Properties

Label 100.2.e.c
Level $100$
Weight $2$
Character orbit 100.e
Analytic conductor $0.799$
Analytic rank $0$
Dimension $2$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [100,2,Mod(7,100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("100.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 100.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.798504020213\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - i + 1) q^{2} + (i + 1) q^{3} - 2 i q^{4} + 2 q^{6} + (3 i - 3) q^{7} + ( - 2 i - 2) q^{8} - i q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - i + 1) q^{2} + (i + 1) q^{3} - 2 i q^{4} + 2 q^{6} + (3 i - 3) q^{7} + ( - 2 i - 2) q^{8} - i q^{9} + ( - 2 i + 2) q^{12} + 6 i q^{14} - 4 q^{16} + ( - i - 1) q^{18} - 6 q^{21} + (i + 1) q^{23} - 4 i q^{24} + ( - 4 i + 4) q^{27} + (6 i + 6) q^{28} + 6 i q^{29} + (4 i - 4) q^{32} - 2 q^{36} + 12 q^{41} + (6 i - 6) q^{42} + ( - 9 i - 9) q^{43} + 2 q^{46} + ( - 7 i + 7) q^{47} + ( - 4 i - 4) q^{48} - 11 i q^{49} - 8 i q^{54} + 12 q^{56} + (6 i + 6) q^{58} - 8 q^{61} + (3 i + 3) q^{63} + 8 i q^{64} + (3 i - 3) q^{67} + 2 i q^{69} + (2 i - 2) q^{72} + 5 q^{81} + ( - 12 i + 12) q^{82} + (11 i + 11) q^{83} + 12 i q^{84} - 18 q^{86} + (6 i - 6) q^{87} + 6 i q^{89} + ( - 2 i + 2) q^{92} - 14 i q^{94} - 8 q^{96} + ( - 11 i - 11) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 4 q^{6} - 6 q^{7} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{3} + 4 q^{6} - 6 q^{7} - 4 q^{8} + 4 q^{12} - 8 q^{16} - 2 q^{18} - 12 q^{21} + 2 q^{23} + 8 q^{27} + 12 q^{28} - 8 q^{32} - 4 q^{36} + 24 q^{41} - 12 q^{42} - 18 q^{43} + 4 q^{46} + 14 q^{47} - 8 q^{48} + 24 q^{56} + 12 q^{58} - 16 q^{61} + 6 q^{63} - 6 q^{67} - 4 q^{72} + 10 q^{81} + 24 q^{82} + 22 q^{83} - 36 q^{86} - 12 q^{87} + 4 q^{92} - 16 q^{96} - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
1.00000i
1.00000i
1.00000 1.00000i 1.00000 + 1.00000i 2.00000i 0 2.00000 −3.00000 + 3.00000i −2.00000 2.00000i 1.00000i 0
43.1 1.00000 + 1.00000i 1.00000 1.00000i 2.00000i 0 2.00000 −3.00000 3.00000i −2.00000 + 2.00000i 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
5.c odd 4 1 inner
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 100.2.e.c yes 2
3.b odd 2 1 900.2.k.a 2
4.b odd 2 1 100.2.e.a 2
5.b even 2 1 100.2.e.a 2
5.c odd 4 1 100.2.e.a 2
5.c odd 4 1 inner 100.2.e.c yes 2
8.b even 2 1 1600.2.n.b 2
8.d odd 2 1 1600.2.n.l 2
12.b even 2 1 900.2.k.e 2
15.d odd 2 1 900.2.k.e 2
15.e even 4 1 900.2.k.a 2
15.e even 4 1 900.2.k.e 2
20.d odd 2 1 CM 100.2.e.c yes 2
20.e even 4 1 100.2.e.a 2
20.e even 4 1 inner 100.2.e.c yes 2
40.e odd 2 1 1600.2.n.b 2
40.f even 2 1 1600.2.n.l 2
40.i odd 4 1 1600.2.n.b 2
40.i odd 4 1 1600.2.n.l 2
40.k even 4 1 1600.2.n.b 2
40.k even 4 1 1600.2.n.l 2
60.h even 2 1 900.2.k.a 2
60.l odd 4 1 900.2.k.a 2
60.l odd 4 1 900.2.k.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
100.2.e.a 2 4.b odd 2 1
100.2.e.a 2 5.b even 2 1
100.2.e.a 2 5.c odd 4 1
100.2.e.a 2 20.e even 4 1
100.2.e.c yes 2 1.a even 1 1 trivial
100.2.e.c yes 2 5.c odd 4 1 inner
100.2.e.c yes 2 20.d odd 2 1 CM
100.2.e.c yes 2 20.e even 4 1 inner
900.2.k.a 2 3.b odd 2 1
900.2.k.a 2 15.e even 4 1
900.2.k.a 2 60.h even 2 1
900.2.k.a 2 60.l odd 4 1
900.2.k.e 2 12.b even 2 1
900.2.k.e 2 15.d odd 2 1
900.2.k.e 2 15.e even 4 1
900.2.k.e 2 60.l odd 4 1
1600.2.n.b 2 8.b even 2 1
1600.2.n.b 2 40.e odd 2 1
1600.2.n.b 2 40.i odd 4 1
1600.2.n.b 2 40.k even 4 1
1600.2.n.l 2 8.d odd 2 1
1600.2.n.l 2 40.f even 2 1
1600.2.n.l 2 40.i odd 4 1
1600.2.n.l 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2T_{3} + 2 \) acting on \(S_{2}^{\mathrm{new}}(100, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T - 12)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 18T + 162 \) Copy content Toggle raw display
$47$ \( T^{2} - 14T + 98 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 22T + 242 \) Copy content Toggle raw display
$89$ \( T^{2} + 36 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less