Properties

Label 100.2.l.a.3.1
Level $100$
Weight $2$
Character 100.3
Analytic conductor $0.799$
Analytic rank $0$
Dimension $8$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,2,Mod(3,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 100.l (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.798504020213\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

Embedding invariants

Embedding label 3.1
Root \(-0.587785 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 100.3
Dual form 100.2.l.a.67.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.642040 + 1.26007i) q^{2} +(-1.17557 + 1.61803i) q^{4} +(2.20582 - 0.366554i) q^{5} +(-2.79360 - 0.442463i) q^{8} +(-2.85317 + 0.927051i) q^{9} +(1.87811 + 2.54415i) q^{10} +(1.36749 - 2.68384i) q^{13} +(-1.23607 - 3.80423i) q^{16} +(0.846926 - 5.34728i) q^{17} +(-3.00000 - 3.00000i) q^{18} +(-2.00000 + 4.00000i) q^{20} +(4.73128 - 1.61710i) q^{25} +4.25982 q^{26} +(-6.31671 + 8.69421i) q^{29} +(4.00000 - 4.00000i) q^{32} +(7.28173 - 2.36598i) q^{34} +(1.85410 - 5.70634i) q^{36} +(-8.71769 - 4.44189i) q^{37} +(-6.32437 + 0.0480111i) q^{40} +(3.81636 + 11.7455i) q^{41} +(-5.95376 + 3.09075i) q^{45} -7.00000i q^{49} +(5.07533 + 4.92351i) q^{50} +(2.73497 + 5.36768i) q^{52} +(2.26101 + 14.2754i) q^{53} +(-15.0109 - 2.37750i) q^{58} +(-1.18364 + 3.64288i) q^{61} +(7.60845 + 2.47214i) q^{64} +(2.03265 - 6.42133i) q^{65} +(7.65646 + 7.65646i) q^{68} +(8.38081 - 1.32739i) q^{72} +(7.51037 - 3.82672i) q^{73} -13.8368i q^{74} +(-4.12099 - 7.93835i) q^{80} +(7.28115 - 5.29007i) q^{81} +(-12.3500 + 12.3500i) q^{82} +(-0.0918987 - 12.1056i) q^{85} +(-4.34280 - 1.41106i) q^{89} +(-7.71712 - 5.51780i) q^{90} +(1.03093 - 0.163283i) q^{97} +(8.82051 - 4.49428i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 4 q^{5} - 4 q^{8} - 6 q^{10} + 2 q^{13} + 8 q^{16} - 6 q^{17} - 24 q^{18} - 16 q^{20} - 6 q^{25} - 4 q^{26} + 32 q^{32} + 50 q^{34} - 12 q^{36} - 46 q^{37} + 4 q^{40} + 16 q^{41} - 6 q^{45}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.642040 + 1.26007i 0.453990 + 0.891007i
\(3\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(4\) −1.17557 + 1.61803i −0.587785 + 0.809017i
\(5\) 2.20582 0.366554i 0.986472 0.163928i
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −2.79360 0.442463i −0.987688 0.156434i
\(9\) −2.85317 + 0.927051i −0.951057 + 0.309017i
\(10\) 1.87811 + 2.54415i 0.593910 + 0.804532i
\(11\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(12\) 0 0
\(13\) 1.36749 2.68384i 0.379272 0.744364i −0.619915 0.784669i \(-0.712833\pi\)
0.999187 + 0.0403050i \(0.0128330\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.23607 3.80423i −0.309017 0.951057i
\(17\) 0.846926 5.34728i 0.205410 1.29691i −0.642303 0.766451i \(-0.722021\pi\)
0.847713 0.530456i \(-0.177979\pi\)
\(18\) −3.00000 3.00000i −0.707107 0.707107i
\(19\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(20\) −2.00000 + 4.00000i −0.447214 + 0.894427i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(24\) 0 0
\(25\) 4.73128 1.61710i 0.946255 0.323420i
\(26\) 4.25982 0.835419
\(27\) 0 0
\(28\) 0 0
\(29\) −6.31671 + 8.69421i −1.17298 + 1.61447i −0.532855 + 0.846206i \(0.678881\pi\)
−0.640129 + 0.768268i \(0.721119\pi\)
\(30\) 0 0
\(31\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) 0 0
\(34\) 7.28173 2.36598i 1.24881 0.405762i
\(35\) 0 0
\(36\) 1.85410 5.70634i 0.309017 0.951057i
\(37\) −8.71769 4.44189i −1.43318 0.730242i −0.446786 0.894641i \(-0.647432\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −6.32437 + 0.0480111i −0.999971 + 0.00759122i
\(41\) 3.81636 + 11.7455i 0.596015 + 1.83434i 0.549609 + 0.835422i \(0.314777\pi\)
0.0464057 + 0.998923i \(0.485223\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) −5.95376 + 3.09075i −0.887535 + 0.460741i
\(46\) 0 0
\(47\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 5.07533 + 4.92351i 0.717761 + 0.696290i
\(51\) 0 0
\(52\) 2.73497 + 5.36768i 0.379272 + 0.744364i
\(53\) 2.26101 + 14.2754i 0.310573 + 1.96088i 0.274721 + 0.961524i \(0.411414\pi\)
0.0358519 + 0.999357i \(0.488586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −15.0109 2.37750i −1.97103 0.312181i
\(59\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(60\) 0 0
\(61\) −1.18364 + 3.64288i −0.151550 + 0.466423i −0.997795 0.0663709i \(-0.978858\pi\)
0.846245 + 0.532794i \(0.178858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.60845 + 2.47214i 0.951057 + 0.309017i
\(65\) 2.03265 6.42133i 0.252120 0.796468i
\(66\) 0 0
\(67\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(68\) 7.65646 + 7.65646i 0.928483 + 0.928483i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(72\) 8.38081 1.32739i 0.987688 0.156434i
\(73\) 7.51037 3.82672i 0.879022 0.447884i 0.0445966 0.999005i \(-0.485800\pi\)
0.834425 + 0.551121i \(0.185800\pi\)
\(74\) 13.8368i 1.60850i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(80\) −4.12099 7.93835i −0.460741 0.887535i
\(81\) 7.28115 5.29007i 0.809017 0.587785i
\(82\) −12.3500 + 12.3500i −1.36383 + 1.36383i
\(83\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(84\) 0 0
\(85\) −0.0918987 12.1056i −0.00996782 1.31303i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.34280 1.41106i −0.460336 0.149572i 0.0696627 0.997571i \(-0.477808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) −7.71712 5.51780i −0.813456 0.581627i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.03093 0.163283i 0.104675 0.0165788i −0.103877 0.994590i \(-0.533125\pi\)
0.208552 + 0.978011i \(0.433125\pi\)
\(98\) 8.82051 4.49428i 0.891007 0.453990i
\(99\) 0 0
\(100\) −2.94542 + 9.55638i −0.294542 + 0.955638i
\(101\) −18.4031 −1.83118 −0.915588 0.402117i \(-0.868274\pi\)
−0.915588 + 0.402117i \(0.868274\pi\)
\(102\) 0 0
\(103\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(104\) −5.00772 + 6.89253i −0.491047 + 0.675868i
\(105\) 0 0
\(106\) −16.5364 + 12.0144i −1.60616 + 1.16694i
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 15.7969 5.13271i 1.51307 0.491625i 0.569269 0.822152i \(-0.307226\pi\)
0.943797 + 0.330527i \(0.107226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.35764 18.3654i 0.880293 1.72767i 0.221788 0.975095i \(-0.428811\pi\)
0.658505 0.752577i \(-0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.64178 20.4413i −0.616674 1.89793i
\(117\) −1.41361 + 8.92519i −0.130688 + 0.825134i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.89919 6.46564i −0.809017 0.587785i
\(122\) −5.35024 + 0.847395i −0.484388 + 0.0767196i
\(123\) 0 0
\(124\) 0 0
\(125\) 9.84359 5.30130i 0.880437 0.474163i
\(126\) 0 0
\(127\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(128\) 1.76985 + 11.1744i 0.156434 + 0.987688i
\(129\) 0 0
\(130\) 9.39639 1.56145i 0.824118 0.136948i
\(131\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −4.73195 + 14.5635i −0.405762 + 1.24881i
\(137\) 18.2457 + 9.29667i 1.55884 + 0.794268i 0.999401 0.0346048i \(-0.0110173\pi\)
0.559437 + 0.828873i \(0.311017\pi\)
\(138\) 0 0
\(139\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 7.05342 + 9.70820i 0.587785 + 0.809017i
\(145\) −10.7466 + 21.4933i −0.892459 + 1.78492i
\(146\) 9.64390 + 7.00671i 0.798135 + 0.579879i
\(147\) 0 0
\(148\) 17.4354 8.88377i 1.43318 0.730242i
\(149\) 0.429467i 0.0351833i −0.999845 0.0175917i \(-0.994400\pi\)
0.999845 0.0175917i \(-0.00559989\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 2.54078 + 16.0418i 0.205410 + 1.29691i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −10.0086 + 10.0086i −0.798771 + 0.798771i −0.982902 0.184131i \(-0.941053\pi\)
0.184131 + 0.982902i \(0.441053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 7.35706 10.2895i 0.581627 0.813456i
\(161\) 0 0
\(162\) 11.3407 + 5.77836i 0.891007 + 0.453990i
\(163\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(164\) −23.4911 7.63271i −1.83434 0.596015i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(168\) 0 0
\(169\) 2.30822 + 3.17699i 0.177555 + 0.244384i
\(170\) 15.1949 7.88806i 1.16540 0.604987i
\(171\) 0 0
\(172\) 0 0
\(173\) −22.2592 + 11.3417i −1.69234 + 0.862290i −0.703967 + 0.710233i \(0.748590\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −1.01021 6.37821i −0.0757184 0.478067i
\(179\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(180\) 1.99814 13.2668i 0.148932 0.988847i
\(181\) 19.8884 14.4498i 1.47829 1.07404i 0.500193 0.865914i \(-0.333262\pi\)
0.978101 0.208130i \(-0.0667377\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −20.8578 6.60250i −1.53350 0.485425i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(192\) 0 0
\(193\) −18.3102 18.3102i −1.31800 1.31800i −0.915357 0.402644i \(-0.868091\pi\)
−0.402644 0.915357i \(-0.631909\pi\)
\(194\) 0.867644 + 1.19421i 0.0622932 + 0.0857392i
\(195\) 0 0
\(196\) 11.3262 + 8.22899i 0.809017 + 0.587785i
\(197\) 2.37518 0.376192i 0.169225 0.0268026i −0.0712470 0.997459i \(-0.522698\pi\)
0.240472 + 0.970656i \(0.422698\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −13.9328 + 2.42412i −0.985200 + 0.171412i
\(201\) 0 0
\(202\) −11.8155 23.1893i −0.831337 1.63159i
\(203\) 0 0
\(204\) 0 0
\(205\) 12.7236 + 24.5096i 0.888652 + 1.71183i
\(206\) 0 0
\(207\) 0 0
\(208\) −11.9002 1.88481i −0.825134 0.130688i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(212\) −25.7561 13.1234i −1.76894 0.901318i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 16.6098 + 16.6098i 1.12496 + 1.12496i
\(219\) 0 0
\(220\) 0 0
\(221\) −13.1931 9.58535i −0.887464 0.644780i
\(222\) 0 0
\(223\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(224\) 0 0
\(225\) −12.0000 + 9.00000i −0.800000 + 0.600000i
\(226\) 29.1497 1.93901
\(227\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(228\) 0 0
\(229\) 12.2669 16.8839i 0.810617 1.11572i −0.180611 0.983555i \(-0.557808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 21.4933 21.4933i 1.41110 1.41110i
\(233\) −19.6257 3.10840i −1.28572 0.203638i −0.524097 0.851658i \(-0.675597\pi\)
−0.761623 + 0.648020i \(0.775597\pi\)
\(234\) −12.1540 + 3.94907i −0.794531 + 0.258159i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(240\) 0 0
\(241\) 8.05285 + 24.7841i 0.518729 + 1.59649i 0.776392 + 0.630250i \(0.217048\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) 2.43355 15.3648i 0.156434 0.987688i
\(243\) 0 0
\(244\) −4.50285 6.19764i −0.288265 0.396763i
\(245\) −2.56587 15.4407i −0.163928 0.986472i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 13.0000 + 9.00000i 0.822192 + 0.569210i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) 22.5701 22.5701i 1.40788 1.40788i 0.637106 0.770776i \(-0.280131\pi\)
0.770776 0.637106i \(-0.219869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 8.00040 + 10.8376i 0.496164 + 0.672121i
\(261\) 9.96268 30.6620i 0.616674 1.89793i
\(262\) 0 0
\(263\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(264\) 0 0
\(265\) 10.2201 + 30.6602i 0.627814 + 1.88344i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 19.2736 + 26.5278i 1.17513 + 1.61743i 0.609711 + 0.792624i \(0.291286\pi\)
0.565419 + 0.824804i \(0.308714\pi\)
\(270\) 0 0
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) −21.3891 + 3.38771i −1.29691 + 0.205410i
\(273\) 0 0
\(274\) 28.9598i 1.74953i
\(275\) 0 0
\(276\) 0 0
\(277\) −1.51015 2.96383i −0.0907359 0.178079i 0.841178 0.540758i \(-0.181862\pi\)
−0.931914 + 0.362678i \(0.881862\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.1890 11.7620i 0.965754 0.701661i 0.0112742 0.999936i \(-0.496411\pi\)
0.954480 + 0.298275i \(0.0964112\pi\)
\(282\) 0 0
\(283\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −7.70447 + 15.1209i −0.453990 + 0.891007i
\(289\) −11.7082 3.80422i −0.688717 0.223778i
\(290\) −33.9829 + 0.257979i −1.99554 + 0.0151490i
\(291\) 0 0
\(292\) −2.63720 + 16.6506i −0.154330 + 0.974403i
\(293\) −8.39452 8.39452i −0.490413 0.490413i 0.418023 0.908436i \(-0.362723\pi\)
−0.908436 + 0.418023i \(0.862723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 22.3884 + 16.2661i 1.30130 + 0.945450i
\(297\) 0 0
\(298\) 0.541160 0.275735i 0.0313486 0.0159729i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.27559 + 8.46941i −0.0730403 + 0.484957i
\(306\) −18.5826 + 13.5011i −1.06230 + 0.771805i
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(312\) 0 0
\(313\) 0.642040 1.26007i 0.0362902 0.0712236i −0.872149 0.489240i \(-0.837274\pi\)
0.908440 + 0.418016i \(0.137274\pi\)
\(314\) −19.0374 6.18564i −1.07434 0.349076i
\(315\) 0 0
\(316\) 0 0
\(317\) −0.663695 + 4.19041i −0.0372768 + 0.235357i −0.999291 0.0376418i \(-0.988015\pi\)
0.962014 + 0.272999i \(0.0880154\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 17.6890 + 2.66418i 0.988847 + 0.148932i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 2.12991 14.9094i 0.118146 0.827023i
\(326\) 0 0
\(327\) 0 0
\(328\) −5.46442 34.5010i −0.301722 1.90500i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(332\) 0 0
\(333\) 28.9909 + 4.59171i 1.58869 + 0.251624i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −8.82051 4.49428i −0.480484 0.244819i 0.196934 0.980417i \(-0.436901\pi\)
−0.677419 + 0.735598i \(0.736901\pi\)
\(338\) −2.52127 + 4.94827i −0.137139 + 0.269151i
\(339\) 0 0
\(340\) 19.6953 + 14.0823i 1.06813 + 0.763718i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −28.5826 20.7665i −1.53661 1.11641i
\(347\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(348\) 0 0
\(349\) 1.61405i 0.0863979i 0.999066 + 0.0431990i \(0.0137549\pi\)
−0.999066 + 0.0431990i \(0.986245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.99109 12.5712i −0.105975 0.669099i −0.982291 0.187362i \(-0.940006\pi\)
0.876316 0.481736i \(-0.159994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.38842 5.36800i 0.391585 0.284503i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(360\) 18.0000 6.00000i 0.948683 0.316228i
\(361\) −5.87132 + 18.0701i −0.309017 + 0.951057i
\(362\) 30.9769 + 15.7835i 1.62811 + 0.829564i
\(363\) 0 0
\(364\) 0 0
\(365\) 15.1638 11.1940i 0.793710 0.585921i
\(366\) 0 0
\(367\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(368\) 0 0
\(369\) −21.7774 29.9741i −1.13369 1.56039i
\(370\) −5.07193 30.5215i −0.263677 1.58674i
\(371\) 0 0
\(372\) 0 0
\(373\) −13.8608 + 7.06243i −0.717685 + 0.365679i −0.774387 0.632712i \(-0.781942\pi\)
0.0567016 + 0.998391i \(0.481942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.6959 + 28.8423i 0.756876 + 1.48545i
\(378\) 0 0
\(379\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11.3164 34.8282i 0.575987 1.77271i
\(387\) 0 0
\(388\) −0.947730 + 1.86002i −0.0481137 + 0.0944284i
\(389\) 14.9800 + 4.86729i 0.759515 + 0.246781i 0.663070 0.748557i \(-0.269253\pi\)
0.0964443 + 0.995338i \(0.469253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.09724 + 19.5552i −0.156434 + 0.987688i
\(393\) 0 0
\(394\) 1.99899 + 2.75137i 0.100708 + 0.138612i
\(395\) 0 0
\(396\) 0 0
\(397\) −18.1584 + 2.87601i −0.911345 + 0.144343i −0.594464 0.804122i \(-0.702636\pi\)
−0.316881 + 0.948465i \(0.602636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −12.0000 16.0000i −0.600000 0.800000i
\(401\) −25.1294 −1.25490 −0.627452 0.778655i \(-0.715902\pi\)
−0.627452 + 0.778655i \(0.715902\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 21.6341 29.7768i 1.07634 1.48145i
\(405\) 14.1218 14.3379i 0.701719 0.712454i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −37.9437 + 12.3287i −1.87619 + 0.609613i −0.887259 + 0.461272i \(0.847393\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(410\) −22.7149 + 31.7688i −1.12181 + 1.56895i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −5.26543 16.2053i −0.258159 0.794531i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(420\) 0 0
\(421\) −16.0826 11.6847i −0.783819 0.569478i 0.122304 0.992493i \(-0.460972\pi\)
−0.906123 + 0.423015i \(0.860972\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 40.8803i 1.98532i
\(425\) −4.64006 26.6690i −0.225076 1.29364i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(432\) 0 0
\(433\) 36.8762 + 5.84061i 1.77216 + 0.280682i 0.955188 0.296001i \(-0.0956533\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −10.2654 + 31.5937i −0.491625 + 1.51307i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(440\) 0 0
\(441\) 6.48936 + 19.9722i 0.309017 + 0.951057i
\(442\) 3.60775 22.7785i 0.171603 1.08346i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) −10.0967 1.52068i −0.478628 0.0720871i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 33.7160i 1.59116i 0.605850 + 0.795579i \(0.292833\pi\)
−0.605850 + 0.795579i \(0.707167\pi\)
\(450\) −19.0451 9.34253i −0.897796 0.440411i
\(451\) 0 0
\(452\) 18.7153 + 36.7308i 0.880293 + 1.72767i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.0000 + 17.0000i −0.795226 + 0.795226i −0.982339 0.187112i \(-0.940087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 29.1507 + 4.61702i 1.36212 + 0.215739i
\(459\) 0 0
\(460\) 0 0
\(461\) −9.50653 + 29.2581i −0.442763 + 1.36269i 0.442155 + 0.896939i \(0.354214\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 0 0
\(463\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(464\) 40.8826 + 13.2836i 1.89793 + 0.616674i
\(465\) 0 0
\(466\) −8.68364 26.7255i −0.402262 1.23804i
\(467\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(468\) −12.7795 12.7795i −0.590731 0.590731i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −19.6851 38.6342i −0.901318 1.76894i
\(478\) 0 0
\(479\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(480\) 0 0
\(481\) −23.8426 + 17.3227i −1.08713 + 0.789847i
\(482\) −26.0596 + 26.0596i −1.18698 + 1.18698i
\(483\) 0 0
\(484\) 20.9232 6.79837i 0.951057 0.309017i
\(485\) 2.21418 0.738062i 0.100541 0.0335137i
\(486\) 0 0
\(487\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(488\) 4.91847 9.65305i 0.222649 0.436973i
\(489\) 0 0
\(490\) 17.8091 13.1468i 0.804532 0.593910i
\(491\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(492\) 0 0
\(493\) 41.1406 + 41.1406i 1.85288 + 1.85288i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −2.99415 + 22.1593i −0.133902 + 0.990995i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(504\) 0 0
\(505\) −40.5939 + 6.74572i −1.80641 + 0.300181i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.9764 7.14055i 0.974085 0.316499i 0.221621 0.975133i \(-0.428865\pi\)
0.752464 + 0.658633i \(0.228865\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −20.1612 10.2726i −0.891007 0.453990i
\(513\) 0 0
\(514\) 42.9308 + 13.9491i 1.89360 + 0.615267i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −8.51964 + 17.0393i −0.373611 + 0.747222i
\(521\) 33.4203 + 24.2813i 1.46417 + 1.06378i 0.982252 + 0.187566i \(0.0600600\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 45.0328 7.13249i 1.97103 0.312181i
\(523\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 13.5191 18.6074i 0.587785 0.809017i
\(530\) −32.0725 + 32.5631i −1.39314 + 1.41445i
\(531\) 0 0
\(532\) 0 0
\(533\) 36.7420 + 5.81936i 1.59147 + 0.252064i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −21.0526 + 41.3180i −0.907641 + 1.78135i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.86721 5.74668i −0.0802776 0.247069i 0.902861 0.429934i \(-0.141463\pi\)
−0.983138 + 0.182865i \(0.941463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −18.0014 24.7768i −0.771805 1.06230i
\(545\) 32.9636 17.1122i 1.41201 0.733008i
\(546\) 0 0
\(547\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(548\) −36.4915 + 18.5933i −1.55884 + 0.794268i
\(549\) 11.4911i 0.490426i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 2.76507 3.80579i 0.117477 0.161693i
\(555\) 0 0
\(556\) 0 0
\(557\) 5.44228 5.44228i 0.230597 0.230597i −0.582345 0.812942i \(-0.697865\pi\)
0.812942 + 0.582345i \(0.197865\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 25.2149 + 12.8477i 1.06363 + 0.541946i
\(563\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(564\) 0 0
\(565\) 13.9094 43.9408i 0.585171 1.84860i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −27.0832 37.2768i −1.13539 1.56273i −0.777408 0.628997i \(-0.783466\pi\)
−0.357979 0.933730i \(-0.616534\pi\)
\(570\) 0 0
\(571\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −24.0000 −1.00000
\(577\) −14.7669 28.9817i −0.614754 1.20652i −0.963097 0.269156i \(-0.913255\pi\)
0.348342 0.937367i \(-0.386745\pi\)
\(578\) −2.72352 17.1956i −0.113284 0.715244i
\(579\) 0 0
\(580\) −22.1434 42.6553i −0.919455 1.77116i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −22.6742 + 7.36729i −0.938264 + 0.304861i
\(585\) 0.153389 + 20.2055i 0.00634185 + 0.835395i
\(586\) 5.18810 15.9673i 0.214319 0.659605i
\(587\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −6.12228 + 38.6546i −0.251624 + 1.58869i
\(593\) −23.8454 23.8454i −0.979212 0.979212i 0.0205761 0.999788i \(-0.493450\pi\)
−0.999788 + 0.0205761i \(0.993450\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.694892 + 0.504869i 0.0284639 + 0.0206802i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 44.7107 1.82379 0.911893 0.410428i \(-0.134621\pi\)
0.911893 + 0.410428i \(0.134621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −22.0000 11.0000i −0.894427 0.447214i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −11.4911 + 3.83035i −0.465259 + 0.155086i
\(611\) 0 0
\(612\) −28.9431 14.7473i −1.16996 0.596122i
\(613\) −21.1732 + 41.5547i −0.855176 + 1.67838i −0.128162 + 0.991753i \(0.540908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.08823 32.1258i 0.204844 1.29334i −0.644136 0.764911i \(-0.722783\pi\)
0.848980 0.528425i \(-0.177217\pi\)
\(618\) 0 0
\(619\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 19.7700 15.3019i 0.790799 0.612076i
\(626\) 2.00000 0.0799361
\(627\) 0 0
\(628\) −4.42843 27.9600i −0.176713 1.11573i
\(629\) −31.1353 + 42.8540i −1.24144 + 1.70870i
\(630\) 0 0
\(631\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −5.70634 + 1.85410i −0.226628 + 0.0736358i
\(635\) 0 0
\(636\) 0 0
\(637\) −18.7869 9.57240i −0.744364 0.379272i
\(638\) 0 0
\(639\) 0 0
\(640\) 8.00000 + 24.0000i 0.316228 + 0.948683i
\(641\) −2.47214 7.60845i −0.0976435 0.300516i 0.890290 0.455394i \(-0.150502\pi\)
−0.987934 + 0.154878i \(0.950502\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(648\) −22.6813 + 11.5567i −0.891007 + 0.453990i
\(649\) 0 0
\(650\) 20.1544 6.88856i 0.790520 0.270192i
\(651\) 0 0
\(652\) 0 0
\(653\) −7.97942 50.3800i −0.312259 1.97152i −0.217789 0.975996i \(-0.569885\pi\)
−0.0944693 0.995528i \(-0.530115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 39.9654 29.0366i 1.56039 1.13369i
\(657\) −17.8808 + 17.8808i −0.697596 + 0.697596i
\(658\) 0 0
\(659\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(660\) 0 0
\(661\) 3.70820 11.4127i 0.144232 0.443902i −0.852679 0.522435i \(-0.825024\pi\)
0.996911 + 0.0785333i \(0.0250237\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 12.8274 + 39.4787i 0.497053 + 1.52977i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 37.6608 19.1891i 1.45172 0.739687i 0.462566 0.886585i \(-0.346929\pi\)
0.989152 + 0.146898i \(0.0469288\pi\)
\(674\) 14.0000i 0.539260i
\(675\) 0 0
\(676\) −7.85395 −0.302075
\(677\) 17.3351 + 34.0220i 0.666241 + 1.30757i 0.938477 + 0.345341i \(0.112237\pi\)
−0.272237 + 0.962230i \(0.587763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −5.09955 + 33.8589i −0.195559 + 1.29843i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(684\) 0 0
\(685\) 43.6545 + 13.8187i 1.66795 + 0.527986i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 41.4049 + 13.4533i 1.57740 + 0.512529i
\(690\) 0 0
\(691\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(692\) 7.81613 49.3491i 0.297125 1.87597i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 66.0389 10.4595i 2.50140 0.396183i
\(698\) −2.03382 + 1.03628i −0.0769811 + 0.0392238i
\(699\) 0 0
\(700\) 0 0
\(701\) −36.1910 −1.36692 −0.683458 0.729990i \(-0.739525\pi\)
−0.683458 + 0.729990i \(0.739525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 14.5623 10.5801i 0.548060 0.398189i
\(707\) 0 0
\(708\) 0 0
\(709\) −50.6250 + 16.4491i −1.90126 + 0.617758i −0.941393 + 0.337311i \(0.890483\pi\)
−0.959870 + 0.280447i \(0.909517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 11.5077 + 5.86348i 0.431270 + 0.219743i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(720\) 19.1172 + 18.8291i 0.712454 + 0.701719i
\(721\) 0 0
\(722\) −26.5392 + 4.20340i −0.987688 + 0.156434i
\(723\) 0 0
\(724\) 49.1669i 1.82727i
\(725\) −15.8267 + 51.3495i −0.587789 + 1.90707i
\(726\) 0 0
\(727\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(728\) 0 0
\(729\) −15.8702 + 21.8435i −0.587785 + 0.809017i
\(730\) 23.8410 + 11.9205i 0.882397 + 0.441198i
\(731\) 0 0
\(732\) 0 0
\(733\) −40.5073 6.41572i −1.49617 0.236970i −0.645943 0.763386i \(-0.723536\pi\)
−0.850227 + 0.526416i \(0.823536\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 23.7875 46.6857i 0.875632 1.71852i
\(739\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(740\) 35.2029 25.9870i 1.29409 0.955301i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) −0.157423 0.947327i −0.00576752 0.0347074i
\(746\) −17.7984 12.9313i −0.651645 0.473448i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −26.9080 + 37.0358i −0.979933 + 1.34876i
\(755\) 0 0
\(756\) 0 0
\(757\) −6.81919 + 6.81919i −0.247848 + 0.247848i −0.820087 0.572239i \(-0.806075\pi\)
0.572239 + 0.820087i \(0.306075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.23457 6.87731i 0.0810033 0.249302i −0.902351 0.431003i \(-0.858160\pi\)
0.983354 + 0.181700i \(0.0581600\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 11.4847 + 34.4541i 0.415230 + 1.24569i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 14.1068 + 19.4164i 0.508706 + 0.700174i 0.983700 0.179815i \(-0.0575500\pi\)
−0.474995 + 0.879989i \(0.657550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 51.1516 8.10162i 1.84099 0.291584i
\(773\) −43.4607 + 22.1443i −1.56317 + 0.796476i −0.999563 0.0295658i \(-0.990588\pi\)
−0.563609 + 0.826042i \(0.690588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −2.95225 −0.105979
\(777\) 0 0
\(778\) 3.48459 + 22.0009i 0.124929 + 0.788769i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −26.6296 + 8.65248i −0.951057 + 0.309017i
\(785\) −18.4084 + 25.7458i −0.657025 + 0.918906i
\(786\) 0 0
\(787\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(788\) −2.18350 + 4.28536i −0.0777840 + 0.152660i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 8.15830 + 8.15830i 0.289710 + 0.289710i
\(794\) −15.2824 21.0344i −0.542353 0.746484i
\(795\) 0 0
\(796\) 0 0
\(797\) −54.1267 + 8.57282i −1.91726 + 0.303665i −0.996297 0.0859751i \(-0.972599\pi\)
−0.920967 + 0.389640i \(0.872599\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 12.4567 25.3935i 0.440411 0.897796i
\(801\) 13.6989 0.484026
\(802\) −16.1341 31.6649i −0.569715 1.11813i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 51.4110 + 8.14270i 1.80863 + 0.286459i
\(809\) −7.41290 + 2.40860i −0.260624 + 0.0846818i −0.436414 0.899746i \(-0.643752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 27.1335 + 8.58905i 0.953375 + 0.301788i
\(811\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −39.8964 39.8964i −1.39494 1.39494i
\(819\) 0 0
\(820\) −54.6149 8.22565i −1.90723 0.287252i
\(821\) 22.6525 + 16.4580i 0.790577 + 0.574388i 0.908135 0.418678i \(-0.137507\pi\)
−0.117558 + 0.993066i \(0.537507\pi\)
\(822\) 0 0
\(823\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(828\) 0 0
\(829\) 18.7687 25.8329i 0.651864 0.897213i −0.347314 0.937749i \(-0.612906\pi\)
0.999178 + 0.0405353i \(0.0129063\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 17.0393 17.0393i 0.590731 0.590731i
\(833\) −37.4310 5.92848i −1.29691 0.205410i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(840\) 0 0
\(841\) −26.7269 82.2570i −0.921618 2.83645i
\(842\) 4.39791 27.7673i 0.151562 0.956926i
\(843\) 0 0
\(844\) 0 0
\(845\) 6.25605 + 6.16178i 0.215214 + 0.211972i
\(846\) 0 0
\(847\) 0 0
\(848\) 51.5122 26.2468i 1.76894 0.901318i
\(849\) 0 0
\(850\) 30.6259 22.9694i 1.05046 0.787844i
\(851\) 0 0
\(852\) 0 0
\(853\) −6.68801 42.2264i −0.228993 1.44580i −0.787505 0.616308i \(-0.788628\pi\)
0.558512 0.829496i \(-0.311372\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 33.0000 33.0000i 1.12726 1.12726i 0.136637 0.990621i \(-0.456370\pi\)
0.990621 0.136637i \(-0.0436295\pi\)
\(858\) 0 0
\(859\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(864\) 0 0
\(865\) −44.9425 + 33.1768i −1.52809 + 1.12805i
\(866\) 16.3164 + 50.2166i 0.554452 + 1.70643i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −46.4012 + 7.34923i −1.57134 + 0.248876i
\(873\) −2.79004 + 1.42159i −0.0944284 + 0.0481137i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 25.1550 + 49.3695i 0.849425 + 1.66709i 0.739506 + 0.673150i \(0.235059\pi\)
0.109919 + 0.993941i \(0.464941\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −25.8885 + 18.8091i −0.872207 + 0.633696i −0.931178 0.364564i \(-0.881218\pi\)
0.0589711 + 0.998260i \(0.481218\pi\)
\(882\) −21.0000 + 21.0000i −0.707107 + 0.707107i
\(883\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(884\) 31.0188 10.0786i 1.04328 0.338981i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −4.56629 13.6989i −0.153062 0.459187i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −42.4847 + 21.6470i −1.41773 + 0.722370i
\(899\) 0 0
\(900\) −0.455460 29.9965i −0.0151820 0.999885i
\(901\) 78.2497 2.60687
\(902\) 0 0
\(903\) 0 0
\(904\) −34.2676 + 47.1653i −1.13972 + 1.56869i
\(905\) 38.5736 39.1638i 1.28223 1.30185i
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 52.5072 17.0606i 1.74155 0.565865i
\(910\) 0 0
\(911\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −32.3359 10.5066i −1.06958 0.347527i
\(915\) 0 0
\(916\) 12.8981 + 39.6964i 0.426166 + 1.31161i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −42.9709 + 6.80592i −1.41517 + 0.224141i
\(923\) 0 0
\(924\) 0 0
\(925\) −48.4288 6.91840i −1.59233 0.227476i
\(926\) 0 0
\(927\) 0 0
\(928\) 9.50999 + 60.0437i 0.312181 + 1.97103i
\(929\) 30.7159 42.2768i 1.00776 1.38706i 0.0873137 0.996181i \(-0.472172\pi\)
0.920443 0.390877i \(-0.127828\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 28.1009 28.1009i 0.920474 0.920474i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 7.89814 24.3080i 0.258159 0.794531i
\(937\) 10.7515 + 5.47817i 0.351237 + 0.178964i 0.620703 0.784046i \(-0.286847\pi\)
−0.269466 + 0.963010i \(0.586847\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11.4164 35.1359i −0.372163 1.14540i −0.945373 0.325991i \(-0.894302\pi\)
0.573210 0.819408i \(-0.305698\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(948\) 0 0
\(949\) 25.3896i 0.824182i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 5.95900 + 37.6236i 0.193031 + 1.21875i 0.873813 + 0.486263i \(0.161640\pi\)
−0.680782 + 0.732486i \(0.738360\pi\)
\(954\) 36.0433 49.6093i 1.16694 1.60616i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 9.57953 29.4828i 0.309017 0.951057i
\(962\) −37.1358 18.9216i −1.19731 0.610058i
\(963\) 0 0
\(964\) −49.5682 16.1057i −1.59649 0.518729i
\(965\) −47.1008 33.6774i −1.51623 1.08411i
\(966\) 0 0
\(967\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(968\) 22.0000 + 22.0000i 0.707107 + 0.707107i
\(969\) 0 0
\(970\) 2.35161 + 2.31617i 0.0755055 + 0.0743678i
\(971\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 15.3214 0.490426
\(977\) −0.816016 1.60152i −0.0261067 0.0512372i 0.877585 0.479421i \(-0.159153\pi\)
−0.903691 + 0.428184i \(0.859153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 28.0000 + 14.0000i 0.894427 + 0.447214i
\(981\) −40.3128 + 29.2890i −1.28709 + 0.935126i
\(982\) 0 0
\(983\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(984\) 0 0
\(985\) 5.10133 1.70044i 0.162542 0.0541806i
\(986\) −25.4263 + 78.2541i −0.809738 + 2.49212i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 51.6817 8.18557i 1.63678 0.259240i 0.730807 0.682585i \(-0.239144\pi\)
0.905969 + 0.423345i \(0.139144\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.2.l.a.3.1 8
3.2 odd 2 900.2.bj.a.703.1 8
4.3 odd 2 CM 100.2.l.a.3.1 8
5.2 odd 4 500.2.l.c.7.1 8
5.3 odd 4 500.2.l.a.7.1 8
5.4 even 2 500.2.l.b.243.1 8
12.11 even 2 900.2.bj.a.703.1 8
20.3 even 4 500.2.l.a.7.1 8
20.7 even 4 500.2.l.c.7.1 8
20.19 odd 2 500.2.l.b.243.1 8
25.6 even 5 500.2.l.c.143.1 8
25.8 odd 20 500.2.l.b.107.1 8
25.17 odd 20 inner 100.2.l.a.67.1 yes 8
25.19 even 10 500.2.l.a.143.1 8
75.17 even 20 900.2.bj.a.667.1 8
100.19 odd 10 500.2.l.a.143.1 8
100.31 odd 10 500.2.l.c.143.1 8
100.67 even 20 inner 100.2.l.a.67.1 yes 8
100.83 even 20 500.2.l.b.107.1 8
300.167 odd 20 900.2.bj.a.667.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.2.l.a.3.1 8 1.1 even 1 trivial
100.2.l.a.3.1 8 4.3 odd 2 CM
100.2.l.a.67.1 yes 8 25.17 odd 20 inner
100.2.l.a.67.1 yes 8 100.67 even 20 inner
500.2.l.a.7.1 8 5.3 odd 4
500.2.l.a.7.1 8 20.3 even 4
500.2.l.a.143.1 8 25.19 even 10
500.2.l.a.143.1 8 100.19 odd 10
500.2.l.b.107.1 8 25.8 odd 20
500.2.l.b.107.1 8 100.83 even 20
500.2.l.b.243.1 8 5.4 even 2
500.2.l.b.243.1 8 20.19 odd 2
500.2.l.c.7.1 8 5.2 odd 4
500.2.l.c.7.1 8 20.7 even 4
500.2.l.c.143.1 8 25.6 even 5
500.2.l.c.143.1 8 100.31 odd 10
900.2.bj.a.667.1 8 75.17 even 20
900.2.bj.a.667.1 8 300.167 odd 20
900.2.bj.a.703.1 8 3.2 odd 2
900.2.bj.a.703.1 8 12.11 even 2