Defining parameters
Level: | \( N \) | \(=\) | \( 100 = 2^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 100.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(100, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 22 | 20 |
Cusp forms | 18 | 14 | 4 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(100, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
100.2.e.a | $2$ | $0.799$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-5}) \) | \(-2\) | \(-2\) | \(0\) | \(6\) | \(q+(i-1)q^{2}+(-i-1)q^{3}-2 i q^{4}+\cdots\) |
100.2.e.b | $2$ | $0.799$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(2\) | \(0\) | \(0\) | \(0\) | \(q+(i+1)q^{2}+2 i q^{4}+(2 i-2)q^{8}+\cdots\) |
100.2.e.c | $2$ | $0.799$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-5}) \) | \(2\) | \(2\) | \(0\) | \(-6\) | \(q+(-i+1)q^{2}+(i+1)q^{3}-2 i q^{4}+\cdots\) |
100.2.e.d | $8$ | $0.799$ | 8.0.3317760000.5 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-\beta _{4}+\beta _{6})q^{3}+\beta _{2}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(100, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(100, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)