Properties

Label 10.6.a.a
Level $10$
Weight $6$
Character orbit 10.a
Self dual yes
Analytic conductor $1.604$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [10,6,Mod(1,10)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("10.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-4,-26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.60383819813\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{2} - 26 q^{3} + 16 q^{4} - 25 q^{5} + 104 q^{6} - 22 q^{7} - 64 q^{8} + 433 q^{9} + 100 q^{10} - 768 q^{11} - 416 q^{12} - 46 q^{13} + 88 q^{14} + 650 q^{15} + 256 q^{16} + 378 q^{17} - 1732 q^{18}+ \cdots - 332544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 −26.0000 16.0000 −25.0000 104.000 −22.0000 −64.0000 433.000 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.6.a.a 1
3.b odd 2 1 90.6.a.f 1
4.b odd 2 1 80.6.a.h 1
5.b even 2 1 50.6.a.g 1
5.c odd 4 2 50.6.b.d 2
7.b odd 2 1 490.6.a.j 1
8.b even 2 1 320.6.a.p 1
8.d odd 2 1 320.6.a.a 1
12.b even 2 1 720.6.a.r 1
15.d odd 2 1 450.6.a.h 1
15.e even 4 2 450.6.c.o 2
20.d odd 2 1 400.6.a.a 1
20.e even 4 2 400.6.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.6.a.a 1 1.a even 1 1 trivial
50.6.a.g 1 5.b even 2 1
50.6.b.d 2 5.c odd 4 2
80.6.a.h 1 4.b odd 2 1
90.6.a.f 1 3.b odd 2 1
320.6.a.a 1 8.d odd 2 1
320.6.a.p 1 8.b even 2 1
400.6.a.a 1 20.d odd 2 1
400.6.c.a 2 20.e even 4 2
450.6.a.h 1 15.d odd 2 1
450.6.c.o 2 15.e even 4 2
490.6.a.j 1 7.b odd 2 1
720.6.a.r 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 26 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T + 26 \) Copy content Toggle raw display
$5$ \( T + 25 \) Copy content Toggle raw display
$7$ \( T + 22 \) Copy content Toggle raw display
$11$ \( T + 768 \) Copy content Toggle raw display
$13$ \( T + 46 \) Copy content Toggle raw display
$17$ \( T - 378 \) Copy content Toggle raw display
$19$ \( T - 1100 \) Copy content Toggle raw display
$23$ \( T + 1986 \) Copy content Toggle raw display
$29$ \( T + 5610 \) Copy content Toggle raw display
$31$ \( T + 3988 \) Copy content Toggle raw display
$37$ \( T + 142 \) Copy content Toggle raw display
$41$ \( T - 1542 \) Copy content Toggle raw display
$43$ \( T + 5026 \) Copy content Toggle raw display
$47$ \( T - 24738 \) Copy content Toggle raw display
$53$ \( T + 14166 \) Copy content Toggle raw display
$59$ \( T - 28380 \) Copy content Toggle raw display
$61$ \( T - 5522 \) Copy content Toggle raw display
$67$ \( T + 24742 \) Copy content Toggle raw display
$71$ \( T - 42372 \) Copy content Toggle raw display
$73$ \( T + 52126 \) Copy content Toggle raw display
$79$ \( T + 39640 \) Copy content Toggle raw display
$83$ \( T + 59826 \) Copy content Toggle raw display
$89$ \( T - 57690 \) Copy content Toggle raw display
$97$ \( T + 144382 \) Copy content Toggle raw display
show more
show less