Properties

Label 100.2.l
Level $100$
Weight $2$
Character orbit 100.l
Rep. character $\chi_{100}(3,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $104$
Newform subspaces $2$
Sturm bound $30$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 100.l (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 100 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 2 \)
Sturm bound: \(30\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(100, [\chi])\).

Total New Old
Modular forms 136 136 0
Cusp forms 104 104 0
Eisenstein series 32 32 0

Trace form

\( 104 q - 8 q^{2} - 10 q^{4} - 16 q^{5} - 6 q^{6} - 14 q^{8} - 20 q^{9} - 16 q^{10} - 10 q^{12} - 18 q^{13} - 10 q^{14} - 6 q^{16} - 26 q^{17} - 4 q^{18} - 6 q^{20} - 12 q^{21} - 10 q^{22} - 26 q^{25} - 16 q^{26}+ \cdots - 144 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(100, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
100.2.l.a 100.l 100.l $8$ $0.799$ \(\Q(\zeta_{20})\) \(\Q(\sqrt{-1}) \) 100.2.l.a \(2\) \(0\) \(4\) \(0\) $\mathrm{U}(1)[D_{20}]$ \(q+(1-\zeta_{20}^{2}+\zeta_{20}^{3}+\zeta_{20}^{4}-\zeta_{20}^{6}+\cdots)q^{2}+\cdots\)
100.2.l.b 100.l 100.l $96$ $0.799$ None 100.2.l.b \(-10\) \(0\) \(-20\) \(0\) $\mathrm{SU}(2)[C_{20}]$