{5} + 24 \zeta_{20}^{7} ) q^{92} + ( -72 \zeta_{20}^{3} + 136 \zeta_{20}^{5} - 72 \zeta_{20}^{7} ) q^{93} + ( 76 - 28 \zeta_{20}^{2} + 104 \zeta_{20}^{4} - 52 \zeta_{20}^{6} ) q^{94} + ( -64 + 128 \zeta_{20}^{2} - 64 \zeta_{20}^{4} + 64 \zeta_{20}^{6} ) q^{96} + ( -24 \zeta_{20}^{3} - 54 \zeta_{20}^{5} - 24 \zeta_{20}^{7} ) q^{97} + ( -18 \zeta_{20} - 40 \zeta_{20}^{5} + 40 \zeta_{20}^{7} ) q^{98} + ( -20 + 40 \zeta_{20}^{2} + 4 \zeta_{20}^{4} + 44 \zeta_{20}^{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{4} + 8q^{9} + O(q^{10}) \) \( 8q + 8q^{4} + 8q^{9} - 80q^{14} - 32q^{16} + 80q^{21} + 160q^{24} - 24q^{26} + 16q^{29} - 184q^{34} - 72q^{36} - 224q^{41} + 160q^{44} + 80q^{46} + 8q^{49} - 160q^{54} + 160q^{56} + 256q^{61} + 128q^{64} + 160q^{66} - 240q^{69} + 216q^{74} - 552q^{81} - 320q^{84} - 160q^{86} + 176q^{89} + 240q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
−0.951057 0.309017i
−0.951057 + 0.309017i
−0.587785 0.809017i
−0.587785 + 0.809017i
0.587785 0.809017i
0.587785 + 0.809017i
0.951057 0.309017i
0.951057 + 0.309017i
−1.90211 0.618034i −2.35114 3.23607 + 2.35114i 0 4.47214 + 1.45309i 5.25731 −4.70228 6.47214i −3.47214 0
99.2 −1.90211 + 0.618034i −2.35114 3.23607 2.35114i 0 4.47214 1.45309i 5.25731 −4.70228 + 6.47214i −3.47214 0
99.3 −1.17557 1.61803i 3.80423 −1.23607 + 3.80423i 0 −4.47214 6.15537i 8.50651 7.60845 2.47214i 5.47214 0
99.4 −1.17557 + 1.61803i 3.80423 −1.23607 3.80423i 0 −4.47214 + 6.15537i 8.50651 7.60845 + 2.47214i 5.47214 0
99.5 1.17557 1.61803i −3.80423 −1.23607 3.80423i 0 −4.47214 + 6.15537i −8.50651 −7.60845 2.47214i 5.47214 0
99.6 1.17557 + 1.61803i −3.80423 −1.23607 + 3.80423i 0 −4.47214 6.15537i −8.50651 −7.60845 + 2.47214i 5.47214 0
99.7 1.90211 0.618034i 2.35114 3.23607 2.35114i 0 4.47214 1.45309i −5.25731 4.70228 6.47214i −3.47214 0
99.8 1.90211 + 0.618034i 2.35114 3.23607 + 2.35114i 0 4.47214 + 1.45309i −5.25731 4.70228 + 6.47214i −3.47214 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 99.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 100.3.d.b 8
3.b odd 2 1 900.3.f.e 8
4.b odd 2 1 inner 100.3.d.b 8
5.b even 2 1 inner 100.3.d.b 8
5.c odd 4 1 20.3.b.a 4
5.c odd 4 1 100.3.b.f 4
8.b even 2 1 1600.3.h.n 8
8.d odd 2 1 1600.3.h.n 8
12.b even 2 1 900.3.f.e 8
15.d odd 2 1 900.3.f.e 8
15.e even 4 1 180.3.c.a 4
15.e even 4 1 900.3.c.k 4
20.d odd 2 1 inner 100.3.d.b 8
20.e even 4 1 20.3.b.a 4
20.e even 4 1 100.3.b.f 4
40.e odd 2 1 1600.3.h.n 8
40.f even 2 1 1600.3.h.n 8
40.i odd 4 1 320.3.b.c 4
40.i odd 4 1 1600.3.b.s 4
40.k even 4 1 320.3.b.c 4
40.k even 4 1 1600.3.b.s 4
60.h even 2 1 900.3.f.e 8
60.l odd 4 1 180.3.c.a 4
60.l odd 4 1 900.3.c.k 4
80.i odd 4 1 1280.3.g.e 8
80.j even 4 1 1280.3.g.e 8
80.s even 4 1 1280.3.g.e 8
80.t odd 4 1 1280.3.g.e 8
120.q odd 4 1 2880.3.e.e 4
120.w even 4 1 2880.3.e.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.3.b.a 4 5.c odd 4 1
20.3.b.a 4 20.e even 4 1
100.3.b.f 4 5.c odd 4 1
100.3.b.f 4 20.e even 4 1
100.3.d.b 8 1.a even 1 1 trivial
100.3.d.b 8 4.b odd 2 1 inner
100.3.d.b 8 5.b even 2 1 inner
100.3.d.b 8 20.d odd 2 1 inner
180.3.c.a 4 15.e even 4 1
180.3.c.a 4 60.l odd 4 1
320.3.b.c 4 40.i odd 4 1
320.3.b.c 4 40.k even 4 1
900.3.c.k 4 15.e even 4 1
900.3.c.k 4 60.l odd 4 1
900.3.f.e 8 3.b odd 2 1
900.3.f.e 8 12.b even 2 1
900.3.f.e 8 15.d odd 2 1
900.3.f.e 8 60.h even 2 1
1280.3.g.e 8 80.i odd 4 1
1280.3.g.e 8 80.j even 4 1
1280.3.g.e 8 80.s even 4 1
1280.3.g.e 8 80.t odd 4 1
1600.3.b.s 4 40.i odd 4 1
1600.3.b.s 4 40.k even 4 1
1600.3.h.n 8 8.b even 2 1
1600.3.h.n 8 8.d odd 2 1
1600.3.h.n 8 40.e odd 2 1
1600.3.h.n 8 40.f even 2 1
2880.3.e.e 4 120.q odd 4 1
2880.3.e.e 4 120.w even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 20 T_{3}^{2} + 80 \) acting on \(S_{3}^{\mathrm{new}}(100, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 256 - 64 T^{2} + 16 T^{4} - 4 T^{6} + T^{8} \)
$3$ \( ( 80 - 20 T^{2} + T^{4} )^{2} \)
$5$ \( T^{8} \)
$7$ \( ( 2000 - 100 T^{2} + T^{4} )^{2} \)
$11$ \( ( 1280 + 400 T^{2} + T^{4} )^{2} \)
$13$ \( ( 16 + 72 T^{2} + T^{4} )^{2} \)
$17$ \( ( 80656 + 712 T^{2} + T^{4} )^{2} \)
$19$ \( ( 20480 + 320 T^{2} + T^{4} )^{2} \)
$23$ \( ( 80 - 260 T^{2} + T^{4} )^{2} \)
$29$ \( ( -76 - 4 T + T^{2} )^{4} \)
$31$ \( ( 154880 + 2320 T^{2} + T^{4} )^{2} \)
$37$ \( ( 234256 + 1032 T^{2} + T^{4} )^{2} \)
$41$ \( ( 604 + 56 T + T^{2} )^{4} \)
$43$ \( ( 2000 - 500 T^{2} + T^{4} )^{2} \)
$47$ \( ( 3561680 - 4100 T^{2} + T^{4} )^{2} \)
$53$ \( ( 2062096 + 4872 T^{2} + T^{4} )^{2} \)
$59$ \( ( 1658880 + 5760 T^{2} + T^{4} )^{2} \)
$61$ \( ( -2356 - 64 T + T^{2} )^{4} \)
$67$ \( ( 19920080 - 10420 T^{2} + T^{4} )^{2} \)
$71$ \( ( 10138880 + 8080 T^{2} + T^{4} )^{2} \)
$73$ \( ( 583696 + 18952 T^{2} + T^{4} )^{2} \)
$79$ \( ( 2478080 + 13120 T^{2} + T^{4} )^{2} \)
$83$ \( ( 2620880 - 6260 T^{2} + T^{4} )^{2} \)
$89$ \( ( -7516 - 44 T + T^{2} )^{4} \)
$97$ \( ( 13220496 + 10152 T^{2} + T^{4} )^{2} \)
show more
show less