Properties

Label 10.9.c
Level $10$
Weight $9$
Character orbit 10.c
Rep. character $\chi_{10}(3,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $2$
Sturm bound $13$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 10.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(13\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(10, [\chi])\).

Total New Old
Modular forms 28 8 20
Cusp forms 20 8 12
Eisenstein series 8 0 8

Trace form

\( 8 q + 140 q^{3} - 780 q^{5} + 512 q^{6} + 4540 q^{7} - 6400 q^{10} - 34584 q^{11} + 17920 q^{12} + 119280 q^{13} - 252580 q^{15} - 131072 q^{16} + 202560 q^{17} + 158720 q^{18} + 53760 q^{20} + 110696 q^{21}+ \cdots + 115169280 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(10, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
10.9.c.a 10.c 5.c $4$ $4.074$ \(\Q(i, \sqrt{249})\) None 10.9.c.a \(-32\) \(54\) \(90\) \(-1186\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-8+8\beta _{1})q^{2}+(13+13\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)
10.9.c.b 10.c 5.c $4$ $4.074$ \(\Q(i, \sqrt{601})\) None 10.9.c.b \(32\) \(86\) \(-870\) \(5726\) $\mathrm{SU}(2)[C_{4}]$ \(q+(8+8\beta _{1})q^{2}+(22-21\beta _{1}+\beta _{3})q^{3}+\cdots\)

Decomposition of \(S_{9}^{\mathrm{old}}(10, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(10, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)