Properties

Label 10.6
Level 10
Weight 6
Dimension 5
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 36
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(36\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(10))\).

Total New Old
Modular forms 19 5 14
Cusp forms 11 5 6
Eisenstein series 8 0 8

Trace form

\( 5 q - 4 q^{2} + 4 q^{3} + 16 q^{4} + 85 q^{5} - 80 q^{6} - 312 q^{7} - 64 q^{8} + 653 q^{9} - 180 q^{10} - 740 q^{11} + 64 q^{12} + 114 q^{13} + 1568 q^{14} + 820 q^{15} + 1280 q^{16} + 918 q^{17} - 3892 q^{18}+ \cdots - 342244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.6.a \(\chi_{10}(1, \cdot)\) 10.6.a.a 1 1
10.6.a.b 1
10.6.a.c 1
10.6.b \(\chi_{10}(9, \cdot)\) 10.6.b.a 2 1

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)