Defining parameters
Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 10.c (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(10\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(10, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 6 | 16 |
Cusp forms | 14 | 6 | 8 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(10, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
10.7.c.a | $2$ | $2.301$ | \(\Q(\sqrt{-1}) \) | None | \(-8\) | \(-46\) | \(-150\) | \(-494\) | \(q+(-4 i-4)q^{2}+(23 i-23)q^{3}+\cdots\) |
10.7.c.b | $4$ | $2.301$ | \(\Q(i, \sqrt{129})\) | None | \(16\) | \(-18\) | \(330\) | \(-202\) | \(q+(4+4\beta _{1})q^{2}+(-5+4\beta _{1}-\beta _{3})q^{3}+\cdots\) |
Decomposition of \(S_{7}^{\mathrm{old}}(10, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(10, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)