Properties

Label 10.7.c
Level $10$
Weight $7$
Character orbit 10.c
Rep. character $\chi_{10}(3,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $6$
Newform subspaces $2$
Sturm bound $10$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 10.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(10\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(10, [\chi])\).

Total New Old
Modular forms 22 6 16
Cusp forms 14 6 8
Eisenstein series 8 0 8

Trace form

\( 6 q + 8 q^{2} - 64 q^{3} + 180 q^{5} + 224 q^{6} - 696 q^{7} - 256 q^{8} + 2280 q^{10} + 472 q^{11} - 2048 q^{12} - 4614 q^{13} + 3320 q^{15} - 6144 q^{16} + 17554 q^{17} + 12152 q^{18} - 9920 q^{20} - 46408 q^{21}+ \cdots - 1286072 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(10, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
10.7.c.a 10.c 5.c $2$ $2.301$ \(\Q(\sqrt{-1}) \) None 10.7.c.a \(-8\) \(-46\) \(-150\) \(-494\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-4 i-4)q^{2}+(23 i-23)q^{3}+\cdots\)
10.7.c.b 10.c 5.c $4$ $2.301$ \(\Q(i, \sqrt{129})\) None 10.7.c.b \(16\) \(-18\) \(330\) \(-202\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4+4\beta _{1})q^{2}+(-5+4\beta _{1}-\beta _{3})q^{3}+\cdots\)

Decomposition of \(S_{7}^{\mathrm{old}}(10, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(10, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)