Properties

Label 100.2.i
Level $100$
Weight $2$
Character orbit 100.i
Rep. character $\chi_{100}(9,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $8$
Newform subspaces $1$
Sturm bound $30$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 100.i (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(30\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(100, [\chi])\).

Total New Old
Modular forms 72 8 64
Cusp forms 48 8 40
Eisenstein series 24 0 24

Trace form

\( 8 q + 5 q^{5} + 2 q^{9} + 5 q^{11} - 20 q^{15} - 5 q^{17} - 8 q^{19} - 2 q^{21} - 20 q^{23} - 5 q^{25} - 8 q^{29} - 12 q^{31} + 15 q^{33} - 5 q^{35} - 10 q^{37} + 22 q^{39} + 13 q^{41} + 10 q^{45} + 45 q^{47}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(100, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
100.2.i.a 100.i 25.e $8$ $0.799$ 8.0.58140625.2 None 100.2.i.a \(0\) \(0\) \(5\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\beta _{4}-\beta _{5})q^{3}+(2\beta _{1}+\beta _{2}+\beta _{5}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(100, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(100, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)