Properties

Label 10.6.a
Level $10$
Weight $6$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $9$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(9\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(10))\).

Total New Old
Modular forms 9 3 6
Cusp forms 5 3 2
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(1\)
Minus space\(-\)\(2\)

Trace form

\( 3 q - 4 q^{2} + 4 q^{3} + 48 q^{4} - 25 q^{5} + 32 q^{6} - 312 q^{7} - 64 q^{8} + 559 q^{9} - 100 q^{10} - 444 q^{11} + 64 q^{12} + 114 q^{13} + 304 q^{14} + 1100 q^{15} + 768 q^{16} + 918 q^{17} - 3892 q^{18}+ \cdots - 328332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.6.a.a 10.a 1.a $1$ $1.604$ \(\Q\) None 10.6.a.a \(-4\) \(-26\) \(-25\) \(-22\) $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}-26q^{3}+2^{4}q^{4}-5^{2}q^{5}+104q^{6}+\cdots\)
10.6.a.b 10.a 1.a $1$ $1.604$ \(\Q\) None 10.6.a.b \(-4\) \(24\) \(25\) \(-172\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+24q^{3}+2^{4}q^{4}+5^{2}q^{5}-96q^{6}+\cdots\)
10.6.a.c 10.a 1.a $1$ $1.604$ \(\Q\) None 10.6.a.c \(4\) \(6\) \(-25\) \(-118\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+6q^{3}+2^{4}q^{4}-5^{2}q^{5}+24q^{6}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)