Defining parameters
Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 10.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(9\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(10))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9 | 3 | 6 |
Cusp forms | 5 | 3 | 2 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(1\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
10.6.a.a | $1$ | $1.604$ | \(\Q\) | None | \(-4\) | \(-26\) | \(-25\) | \(-22\) | $+$ | $+$ | \(q-4q^{2}-26q^{3}+2^{4}q^{4}-5^{2}q^{5}+104q^{6}+\cdots\) | |
10.6.a.b | $1$ | $1.604$ | \(\Q\) | None | \(-4\) | \(24\) | \(25\) | \(-172\) | $+$ | $-$ | \(q-4q^{2}+24q^{3}+2^{4}q^{4}+5^{2}q^{5}-96q^{6}+\cdots\) | |
10.6.a.c | $1$ | $1.604$ | \(\Q\) | None | \(4\) | \(6\) | \(-25\) | \(-118\) | $-$ | $+$ | \(q+4q^{2}+6q^{3}+2^{4}q^{4}-5^{2}q^{5}+24q^{6}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)