Properties

Label 10.5.c.b.3.1
Level 10
Weight 5
Character 10.3
Analytic conductor 1.034
Analytic rank 0
Dimension 2
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 5 \)
Character orbit: \([\chi]\) = 10.c (of order \(4\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(1.03369963084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 3.1
Root \(-1.00000i\)
Character \(\chi\) = 10.3
Dual form 10.5.c.b.7.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(2.00000 - 2.00000i) q^{2}\) \(+(1.00000 + 1.00000i) q^{3}\) \(-8.00000i q^{4}\) \(+(-15.0000 + 20.0000i) q^{5}\) \(+4.00000 q^{6}\) \(+(-19.0000 + 19.0000i) q^{7}\) \(+(-16.0000 - 16.0000i) q^{8}\) \(-79.0000i q^{9}\) \(+O(q^{10})\) \(q\)\(+(2.00000 - 2.00000i) q^{2}\) \(+(1.00000 + 1.00000i) q^{3}\) \(-8.00000i q^{4}\) \(+(-15.0000 + 20.0000i) q^{5}\) \(+4.00000 q^{6}\) \(+(-19.0000 + 19.0000i) q^{7}\) \(+(-16.0000 - 16.0000i) q^{8}\) \(-79.0000i q^{9}\) \(+(10.0000 + 70.0000i) q^{10}\) \(+202.000 q^{11}\) \(+(8.00000 - 8.00000i) q^{12}\) \(+(-99.0000 - 99.0000i) q^{13}\) \(+76.0000i q^{14}\) \(+(-35.0000 + 5.00000i) q^{15}\) \(-64.0000 q^{16}\) \(+(-239.000 + 239.000i) q^{17}\) \(+(-158.000 - 158.000i) q^{18}\) \(-40.0000i q^{19}\) \(+(160.000 + 120.000i) q^{20}\) \(-38.0000 q^{21}\) \(+(404.000 - 404.000i) q^{22}\) \(+(541.000 + 541.000i) q^{23}\) \(-32.0000i q^{24}\) \(+(-175.000 - 600.000i) q^{25}\) \(-396.000 q^{26}\) \(+(160.000 - 160.000i) q^{27}\) \(+(152.000 + 152.000i) q^{28}\) \(+200.000i q^{29}\) \(+(-60.0000 + 80.0000i) q^{30}\) \(-758.000 q^{31}\) \(+(-128.000 + 128.000i) q^{32}\) \(+(202.000 + 202.000i) q^{33}\) \(+956.000i q^{34}\) \(+(-95.0000 - 665.000i) q^{35}\) \(-632.000 q^{36}\) \(+(141.000 - 141.000i) q^{37}\) \(+(-80.0000 - 80.0000i) q^{38}\) \(-198.000i q^{39}\) \(+(560.000 - 80.0000i) q^{40}\) \(+1042.00 q^{41}\) \(+(-76.0000 + 76.0000i) q^{42}\) \(+(-759.000 - 759.000i) q^{43}\) \(-1616.00i q^{44}\) \(+(1580.00 + 1185.00i) q^{45}\) \(+2164.00 q^{46}\) \(+(-459.000 + 459.000i) q^{47}\) \(+(-64.0000 - 64.0000i) q^{48}\) \(+1679.00i q^{49}\) \(+(-1550.00 - 850.000i) q^{50}\) \(-478.000 q^{51}\) \(+(-792.000 + 792.000i) q^{52}\) \(+(-1819.00 - 1819.00i) q^{53}\) \(-640.000i q^{54}\) \(+(-3030.00 + 4040.00i) q^{55}\) \(+608.000 q^{56}\) \(+(40.0000 - 40.0000i) q^{57}\) \(+(400.000 + 400.000i) q^{58}\) \(-4600.00i q^{59}\) \(+(40.0000 + 280.000i) q^{60}\) \(+2082.00 q^{61}\) \(+(-1516.00 + 1516.00i) q^{62}\) \(+(1501.00 + 1501.00i) q^{63}\) \(+512.000i q^{64}\) \(+(3465.00 - 495.000i) q^{65}\) \(+808.000 q^{66}\) \(+(5081.00 - 5081.00i) q^{67}\) \(+(1912.00 + 1912.00i) q^{68}\) \(+1082.00i q^{69}\) \(+(-1520.00 - 1140.00i) q^{70}\) \(-3478.00 q^{71}\) \(+(-1264.00 + 1264.00i) q^{72}\) \(+(-3479.00 - 3479.00i) q^{73}\) \(-564.000i q^{74}\) \(+(425.000 - 775.000i) q^{75}\) \(-320.000 q^{76}\) \(+(-3838.00 + 3838.00i) q^{77}\) \(+(-396.000 - 396.000i) q^{78}\) \(+7680.00i q^{79}\) \(+(960.000 - 1280.00i) q^{80}\) \(-6079.00 q^{81}\) \(+(2084.00 - 2084.00i) q^{82}\) \(+(6081.00 + 6081.00i) q^{83}\) \(+304.000i q^{84}\) \(+(-1195.00 - 8365.00i) q^{85}\) \(-3036.00 q^{86}\) \(+(-200.000 + 200.000i) q^{87}\) \(+(-3232.00 - 3232.00i) q^{88}\) \(+5680.00i q^{89}\) \(+(5530.00 - 790.000i) q^{90}\) \(+3762.00 q^{91}\) \(+(4328.00 - 4328.00i) q^{92}\) \(+(-758.000 - 758.000i) q^{93}\) \(+1836.00i q^{94}\) \(+(800.000 + 600.000i) q^{95}\) \(-256.000 q^{96}\) \(+(561.000 - 561.000i) q^{97}\) \(+(3358.00 + 3358.00i) q^{98}\) \(-15958.0i q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(2q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 2q^{3} \) \(\mathstrut -\mathstrut 30q^{5} \) \(\mathstrut +\mathstrut 8q^{6} \) \(\mathstrut -\mathstrut 38q^{7} \) \(\mathstrut -\mathstrut 32q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 2q^{3} \) \(\mathstrut -\mathstrut 30q^{5} \) \(\mathstrut +\mathstrut 8q^{6} \) \(\mathstrut -\mathstrut 38q^{7} \) \(\mathstrut -\mathstrut 32q^{8} \) \(\mathstrut +\mathstrut 20q^{10} \) \(\mathstrut +\mathstrut 404q^{11} \) \(\mathstrut +\mathstrut 16q^{12} \) \(\mathstrut -\mathstrut 198q^{13} \) \(\mathstrut -\mathstrut 70q^{15} \) \(\mathstrut -\mathstrut 128q^{16} \) \(\mathstrut -\mathstrut 478q^{17} \) \(\mathstrut -\mathstrut 316q^{18} \) \(\mathstrut +\mathstrut 320q^{20} \) \(\mathstrut -\mathstrut 76q^{21} \) \(\mathstrut +\mathstrut 808q^{22} \) \(\mathstrut +\mathstrut 1082q^{23} \) \(\mathstrut -\mathstrut 350q^{25} \) \(\mathstrut -\mathstrut 792q^{26} \) \(\mathstrut +\mathstrut 320q^{27} \) \(\mathstrut +\mathstrut 304q^{28} \) \(\mathstrut -\mathstrut 120q^{30} \) \(\mathstrut -\mathstrut 1516q^{31} \) \(\mathstrut -\mathstrut 256q^{32} \) \(\mathstrut +\mathstrut 404q^{33} \) \(\mathstrut -\mathstrut 190q^{35} \) \(\mathstrut -\mathstrut 1264q^{36} \) \(\mathstrut +\mathstrut 282q^{37} \) \(\mathstrut -\mathstrut 160q^{38} \) \(\mathstrut +\mathstrut 1120q^{40} \) \(\mathstrut +\mathstrut 2084q^{41} \) \(\mathstrut -\mathstrut 152q^{42} \) \(\mathstrut -\mathstrut 1518q^{43} \) \(\mathstrut +\mathstrut 3160q^{45} \) \(\mathstrut +\mathstrut 4328q^{46} \) \(\mathstrut -\mathstrut 918q^{47} \) \(\mathstrut -\mathstrut 128q^{48} \) \(\mathstrut -\mathstrut 3100q^{50} \) \(\mathstrut -\mathstrut 956q^{51} \) \(\mathstrut -\mathstrut 1584q^{52} \) \(\mathstrut -\mathstrut 3638q^{53} \) \(\mathstrut -\mathstrut 6060q^{55} \) \(\mathstrut +\mathstrut 1216q^{56} \) \(\mathstrut +\mathstrut 80q^{57} \) \(\mathstrut +\mathstrut 800q^{58} \) \(\mathstrut +\mathstrut 80q^{60} \) \(\mathstrut +\mathstrut 4164q^{61} \) \(\mathstrut -\mathstrut 3032q^{62} \) \(\mathstrut +\mathstrut 3002q^{63} \) \(\mathstrut +\mathstrut 6930q^{65} \) \(\mathstrut +\mathstrut 1616q^{66} \) \(\mathstrut +\mathstrut 10162q^{67} \) \(\mathstrut +\mathstrut 3824q^{68} \) \(\mathstrut -\mathstrut 3040q^{70} \) \(\mathstrut -\mathstrut 6956q^{71} \) \(\mathstrut -\mathstrut 2528q^{72} \) \(\mathstrut -\mathstrut 6958q^{73} \) \(\mathstrut +\mathstrut 850q^{75} \) \(\mathstrut -\mathstrut 640q^{76} \) \(\mathstrut -\mathstrut 7676q^{77} \) \(\mathstrut -\mathstrut 792q^{78} \) \(\mathstrut +\mathstrut 1920q^{80} \) \(\mathstrut -\mathstrut 12158q^{81} \) \(\mathstrut +\mathstrut 4168q^{82} \) \(\mathstrut +\mathstrut 12162q^{83} \) \(\mathstrut -\mathstrut 2390q^{85} \) \(\mathstrut -\mathstrut 6072q^{86} \) \(\mathstrut -\mathstrut 400q^{87} \) \(\mathstrut -\mathstrut 6464q^{88} \) \(\mathstrut +\mathstrut 11060q^{90} \) \(\mathstrut +\mathstrut 7524q^{91} \) \(\mathstrut +\mathstrut 8656q^{92} \) \(\mathstrut -\mathstrut 1516q^{93} \) \(\mathstrut +\mathstrut 1600q^{95} \) \(\mathstrut -\mathstrut 512q^{96} \) \(\mathstrut +\mathstrut 1122q^{97} \) \(\mathstrut +\mathstrut 6716q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 2.00000i 0.500000 0.500000i
\(3\) 1.00000 + 1.00000i 0.111111 + 0.111111i 0.760477 0.649365i \(-0.224965\pi\)
−0.649365 + 0.760477i \(0.724965\pi\)
\(4\) 8.00000i 0.500000i
\(5\) −15.0000 + 20.0000i −0.600000 + 0.800000i
\(6\) 4.00000 0.111111
\(7\) −19.0000 + 19.0000i −0.387755 + 0.387755i −0.873886 0.486131i \(-0.838408\pi\)
0.486131 + 0.873886i \(0.338408\pi\)
\(8\) −16.0000 16.0000i −0.250000 0.250000i
\(9\) 79.0000i 0.975309i
\(10\) 10.0000 + 70.0000i 0.100000 + 0.700000i
\(11\) 202.000 1.66942 0.834711 0.550689i \(-0.185635\pi\)
0.834711 + 0.550689i \(0.185635\pi\)
\(12\) 8.00000 8.00000i 0.0555556 0.0555556i
\(13\) −99.0000 99.0000i −0.585799 0.585799i 0.350692 0.936491i \(-0.385946\pi\)
−0.936491 + 0.350692i \(0.885946\pi\)
\(14\) 76.0000i 0.387755i
\(15\) −35.0000 + 5.00000i −0.155556 + 0.0222222i
\(16\) −64.0000 −0.250000
\(17\) −239.000 + 239.000i −0.826990 + 0.826990i −0.987099 0.160110i \(-0.948815\pi\)
0.160110 + 0.987099i \(0.448815\pi\)
\(18\) −158.000 158.000i −0.487654 0.487654i
\(19\) 40.0000i 0.110803i −0.998464 0.0554017i \(-0.982356\pi\)
0.998464 0.0554017i \(-0.0176439\pi\)
\(20\) 160.000 + 120.000i 0.400000 + 0.300000i
\(21\) −38.0000 −0.0861678
\(22\) 404.000 404.000i 0.834711 0.834711i
\(23\) 541.000 + 541.000i 1.02268 + 1.02268i 0.999737 + 0.0229476i \(0.00730510\pi\)
0.0229476 + 0.999737i \(0.492695\pi\)
\(24\) 32.0000i 0.0555556i
\(25\) −175.000 600.000i −0.280000 0.960000i
\(26\) −396.000 −0.585799
\(27\) 160.000 160.000i 0.219479 0.219479i
\(28\) 152.000 + 152.000i 0.193878 + 0.193878i
\(29\) 200.000i 0.237812i 0.992906 + 0.118906i \(0.0379387\pi\)
−0.992906 + 0.118906i \(0.962061\pi\)
\(30\) −60.0000 + 80.0000i −0.0666667 + 0.0888889i
\(31\) −758.000 −0.788762 −0.394381 0.918947i \(-0.629041\pi\)
−0.394381 + 0.918947i \(0.629041\pi\)
\(32\) −128.000 + 128.000i −0.125000 + 0.125000i
\(33\) 202.000 + 202.000i 0.185491 + 0.185491i
\(34\) 956.000i 0.826990i
\(35\) −95.0000 665.000i −0.0775510 0.542857i
\(36\) −632.000 −0.487654
\(37\) 141.000 141.000i 0.102995 0.102995i −0.653732 0.756726i \(-0.726797\pi\)
0.756726 + 0.653732i \(0.226797\pi\)
\(38\) −80.0000 80.0000i −0.0554017 0.0554017i
\(39\) 198.000i 0.130178i
\(40\) 560.000 80.0000i 0.350000 0.0500000i
\(41\) 1042.00 0.619869 0.309935 0.950758i \(-0.399693\pi\)
0.309935 + 0.950758i \(0.399693\pi\)
\(42\) −76.0000 + 76.0000i −0.0430839 + 0.0430839i
\(43\) −759.000 759.000i −0.410492 0.410492i 0.471418 0.881910i \(-0.343742\pi\)
−0.881910 + 0.471418i \(0.843742\pi\)
\(44\) 1616.00i 0.834711i
\(45\) 1580.00 + 1185.00i 0.780247 + 0.585185i
\(46\) 2164.00 1.02268
\(47\) −459.000 + 459.000i −0.207786 + 0.207786i −0.803326 0.595540i \(-0.796938\pi\)
0.595540 + 0.803326i \(0.296938\pi\)
\(48\) −64.0000 64.0000i −0.0277778 0.0277778i
\(49\) 1679.00i 0.699292i
\(50\) −1550.00 850.000i −0.620000 0.340000i
\(51\) −478.000 −0.183775
\(52\) −792.000 + 792.000i −0.292899 + 0.292899i
\(53\) −1819.00 1819.00i −0.647561 0.647561i 0.304842 0.952403i \(-0.401396\pi\)
−0.952403 + 0.304842i \(0.901396\pi\)
\(54\) 640.000i 0.219479i
\(55\) −3030.00 + 4040.00i −1.00165 + 1.33554i
\(56\) 608.000 0.193878
\(57\) 40.0000 40.0000i 0.0123115 0.0123115i
\(58\) 400.000 + 400.000i 0.118906 + 0.118906i
\(59\) 4600.00i 1.32146i −0.750624 0.660730i \(-0.770247\pi\)
0.750624 0.660730i \(-0.229753\pi\)
\(60\) 40.0000 + 280.000i 0.0111111 + 0.0777778i
\(61\) 2082.00 0.559527 0.279764 0.960069i \(-0.409744\pi\)
0.279764 + 0.960069i \(0.409744\pi\)
\(62\) −1516.00 + 1516.00i −0.394381 + 0.394381i
\(63\) 1501.00 + 1501.00i 0.378181 + 0.378181i
\(64\) 512.000i 0.125000i
\(65\) 3465.00 495.000i 0.820118 0.117160i
\(66\) 808.000 0.185491
\(67\) 5081.00 5081.00i 1.13188 1.13188i 0.142013 0.989865i \(-0.454642\pi\)
0.989865 0.142013i \(-0.0453575\pi\)
\(68\) 1912.00 + 1912.00i 0.413495 + 0.413495i
\(69\) 1082.00i 0.227263i
\(70\) −1520.00 1140.00i −0.310204 0.232653i
\(71\) −3478.00 −0.689942 −0.344971 0.938613i \(-0.612111\pi\)
−0.344971 + 0.938613i \(0.612111\pi\)
\(72\) −1264.00 + 1264.00i −0.243827 + 0.243827i
\(73\) −3479.00 3479.00i −0.652843 0.652843i 0.300834 0.953677i \(-0.402735\pi\)
−0.953677 + 0.300834i \(0.902735\pi\)
\(74\) 564.000i 0.102995i
\(75\) 425.000 775.000i 0.0755556 0.137778i
\(76\) −320.000 −0.0554017
\(77\) −3838.00 + 3838.00i −0.647327 + 0.647327i
\(78\) −396.000 396.000i −0.0650888 0.0650888i
\(79\) 7680.00i 1.23057i 0.788304 + 0.615286i \(0.210959\pi\)
−0.788304 + 0.615286i \(0.789041\pi\)
\(80\) 960.000 1280.00i 0.150000 0.200000i
\(81\) −6079.00 −0.926536
\(82\) 2084.00 2084.00i 0.309935 0.309935i
\(83\) 6081.00 + 6081.00i 0.882712 + 0.882712i 0.993809 0.111098i \(-0.0354367\pi\)
−0.111098 + 0.993809i \(0.535437\pi\)
\(84\) 304.000i 0.0430839i
\(85\) −1195.00 8365.00i −0.165398 1.15779i
\(86\) −3036.00 −0.410492
\(87\) −200.000 + 200.000i −0.0264236 + 0.0264236i
\(88\) −3232.00 3232.00i −0.417355 0.417355i
\(89\) 5680.00i 0.717081i 0.933514 + 0.358541i \(0.116726\pi\)
−0.933514 + 0.358541i \(0.883274\pi\)
\(90\) 5530.00 790.000i 0.682716 0.0975309i
\(91\) 3762.00 0.454293
\(92\) 4328.00 4328.00i 0.511342 0.511342i
\(93\) −758.000 758.000i −0.0876402 0.0876402i
\(94\) 1836.00i 0.207786i
\(95\) 800.000 + 600.000i 0.0886427 + 0.0664820i
\(96\) −256.000 −0.0277778
\(97\) 561.000 561.000i 0.0596238 0.0596238i −0.676666 0.736290i \(-0.736576\pi\)
0.736290 + 0.676666i \(0.236576\pi\)
\(98\) 3358.00 + 3358.00i 0.349646 + 0.349646i
\(99\) 15958.0i 1.62820i
\(100\) −4800.00 + 1400.00i −0.480000 + 0.140000i
\(101\) 1682.00 0.164886 0.0824429 0.996596i \(-0.473728\pi\)
0.0824429 + 0.996596i \(0.473728\pi\)
\(102\) −956.000 + 956.000i −0.0918877 + 0.0918877i
\(103\) 7021.00 + 7021.00i 0.661797 + 0.661797i 0.955803 0.294007i \(-0.0949888\pi\)
−0.294007 + 0.955803i \(0.594989\pi\)
\(104\) 3168.00i 0.292899i
\(105\) 570.000 760.000i 0.0517007 0.0689342i
\(106\) −7276.00 −0.647561
\(107\) −2159.00 + 2159.00i −0.188575 + 0.188575i −0.795080 0.606505i \(-0.792571\pi\)
0.606505 + 0.795080i \(0.292571\pi\)
\(108\) −1280.00 1280.00i −0.109739 0.109739i
\(109\) 280.000i 0.0235670i 0.999931 + 0.0117835i \(0.00375090\pi\)
−0.999931 + 0.0117835i \(0.996249\pi\)
\(110\) 2020.00 + 14140.0i 0.166942 + 1.16860i
\(111\) 282.000 0.0228878
\(112\) 1216.00 1216.00i 0.0969388 0.0969388i
\(113\) −8479.00 8479.00i −0.664030 0.664030i 0.292297 0.956327i \(-0.405580\pi\)
−0.956327 + 0.292297i \(0.905580\pi\)
\(114\) 160.000i 0.0123115i
\(115\) −18935.0 + 2705.00i −1.43176 + 0.204537i
\(116\) 1600.00 0.118906
\(117\) −7821.00 + 7821.00i −0.571335 + 0.571335i
\(118\) −9200.00 9200.00i −0.660730 0.660730i
\(119\) 9082.00i 0.641339i
\(120\) 640.000 + 480.000i 0.0444444 + 0.0333333i
\(121\) 26163.0 1.78697
\(122\) 4164.00 4164.00i 0.279764 0.279764i
\(123\) 1042.00 + 1042.00i 0.0688743 + 0.0688743i
\(124\) 6064.00i 0.394381i
\(125\) 14625.0 + 5500.00i 0.936000 + 0.352000i
\(126\) 6004.00 0.378181
\(127\) 821.000 821.000i 0.0509021 0.0509021i −0.681198 0.732100i \(-0.738541\pi\)
0.732100 + 0.681198i \(0.238541\pi\)
\(128\) 1024.00 + 1024.00i 0.0625000 + 0.0625000i
\(129\) 1518.00i 0.0912205i
\(130\) 5940.00 7920.00i 0.351479 0.468639i
\(131\) −2198.00 −0.128081 −0.0640406 0.997947i \(-0.520399\pi\)
−0.0640406 + 0.997947i \(0.520399\pi\)
\(132\) 1616.00 1616.00i 0.0927456 0.0927456i
\(133\) 760.000 + 760.000i 0.0429646 + 0.0429646i
\(134\) 20324.0i 1.13188i
\(135\) 800.000 + 5600.00i 0.0438957 + 0.307270i
\(136\) 7648.00 0.413495
\(137\) −9399.00 + 9399.00i −0.500773 + 0.500773i −0.911678 0.410905i \(-0.865213\pi\)
0.410905 + 0.911678i \(0.365213\pi\)
\(138\) 2164.00 + 2164.00i 0.113632 + 0.113632i
\(139\) 13960.0i 0.722530i 0.932463 + 0.361265i \(0.117655\pi\)
−0.932463 + 0.361265i \(0.882345\pi\)
\(140\) −5320.00 + 760.000i −0.271429 + 0.0387755i
\(141\) −918.000 −0.0461747
\(142\) −6956.00 + 6956.00i −0.344971 + 0.344971i
\(143\) −19998.0 19998.0i −0.977945 0.977945i
\(144\) 5056.00i 0.243827i
\(145\) −4000.00 3000.00i −0.190250 0.142687i
\(146\) −13916.0 −0.652843
\(147\) −1679.00 + 1679.00i −0.0776991 + 0.0776991i
\(148\) −1128.00 1128.00i −0.0514974 0.0514974i
\(149\) 9000.00i 0.405387i 0.979242 + 0.202694i \(0.0649695\pi\)
−0.979242 + 0.202694i \(0.935030\pi\)
\(150\) −700.000 2400.00i −0.0311111 0.106667i
\(151\) −23798.0 −1.04373 −0.521863 0.853029i \(-0.674763\pi\)
−0.521863 + 0.853029i \(0.674763\pi\)
\(152\) −640.000 + 640.000i −0.0277008 + 0.0277008i
\(153\) 18881.0 + 18881.0i 0.806570 + 0.806570i
\(154\) 15352.0i 0.647327i
\(155\) 11370.0 15160.0i 0.473257 0.631009i
\(156\) −1584.00 −0.0650888
\(157\) 29781.0 29781.0i 1.20820 1.20820i 0.236595 0.971608i \(-0.423969\pi\)
0.971608 0.236595i \(-0.0760314\pi\)
\(158\) 15360.0 + 15360.0i 0.615286 + 0.615286i
\(159\) 3638.00i 0.143903i
\(160\) −640.000 4480.00i −0.0250000 0.175000i
\(161\) −20558.0 −0.793102
\(162\) −12158.0 + 12158.0i −0.463268 + 0.463268i
\(163\) 12641.0 + 12641.0i 0.475780 + 0.475780i 0.903779 0.427999i \(-0.140781\pi\)
−0.427999 + 0.903779i \(0.640781\pi\)
\(164\) 8336.00i 0.309935i
\(165\) −7070.00 + 1010.00i −0.259688 + 0.0370983i
\(166\) 24324.0 0.882712
\(167\) 29981.0 29981.0i 1.07501 1.07501i 0.0780632 0.996948i \(-0.475126\pi\)
0.996948 0.0780632i \(-0.0248736\pi\)
\(168\) 608.000 + 608.000i 0.0215420 + 0.0215420i
\(169\) 8959.00i 0.313679i
\(170\) −19120.0 14340.0i −0.661592 0.496194i
\(171\) −3160.00 −0.108067
\(172\) −6072.00 + 6072.00i −0.205246 + 0.205246i
\(173\) −4739.00 4739.00i −0.158341 0.158341i 0.623490 0.781831i \(-0.285714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(174\) 800.000i 0.0264236i
\(175\) 14725.0 + 8075.00i 0.480816 + 0.263673i
\(176\) −12928.0 −0.417355
\(177\) 4600.00 4600.00i 0.146829 0.146829i
\(178\) 11360.0 + 11360.0i 0.358541 + 0.358541i
\(179\) 32920.0i 1.02743i 0.857960 + 0.513717i \(0.171732\pi\)
−0.857960 + 0.513717i \(0.828268\pi\)
\(180\) 9480.00 12640.0i 0.292593 0.390123i
\(181\) −40558.0 −1.23800 −0.618998 0.785392i \(-0.712461\pi\)
−0.618998 + 0.785392i \(0.712461\pi\)
\(182\) 7524.00 7524.00i 0.227146 0.227146i
\(183\) 2082.00 + 2082.00i 0.0621697 + 0.0621697i
\(184\) 17312.0i 0.511342i
\(185\) 705.000 + 4935.00i 0.0205990 + 0.144193i
\(186\) −3032.00 −0.0876402
\(187\) −48278.0 + 48278.0i −1.38059 + 1.38059i
\(188\) 3672.00 + 3672.00i 0.103893 + 0.103893i
\(189\) 6080.00i 0.170208i
\(190\) 2800.00 400.000i 0.0775623 0.0110803i
\(191\) 33002.0 0.904635 0.452318 0.891857i \(-0.350597\pi\)
0.452318 + 0.891857i \(0.350597\pi\)
\(192\) −512.000 + 512.000i −0.0138889 + 0.0138889i
\(193\) −23199.0 23199.0i −0.622809 0.622809i 0.323440 0.946249i \(-0.395161\pi\)
−0.946249 + 0.323440i \(0.895161\pi\)
\(194\) 2244.00i 0.0596238i
\(195\) 3960.00 + 2970.00i 0.104142 + 0.0781065i
\(196\) 13432.0 0.349646
\(197\) −16899.0 + 16899.0i −0.435440 + 0.435440i −0.890474 0.455034i \(-0.849627\pi\)
0.455034 + 0.890474i \(0.349627\pi\)
\(198\) −31916.0 31916.0i −0.814101 0.814101i
\(199\) 14160.0i 0.357567i −0.983888 0.178783i \(-0.942784\pi\)
0.983888 0.178783i \(-0.0572161\pi\)
\(200\) −6800.00 + 12400.0i −0.170000 + 0.310000i
\(201\) 10162.0 0.251528
\(202\) 3364.00 3364.00i 0.0824429 0.0824429i
\(203\) −3800.00 3800.00i −0.0922129 0.0922129i
\(204\) 3824.00i 0.0918877i
\(205\) −15630.0 + 20840.0i −0.371921 + 0.495895i
\(206\) 28084.0 0.661797
\(207\) 42739.0 42739.0i 0.997433 0.997433i
\(208\) 6336.00 + 6336.00i 0.146450 + 0.146450i
\(209\) 8080.00i 0.184977i
\(210\) −380.000 2660.00i −0.00861678 0.0603175i
\(211\) 48842.0 1.09706 0.548528 0.836132i \(-0.315189\pi\)
0.548528 + 0.836132i \(0.315189\pi\)
\(212\) −14552.0 + 14552.0i −0.323781 + 0.323781i
\(213\) −3478.00 3478.00i −0.0766603 0.0766603i
\(214\) 8636.00i 0.188575i
\(215\) 26565.0 3795.00i 0.574689 0.0820984i
\(216\) −5120.00 −0.109739
\(217\) 14402.0 14402.0i 0.305846 0.305846i
\(218\) 560.000 + 560.000i 0.0117835 + 0.0117835i
\(219\) 6958.00i 0.145076i
\(220\) 32320.0 + 24240.0i 0.667769 + 0.500826i
\(221\) 47322.0 0.968899
\(222\) 564.000 564.000i 0.0114439 0.0114439i
\(223\) −35019.0 35019.0i −0.704197 0.704197i 0.261112 0.965309i \(-0.415911\pi\)
−0.965309 + 0.261112i \(0.915911\pi\)
\(224\) 4864.00i 0.0969388i
\(225\) −47400.0 + 13825.0i −0.936296 + 0.273086i
\(226\) −33916.0 −0.664030
\(227\) −68599.0 + 68599.0i −1.33127 + 1.33127i −0.427034 + 0.904235i \(0.640442\pi\)
−0.904235 + 0.427034i \(0.859558\pi\)
\(228\) −320.000 320.000i −0.00615574 0.00615574i
\(229\) 98760.0i 1.88326i −0.336651 0.941630i \(-0.609294\pi\)
0.336651 0.941630i \(-0.390706\pi\)
\(230\) −32460.0 + 43280.0i −0.613611 + 0.818147i
\(231\) −7676.00 −0.143850
\(232\) 3200.00 3200.00i 0.0594530 0.0594530i
\(233\) 53721.0 + 53721.0i 0.989537 + 0.989537i 0.999946 0.0104084i \(-0.00331314\pi\)
−0.0104084 + 0.999946i \(0.503313\pi\)
\(234\) 31284.0i 0.571335i
\(235\) −2295.00 16065.0i −0.0415573 0.290901i
\(236\) −36800.0 −0.660730
\(237\) −7680.00 + 7680.00i −0.136730 + 0.136730i
\(238\) −18164.0 18164.0i −0.320669 0.320669i
\(239\) 45600.0i 0.798305i 0.916884 + 0.399153i \(0.130696\pi\)
−0.916884 + 0.399153i \(0.869304\pi\)
\(240\) 2240.00 320.000i 0.0388889 0.00555556i
\(241\) −57038.0 −0.982042 −0.491021 0.871148i \(-0.663376\pi\)
−0.491021 + 0.871148i \(0.663376\pi\)
\(242\) 52326.0 52326.0i 0.893484 0.893484i
\(243\) −19039.0 19039.0i −0.322427 0.322427i
\(244\) 16656.0i 0.279764i
\(245\) −33580.0 25185.0i −0.559434 0.419575i
\(246\) 4168.00 0.0688743
\(247\) −3960.00 + 3960.00i −0.0649085 + 0.0649085i
\(248\) 12128.0 + 12128.0i 0.197190 + 0.197190i
\(249\) 12162.0i 0.196158i
\(250\) 40250.0 18250.0i 0.644000 0.292000i
\(251\) 39402.0 0.625419 0.312709 0.949849i \(-0.398763\pi\)
0.312709 + 0.949849i \(0.398763\pi\)
\(252\) 12008.0 12008.0i 0.189090 0.189090i
\(253\) 109282. + 109282.i 1.70729 + 1.70729i
\(254\) 3284.00i 0.0509021i
\(255\) 7170.00 9560.00i 0.110265 0.147020i
\(256\) 4096.00 0.0625000
\(257\) 31121.0 31121.0i 0.471180 0.471180i −0.431116 0.902297i \(-0.641880\pi\)
0.902297 + 0.431116i \(0.141880\pi\)
\(258\) −3036.00 3036.00i −0.0456102 0.0456102i
\(259\) 5358.00i 0.0798736i
\(260\) −3960.00 27720.0i −0.0585799 0.410059i
\(261\) 15800.0 0.231940
\(262\) −4396.00 + 4396.00i −0.0640406 + 0.0640406i
\(263\) −60739.0 60739.0i −0.878125 0.878125i 0.115216 0.993340i \(-0.463244\pi\)
−0.993340 + 0.115216i \(0.963244\pi\)
\(264\) 6464.00i 0.0927456i
\(265\) 63665.0 9095.00i 0.906586 0.129512i
\(266\) 3040.00 0.0429646
\(267\) −5680.00 + 5680.00i −0.0796757 + 0.0796757i
\(268\) −40648.0 40648.0i −0.565939 0.565939i
\(269\) 63800.0i 0.881690i 0.897583 + 0.440845i \(0.145321\pi\)
−0.897583 + 0.440845i \(0.854679\pi\)
\(270\) 12800.0 + 9600.00i 0.175583 + 0.131687i
\(271\) −113238. −1.54189 −0.770945 0.636901i \(-0.780216\pi\)
−0.770945 + 0.636901i \(0.780216\pi\)
\(272\) 15296.0 15296.0i 0.206747 0.206747i
\(273\) 3762.00 + 3762.00i 0.0504770 + 0.0504770i
\(274\) 37596.0i 0.500773i
\(275\) −35350.0 121200.i −0.467438 1.60264i
\(276\) 8656.00 0.113632
\(277\) −14739.0 + 14739.0i −0.192092 + 0.192092i −0.796599 0.604508i \(-0.793370\pi\)
0.604508 + 0.796599i \(0.293370\pi\)
\(278\) 27920.0 + 27920.0i 0.361265 + 0.361265i
\(279\) 59882.0i 0.769286i
\(280\) −9120.00 + 12160.0i −0.116327 + 0.155102i
\(281\) −7278.00 −0.0921721 −0.0460860 0.998937i \(-0.514675\pi\)
−0.0460860 + 0.998937i \(0.514675\pi\)
\(282\) −1836.00 + 1836.00i −0.0230874 + 0.0230874i
\(283\) 58601.0 + 58601.0i 0.731698 + 0.731698i 0.970956 0.239258i \(-0.0769041\pi\)
−0.239258 + 0.970956i \(0.576904\pi\)
\(284\) 27824.0i 0.344971i
\(285\) 200.000 + 1400.00i 0.00246230 + 0.0172361i
\(286\) −79992.0 −0.977945
\(287\) −19798.0 + 19798.0i −0.240357 + 0.240357i
\(288\) 10112.0 + 10112.0i 0.121914 + 0.121914i
\(289\) 30721.0i 0.367824i
\(290\) −14000.0 + 2000.00i −0.166468 + 0.0237812i
\(291\) 1122.00 0.0132497
\(292\) −27832.0 + 27832.0i −0.326421 + 0.326421i
\(293\) −95499.0 95499.0i −1.11241 1.11241i −0.992824 0.119582i \(-0.961844\pi\)
−0.119582 0.992824i \(-0.538156\pi\)
\(294\) 6716.00i 0.0776991i
\(295\) 92000.0 + 69000.0i 1.05717 + 0.792876i
\(296\) −4512.00 −0.0514974
\(297\) 32320.0 32320.0i 0.366403 0.366403i
\(298\) 18000.0 + 18000.0i 0.202694 + 0.202694i
\(299\) 107118.i 1.19817i
\(300\) −6200.00 3400.00i −0.0688889 0.0377778i
\(301\) 28842.0 0.318341
\(302\) −47596.0 + 47596.0i −0.521863 + 0.521863i
\(303\) 1682.00 + 1682.00i 0.0183206 + 0.0183206i
\(304\) 2560.00i 0.0277008i
\(305\) −31230.0 + 41640.0i −0.335716 + 0.447622i
\(306\) 75524.0 0.806570
\(307\) 38601.0 38601.0i 0.409564 0.409564i −0.472022 0.881587i \(-0.656476\pi\)
0.881587 + 0.472022i \(0.156476\pi\)
\(308\) 30704.0 + 30704.0i 0.323663 + 0.323663i
\(309\) 14042.0i 0.147066i
\(310\) −7580.00 53060.0i −0.0788762 0.552133i
\(311\) 29162.0 0.301506 0.150753 0.988571i \(-0.451830\pi\)
0.150753 + 0.988571i \(0.451830\pi\)
\(312\) −3168.00 + 3168.00i −0.0325444 + 0.0325444i
\(313\) 1881.00 + 1881.00i 0.0192000 + 0.0192000i 0.716642 0.697442i \(-0.245678\pi\)
−0.697442 + 0.716642i \(0.745678\pi\)
\(314\) 119124.i 1.20820i
\(315\) −52535.0 + 7505.00i −0.529453 + 0.0756362i
\(316\) 61440.0 0.615286
\(317\) 83781.0 83781.0i 0.833733 0.833733i −0.154292 0.988025i \(-0.549310\pi\)
0.988025 + 0.154292i \(0.0493097\pi\)
\(318\) −7276.00 7276.00i −0.0719513 0.0719513i
\(319\) 40400.0i 0.397009i
\(320\) −10240.0 7680.00i −0.100000 0.0750000i
\(321\) −4318.00 −0.0419056
\(322\) −41116.0 + 41116.0i −0.396551 + 0.396551i
\(323\) 9560.00 + 9560.00i 0.0916332 + 0.0916332i
\(324\) 48632.0i 0.463268i
\(325\) −42075.0 + 76725.0i −0.398343 + 0.726391i
\(326\) 50564.0 0.475780
\(327\) −280.000 + 280.000i −0.00261856 + 0.00261856i
\(328\) −16672.0 16672.0i −0.154967 0.154967i
\(329\) 17442.0i 0.161140i
\(330\) −12120.0 + 16160.0i −0.111295 + 0.148393i
\(331\) 106282. 0.970071 0.485036 0.874494i \(-0.338807\pi\)
0.485036 + 0.874494i \(0.338807\pi\)
\(332\) 48648.0 48648.0i 0.441356 0.441356i
\(333\) −11139.0 11139.0i −0.100452 0.100452i
\(334\) 119924.i 1.07501i
\(335\) 25405.0 + 177835.i 0.226376 + 1.58463i
\(336\) 2432.00 0.0215420
\(337\) −142479. + 142479.i −1.25456 + 1.25456i −0.300905 + 0.953654i \(0.597289\pi\)
−0.953654 + 0.300905i \(0.902711\pi\)
\(338\) −17918.0 17918.0i −0.156840 0.156840i
\(339\) 16958.0i 0.147562i
\(340\) −66920.0 + 9560.00i −0.578893 + 0.0826990i
\(341\) −153116. −1.31678
\(342\) −6320.00 + 6320.00i −0.0540337 + 0.0540337i
\(343\) −77520.0 77520.0i −0.658909 0.658909i
\(344\) 24288.0i 0.205246i
\(345\) −21640.0 16230.0i −0.181811 0.136358i
\(346\) −18956.0 −0.158341
\(347\) −6479.00 + 6479.00i −0.0538083 + 0.0538083i −0.733499 0.679691i \(-0.762114\pi\)
0.679691 + 0.733499i \(0.262114\pi\)
\(348\) 1600.00 + 1600.00i 0.0132118 + 0.0132118i
\(349\) 32920.0i 0.270277i −0.990827 0.135138i \(-0.956852\pi\)
0.990827 0.135138i \(-0.0431479\pi\)
\(350\) 45600.0 13300.0i 0.372245 0.108571i
\(351\) −31680.0 −0.257141
\(352\) −25856.0 + 25856.0i −0.208678 + 0.208678i
\(353\) −53919.0 53919.0i −0.432706 0.432706i 0.456842 0.889548i \(-0.348980\pi\)
−0.889548 + 0.456842i \(0.848980\pi\)
\(354\) 18400.0i 0.146829i
\(355\) 52170.0 69560.0i 0.413965 0.551954i
\(356\) 45440.0 0.358541
\(357\) 9082.00 9082.00i 0.0712599 0.0712599i
\(358\) 65840.0 + 65840.0i 0.513717 + 0.513717i
\(359\) 171760.i 1.33270i 0.745638 + 0.666351i \(0.232145\pi\)
−0.745638 + 0.666351i \(0.767855\pi\)
\(360\) −6320.00 44240.0i −0.0487654 0.341358i
\(361\) 128721. 0.987723
\(362\) −81116.0 + 81116.0i −0.618998 + 0.618998i
\(363\) 26163.0 + 26163.0i 0.198552 + 0.198552i
\(364\) 30096.0i 0.227146i
\(365\) 121765. 17395.0i 0.913980 0.130569i
\(366\) 8328.00 0.0621697
\(367\) 152261. 152261.i 1.13046 1.13046i 0.140363 0.990100i \(-0.455173\pi\)
0.990100 0.140363i \(-0.0448271\pi\)
\(368\) −34624.0 34624.0i −0.255671 0.255671i
\(369\) 82318.0i 0.604564i
\(370\) 11280.0 + 8460.00i 0.0823959 + 0.0617969i
\(371\) 69122.0 0.502190
\(372\) −6064.00 + 6064.00i −0.0438201 + 0.0438201i
\(373\) −71339.0 71339.0i −0.512754 0.512754i 0.402615 0.915369i \(-0.368101\pi\)
−0.915369 + 0.402615i \(0.868101\pi\)
\(374\) 193112.i 1.38059i
\(375\) 9125.00 + 20125.0i 0.0648889 + 0.143111i
\(376\) 14688.0 0.103893
\(377\) 19800.0 19800.0i 0.139310 0.139310i
\(378\) 12160.0 + 12160.0i 0.0851040 + 0.0851040i
\(379\) 172600.i 1.20161i −0.799397 0.600803i \(-0.794847\pi\)
0.799397 0.600803i \(-0.205153\pi\)
\(380\) 4800.00 6400.00i 0.0332410 0.0443213i
\(381\) 1642.00 0.0113116
\(382\) 66004.0 66004.0i 0.452318 0.452318i
\(383\) 158421. + 158421.i 1.07998 + 1.07998i 0.996510 + 0.0834683i \(0.0265997\pi\)
0.0834683 + 0.996510i \(0.473400\pi\)
\(384\) 2048.00i 0.0138889i
\(385\) −19190.0 134330.i −0.129465 0.906257i
\(386\) −92796.0 −0.622809
\(387\) −59961.0 + 59961.0i −0.400357 + 0.400357i
\(388\) −4488.00 4488.00i −0.0298119 0.0298119i
\(389\) 146760.i 0.969859i 0.874553 + 0.484929i \(0.161155\pi\)
−0.874553 + 0.484929i \(0.838845\pi\)
\(390\) 13860.0 1980.00i 0.0911243 0.0130178i
\(391\) −258598. −1.69150
\(392\) 26864.0 26864.0i 0.174823 0.174823i
\(393\) −2198.00 2198.00i −0.0142312 0.0142312i
\(394\) 67596.0i 0.435440i
\(395\) −153600. 115200.i −0.984458 0.738343i
\(396\) −127664. −0.814101
\(397\) −83579.0 + 83579.0i −0.530293 + 0.530293i −0.920660 0.390366i \(-0.872348\pi\)
0.390366 + 0.920660i \(0.372348\pi\)
\(398\) −28320.0 28320.0i −0.178783 0.178783i
\(399\) 1520.00i 0.00954768i
\(400\) 11200.0 + 38400.0i 0.0700000 + 0.240000i
\(401\) −42078.0 −0.261677 −0.130839 0.991404i \(-0.541767\pi\)
−0.130839 + 0.991404i \(0.541767\pi\)
\(402\) 20324.0 20324.0i 0.125764 0.125764i
\(403\) 75042.0 + 75042.0i 0.462056 + 0.462056i
\(404\) 13456.0i 0.0824429i
\(405\) 91185.0 121580.i 0.555921 0.741228i
\(406\) −15200.0 −0.0922129
\(407\) 28482.0 28482.0i 0.171942 0.171942i
\(408\) 7648.00 + 7648.00i 0.0459439 + 0.0459439i
\(409\) 300960.i 1.79913i 0.436789 + 0.899564i \(0.356116\pi\)
−0.436789 + 0.899564i \(0.643884\pi\)
\(410\) 10420.0 + 72940.0i 0.0619869 + 0.433908i
\(411\) −18798.0 −0.111283
\(412\) 56168.0 56168.0i 0.330898 0.330898i
\(413\) 87400.0 + 87400.0i 0.512403 + 0.512403i
\(414\) 170956.i 0.997433i
\(415\) −212835. + 30405.0i −1.23580 + 0.176542i
\(416\) 25344.0 0.146450
\(417\) −13960.0 + 13960.0i −0.0802811 + 0.0802811i
\(418\) −16160.0 16160.0i −0.0924887 0.0924887i
\(419\) 208680.i 1.18865i −0.804226 0.594323i \(-0.797420\pi\)
0.804226 0.594323i \(-0.202580\pi\)
\(420\) −6080.00 4560.00i −0.0344671 0.0258503i
\(421\) 86882.0 0.490191 0.245096 0.969499i \(-0.421181\pi\)
0.245096 + 0.969499i \(0.421181\pi\)
\(422\) 97684.0 97684.0i 0.548528 0.548528i
\(423\) 36261.0 + 36261.0i 0.202656 + 0.202656i
\(424\) 58208.0i 0.323781i
\(425\) 185225. + 101575.i 1.02547 + 0.562353i
\(426\) −13912.0 −0.0766603
\(427\) −39558.0 + 39558.0i −0.216959 + 0.216959i
\(428\) 17272.0 + 17272.0i 0.0942877 + 0.0942877i
\(429\) 39996.0i 0.217321i
\(430\) 45540.0 60720.0i 0.246295 0.328394i
\(431\) −125078. −0.673328 −0.336664 0.941625i \(-0.609299\pi\)
−0.336664 + 0.941625i \(0.609299\pi\)
\(432\) −10240.0 + 10240.0i −0.0548697 + 0.0548697i
\(433\) 5921.00 + 5921.00i 0.0315805 + 0.0315805i 0.722721 0.691140i \(-0.242891\pi\)
−0.691140 + 0.722721i \(0.742891\pi\)
\(434\) 57608.0i 0.305846i
\(435\) −1000.00 7000.00i −0.00528471 0.0369930i
\(436\) 2240.00 0.0117835
\(437\) 21640.0 21640.0i 0.113317 0.113317i
\(438\) −13916.0 13916.0i −0.0725381 0.0725381i
\(439\) 55280.0i 0.286840i −0.989662 0.143420i \(-0.954190\pi\)
0.989662 0.143420i \(-0.0458099\pi\)
\(440\) 113120. 16160.0i 0.584298 0.0834711i
\(441\) 132641. 0.682025
\(442\) 94644.0 94644.0i 0.484450 0.484450i
\(443\) 63561.0 + 63561.0i 0.323879 + 0.323879i 0.850253 0.526374i \(-0.176449\pi\)
−0.526374 + 0.850253i \(0.676449\pi\)
\(444\) 2256.00i 0.0114439i
\(445\) −113600. 85200.0i −0.573665 0.430249i
\(446\) −140076. −0.704197
\(447\) −9000.00 + 9000.00i −0.0450430 + 0.0450430i
\(448\) −9728.00 9728.00i −0.0484694 0.0484694i
\(449\) 204880.i 1.01626i −0.861279 0.508132i \(-0.830336\pi\)
0.861279 0.508132i \(-0.169664\pi\)
\(450\) −67150.0 + 122450.i −0.331605 + 0.604691i
\(451\) 210484. 1.03482
\(452\) −67832.0 + 67832.0i −0.332015 + 0.332015i
\(453\) −23798.0 23798.0i −0.115970 0.115970i
\(454\) 274396.i 1.33127i
\(455\) −56430.0 + 75240.0i −0.272576 + 0.363434i
\(456\) −1280.00 −0.00615574
\(457\) −10599.0 + 10599.0i −0.0507496 + 0.0507496i −0.732026 0.681277i \(-0.761425\pi\)
0.681277 + 0.732026i \(0.261425\pi\)
\(458\) −197520. 197520.i −0.941630 0.941630i
\(459\) 76480.0i 0.363013i
\(460\) 21640.0 + 151480.i 0.102268 + 0.715879i
\(461\) 224242. 1.05515 0.527576 0.849508i \(-0.323101\pi\)
0.527576 + 0.849508i \(0.323101\pi\)
\(462\) −15352.0 + 15352.0i −0.0719252 + 0.0719252i
\(463\) −243499. 243499.i −1.13589 1.13589i −0.989180 0.146707i \(-0.953132\pi\)
−0.146707 0.989180i \(-0.546868\pi\)
\(464\) 12800.0i 0.0594530i
\(465\) 26530.0 3790.00i 0.122696 0.0175280i
\(466\) 214884. 0.989537
\(467\) −226919. + 226919.i −1.04049 + 1.04049i −0.0413430 + 0.999145i \(0.513164\pi\)
−0.999145 + 0.0413430i \(0.986836\pi\)
\(468\) 62568.0 + 62568.0i 0.285667 + 0.285667i
\(469\) 193078.i 0.877783i
\(470\) −36720.0 27540.0i −0.166229 0.124672i
\(471\) 59562.0 0.268490
\(472\) −73600.0 + 73600.0i −0.330365 + 0.330365i
\(473\) −153318. 153318.i −0.685284 0.685284i
\(474\) 30720.0i 0.136730i
\(475\) −24000.0 + 7000.00i −0.106371 + 0.0310249i
\(476\) −72656.0 −0.320669
\(477\) −143701. + 143701.i −0.631572 + 0.631572i
\(478\) 91200.0 + 91200.0i 0.399153 + 0.399153i
\(479\) 334240.i 1.45676i −0.685174 0.728379i \(-0.740274\pi\)
0.685174 0.728379i \(-0.259726\pi\)
\(480\) 3840.00 5120.00i 0.0166667 0.0222222i
\(481\) −27918.0 −0.120669
\(482\) −114076. + 114076.i −0.491021 + 0.491021i
\(483\) −20558.0 20558.0i −0.0881225 0.0881225i
\(484\) 209304.i 0.893484i
\(485\) 2805.00 + 19635.0i 0.0119248 + 0.0834733i
\(486\) −76156.0 −0.322427
\(487\) 278541. 278541.i 1.17444 1.17444i 0.193302 0.981139i \(-0.438080\pi\)
0.981139 0.193302i \(-0.0619196\pi\)
\(488\) −33312.0 33312.0i −0.139882 0.139882i
\(489\) 25282.0i 0.105729i
\(490\) −117530. + 16790.0i −0.489504 + 0.0699292i
\(491\) −84118.0 −0.348920 −0.174460 0.984664i \(-0.555818\pi\)
−0.174460 + 0.984664i \(0.555818\pi\)
\(492\) 8336.00 8336.00i 0.0344372 0.0344372i
\(493\) −47800.0 47800.0i −0.196668 0.196668i
\(494\) 15840.0i 0.0649085i
\(495\) 319160. + 239370.i 1.30256 + 0.976921i
\(496\) 48512.0 0.197190
\(497\) 66082.0 66082.0i 0.267529 0.267529i
\(498\) 24324.0 + 24324.0i 0.0980791 + 0.0980791i
\(499\) 166840.i 0.670037i 0.942211 + 0.335019i \(0.108743\pi\)
−0.942211 + 0.335019i \(0.891257\pi\)
\(500\) 44000.0 117000.i 0.176000 0.468000i
\(501\) 59962.0 0.238891
\(502\) 78804.0 78804.0i 0.312709 0.312709i
\(503\) 190461. + 190461.i 0.752783 + 0.752783i 0.974998 0.222214i \(-0.0713285\pi\)
−0.222214 + 0.974998i \(0.571328\pi\)
\(504\) 48032.0i 0.189090i
\(505\) −25230.0 + 33640.0i −0.0989315 + 0.131909i
\(506\) 437128. 1.70729
\(507\) 8959.00 8959.00i 0.0348533 0.0348533i
\(508\) −6568.00 6568.00i −0.0254511 0.0254511i
\(509\) 223960.i 0.864440i −0.901768 0.432220i \(-0.857730\pi\)
0.901768 0.432220i \(-0.142270\pi\)
\(510\) −4780.00 33460.0i −0.0183775 0.128643i
\(511\) 132202. 0.506286
\(512\) 8192.00 8192.00i 0.0312500 0.0312500i
\(513\) −6400.00 6400.00i −0.0243190 0.0243190i
\(514\) 124484.i 0.471180i
\(515\) −245735. + 35105.0i −0.926515 + 0.132359i
\(516\) −12144.0 −0.0456102
\(517\) −92718.0 + 92718.0i −0.346883 + 0.346883i
\(518\) 10716.0 + 10716.0i 0.0399368 + 0.0399368i
\(519\) 9478.00i 0.0351870i
\(520\) −63360.0 47520.0i −0.234320 0.175740i
\(521\) −297918. −1.09754 −0.548771 0.835973i \(-0.684904\pi\)
−0.548771 + 0.835973i \(0.684904\pi\)
\(522\) 31600.0 31600.0i 0.115970 0.115970i
\(523\) 200601. + 200601.i 0.733381 + 0.733381i 0.971288 0.237907i \(-0.0764613\pi\)
−0.237907 + 0.971288i \(0.576461\pi\)
\(524\) 17584.0i 0.0640406i
\(525\) 6650.00 + 22800.0i 0.0241270 + 0.0827211i
\(526\) −242956. −0.878125
\(527\) 181162. 181162.i 0.652298 0.652298i
\(528\) −12928.0 12928.0i −0.0463728 0.0463728i
\(529\) 305521.i 1.09177i
\(530\) 109140. 145520.i 0.388537 0.518049i
\(531\) −363400. −1.28883
\(532\) 6080.00 6080.00i 0.0214823 0.0214823i
\(533\) −103158. 103158.i −0.363119 0.363119i
\(534\) 22720.0i 0.0796757i
\(535\) −10795.0 75565.0i −0.0377151 0.264006i
\(536\) −162592. −0.565939
\(537\) −32920.0 + 32920.0i −0.114159 + 0.114159i
\(538\) 127600. + 127600.i 0.440845 + 0.440845i
\(539\) 339158.i 1.16741i
\(540\) 44800.0 6400.00i 0.153635 0.0219479i
\(541\) −288398. −0.985366 −0.492683 0.870209i \(-0.663984\pi\)
−0.492683 + 0.870209i \(0.663984\pi\)
\(542\) −226476. + 226476.i −0.770945 + 0.770945i
\(543\) −40558.0 40558.0i −0.137555 0.137555i
\(544\) 61184.0i 0.206747i
\(545\) −5600.00 4200.00i −0.0188536 0.0141402i
\(546\) 15048.0 0.0504770
\(547\) 123081. 123081.i 0.411355 0.411355i −0.470856 0.882210i \(-0.656055\pi\)
0.882210 + 0.470856i \(0.156055\pi\)
\(548\) 75192.0 + 75192.0i 0.250386 + 0.250386i
\(549\) 164478.i 0.545712i
\(550\) −313100. 171700.i −1.03504 0.567603i
\(551\) 8000.00 0.0263504
\(552\) 17312.0 17312.0i 0.0568158 0.0568158i
\(553\) −145920. 145920.i −0.477161 0.477161i
\(554\) 58956.0i 0.192092i
\(555\) −4230.00 + 5640.00i −0.0137327 + 0.0183102i
\(556\) 111680. 0.361265
\(557\) 162261. 162261.i 0.523002 0.523002i −0.395474 0.918477i \(-0.629420\pi\)
0.918477 + 0.395474i \(0.129420\pi\)
\(558\) 119764. + 119764.i 0.384643 + 0.384643i
\(559\) 150282.i 0.480932i
\(560\) 6080.00 + 42560.0i 0.0193878 + 0.135714i
\(561\) −96556.0 −0.306799
\(562\) −14556.0 + 14556.0i −0.0460860 + 0.0460860i
\(563\) 264081. + 264081.i 0.833145 + 0.833145i 0.987946 0.154801i \(-0.0494737\pi\)
−0.154801 + 0.987946i \(0.549474\pi\)
\(564\) 7344.00i 0.0230874i
\(565\) 296765. 42395.0i 0.929642 0.132806i
\(566\) 234404. 0.731698
\(567\) 115501. 115501.i 0.359269 0.359269i
\(568\) 55648.0 + 55648.0i 0.172486 + 0.172486i
\(569\) 8320.00i 0.0256980i 0.999917 + 0.0128490i \(0.00409007\pi\)
−0.999917 + 0.0128490i \(0.995910\pi\)
\(570\) 3200.00 + 2400.00i 0.00984918 + 0.00738689i
\(571\) 283082. 0.868240 0.434120 0.900855i \(-0.357059\pi\)
0.434120 + 0.900855i \(0.357059\pi\)
\(572\) −159984. + 159984.i −0.488973 + 0.488973i
\(573\) 33002.0 + 33002.0i 0.100515 + 0.100515i
\(574\) 79192.0i 0.240357i
\(575\) 229925. 419275.i 0.695425 1.26813i
\(576\) 40448.0 0.121914
\(577\) 260401. 260401.i 0.782152 0.782152i −0.198042 0.980194i \(-0.563458\pi\)
0.980194 + 0.198042i \(0.0634582\pi\)
\(578\) −61442.0 61442.0i −0.183912 0.183912i
\(579\) 46398.0i 0.138402i
\(580\) −24000.0 + 32000.0i −0.0713436 + 0.0951249i
\(581\) −231078. −0.684552
\(582\) 2244.00 2244.00i 0.00662486 0.00662486i
\(583\) −367438. 367438.i −1.08105 1.08105i
\(584\) 111328.i 0.326421i
\(585\) −39105.0 273735.i −0.114267 0.799869i
\(586\) −381996. −1.11241
\(587\) −281439. + 281439.i −0.816786 + 0.816786i −0.985641 0.168855i \(-0.945993\pi\)
0.168855 + 0.985641i \(0.445993\pi\)
\(588\) 13432.0 + 13432.0i 0.0388496 + 0.0388496i
\(589\) 30320.0i 0.0873974i
\(590\) 322000. 46000.0i 0.925022 0.132146i
\(591\) −33798.0 −0.0967645
\(592\) −9024.00 + 9024.00i −0.0257487 + 0.0257487i
\(593\) 419761. + 419761.i 1.19369 + 1.19369i 0.976022 + 0.217671i \(0.0698460\pi\)
0.217671 + 0.976022i \(0.430154\pi\)
\(594\) 129280.i 0.366403i
\(595\) 181640. + 136230.i 0.513071 + 0.384803i
\(596\) 72000.0 0.202694
\(597\) 14160.0 14160.0i 0.0397296 0.0397296i
\(598\) −214236. 214236.i −0.599087 0.599087i
\(599\) 136240.i 0.379709i −0.981812 0.189855i \(-0.939198\pi\)
0.981812 0.189855i \(-0.0608016\pi\)
\(600\) −19200.0 + 5600.00i −0.0533333 + 0.0155556i
\(601\) 234962. 0.650502 0.325251 0.945628i \(-0.394551\pi\)
0.325251 + 0.945628i \(0.394551\pi\)
\(602\) 57684.0 57684.0i 0.159170 0.159170i
\(603\) −401399. 401399.i −1.10393 1.10393i
\(604\) 190384.i 0.521863i
\(605\) −392445. + 523260.i −1.07218 + 1.42957i
\(606\) 6728.00 0.0183206
\(607\) −406779. + 406779.i −1.10403 + 1.10403i −0.110111 + 0.993919i \(0.535121\pi\)
−0.993919 + 0.110111i \(0.964879\pi\)
\(608\) 5120.00 + 5120.00i 0.0138504 + 0.0138504i
\(609\) 7600.00i 0.0204917i
\(610\) 20820.0 + 145740.i 0.0559527 + 0.391669i
\(611\) 90882.0 0.243442
\(612\) 151048. 151048.i 0.403285 0.403285i
\(613\) 135621. + 135621.i 0.360916 + 0.360916i 0.864150 0.503234i \(-0.167857\pi\)
−0.503234 + 0.864150i \(0.667857\pi\)
\(614\) 154404.i 0.409564i
\(615\) −36470.0 + 5210.00i −0.0964241 + 0.0137749i
\(616\) 122816. 0.323663
\(617\) −151959. + 151959.i −0.399168 + 0.399168i −0.877940 0.478771i \(-0.841082\pi\)
0.478771 + 0.877940i \(0.341082\pi\)
\(618\) 28084.0 + 28084.0i 0.0735330 + 0.0735330i
\(619\) 22440.0i 0.0585655i 0.999571 + 0.0292827i \(0.00932231\pi\)
−0.999571 + 0.0292827i \(0.990678\pi\)
\(620\) −121280. 90960.0i −0.315505 0.236629i
\(621\) 173120. 0.448915
\(622\) 58324.0 58324.0i 0.150753 0.150753i
\(623\) −107920. 107920.i −0.278052 0.278052i
\(624\) 12672.0i 0.0325444i
\(625\) −329375. + 210000.i −0.843200 + 0.537600i
\(626\) 7524.00 0.0192000
\(627\) 8080.00 8080.00i 0.0205531 0.0205531i
\(628\) −238248. 238248.i −0.604102 0.604102i
\(629\) 67398.0i 0.170351i
\(630\) −90060.0 + 120080.i −0.226909 + 0.302545i
\(631\) −199958. −0.502204 −0.251102 0.967961i \(-0.580793\pi\)
−0.251102 + 0.967961i \(0.580793\pi\)
\(632\) 122880. 122880.i 0.307643 0.307643i
\(633\) 48842.0 + 48842.0i 0.121895 + 0.121895i
\(634\) 335124.i 0.833733i
\(635\) 4105.00 + 28735.0i 0.0101804 + 0.0712629i
\(636\) −29104.0 −0.0719513
\(637\) 166221. 166221.i 0.409644 0.409644i
\(638\) 80800.0 + 80800.0i 0.198504 + 0.198504i
\(639\) 274762.i 0.672907i
\(640\) −35840.0 + 5120.00i −0.0875000 + 0.0125000i
\(641\) 448562. 1.09171 0.545854 0.837880i \(-0.316205\pi\)
0.545854 + 0.837880i \(0.316205\pi\)
\(642\) −8636.00 + 8636.00i −0.0209528 + 0.0209528i
\(643\) 73041.0 + 73041.0i 0.176663 + 0.176663i 0.789899 0.613237i \(-0.210133\pi\)
−0.613237 + 0.789899i \(0.710133\pi\)
\(644\) 164464.i 0.396551i
\(645\) 30360.0 + 22770.0i 0.0729764 + 0.0547323i
\(646\) 38240.0 0.0916332
\(647\) −90259.0 + 90259.0i −0.215616 + 0.215616i −0.806648 0.591032i \(-0.798721\pi\)
0.591032 + 0.806648i \(0.298721\pi\)
\(648\) 97264.0 + 97264.0i 0.231634 + 0.231634i
\(649\) 929200.i 2.20607i
\(650\) 69300.0 + 237600.i 0.164024 + 0.562367i
\(651\) 28804.0 0.0679659
\(652\) 101128. 101128.i 0.237890 0.237890i
\(653\) −56019.0 56019.0i −0.131374 0.131374i 0.638362 0.769736i \(-0.279612\pi\)
−0.769736 + 0.638362i \(0.779612\pi\)
\(654\) 1120.00i 0.00261856i
\(655\) 32970.0 43960.0i 0.0768487 0.102465i
\(656\) −66688.0 −0.154967
\(657\) −274841. + 274841.i −0.636723 + 0.636723i
\(658\) −34884.0 34884.0i −0.0805702 0.0805702i
\(659\) 438920.i 1.01068i −0.862920 0.505341i \(-0.831367\pi\)
0.862920 0.505341i \(-0.168633\pi\)
\(660\) 8080.00 + 56560.0i 0.0185491 + 0.129844i
\(661\) 593762. 1.35897 0.679484 0.733690i \(-0.262204\pi\)
0.679484 + 0.733690i \(0.262204\pi\)
\(662\) 212564. 212564.i 0.485036 0.485036i
\(663\) 47322.0 + 47322.0i 0.107655 + 0.107655i
\(664\) 194592.i 0.441356i
\(665\) −26600.0 + 3800.00i −0.0601504 + 0.00859291i
\(666\) −44556.0 −0.100452
\(667\) −108200. + 108200.i −0.243207 + 0.243207i
\(668\) −239848. 239848.i −0.537506 0.537506i
\(669\) 70038.0i 0.156488i
\(670\) 406480. + 304860.i 0.905502 + 0.679127i
\(671\) 420564. 0.934086
\(672\) 4864.00 4864.00i 0.0107710 0.0107710i
\(673\) 424561. + 424561.i 0.937368 + 0.937368i 0.998151 0.0607833i \(-0.0193599\pi\)
−0.0607833 + 0.998151i \(0.519360\pi\)
\(674\) 569916.i 1.25456i
\(675\) −124000. 68000.0i −0.272154 0.149246i
\(676\) −71672.0 −0.156840
\(677\) 229021. 229021.i 0.499687 0.499687i −0.411654 0.911340i \(-0.635049\pi\)
0.911340 + 0.411654i \(0.135049\pi\)
\(678\) −33916.0 33916.0i −0.0737811 0.0737811i
\(679\) 21318.0i 0.0462388i
\(680\) −114720. + 152960.i −0.248097 + 0.330796i
\(681\) −137198. −0.295838
\(682\) −306232. + 306232.i −0.658388 + 0.658388i
\(683\) −450999. 450999.i −0.966795 0.966795i 0.0326716 0.999466i \(-0.489598\pi\)
−0.999466 + 0.0326716i \(0.989598\pi\)
\(684\) 25280.0i 0.0540337i
\(685\) −46995.0 328965.i −0.100155 0.701082i
\(686\) −310080. −0.658909
\(687\) 98760.0 98760.0i 0.209251 0.209251i
\(688\) 48576.0 + 48576.0i 0.102623 + 0.102623i
\(689\) 360162.i 0.758681i
\(690\) −75740.0 + 10820.0i −0.159084 + 0.0227263i
\(691\) −432438. −0.905665 −0.452833 0.891596i \(-0.649587\pi\)
−0.452833 + 0.891596i \(0.649587\pi\)
\(692\) −37912.0 + 37912.0i −0.0791707 + 0.0791707i
\(693\) 303202. + 303202.i 0.631343 + 0.631343i
\(694\) 25916.0i 0.0538083i
\(695\) −279200. 209400.i −0.578024 0.433518i
\(696\) 6400.00 0.0132118
\(697\) −249038. + 249038.i −0.512625 + 0.512625i
\(698\) −65840.0 65840.0i −0.135138 0.135138i
\(699\) 107442.i 0.219897i
\(700\) 64600.0 117800.i 0.131837 0.240408i
\(701\) −895838. −1.82303 −0.911514 0.411269i \(-0.865086\pi\)
−0.911514 + 0.411269i \(0.865086\pi\)
\(702\) −63360.0 + 63360.0i −0.128570 + 0.128570i
\(703\) −5640.00 5640.00i −0.0114122 0.0114122i
\(704\) 103424.i 0.208678i
\(705\) 13770.0 18360.0i 0.0277048 0.0369398i
\(706\) −215676. −0.432706
\(707\) −31958.0 + 31958.0i −0.0639353 + 0.0639353i
\(708\) −36800.0 36800.0i −0.0734144 0.0734144i
\(709\) 64360.0i 0.128033i −0.997949 0.0640167i \(-0.979609\pi\)
0.997949 0.0640167i \(-0.0203911\pi\)
\(710\) −34780.0 243460.i −0.0689942 0.482960i
\(711\) 606720. 1.20019
\(712\) 90880.0 90880.0i 0.179270 0.179270i
\(713\) −410078. 410078.i −0.806654 0.806654i
\(714\) 36328.0i 0.0712599i
\(715\) 699930. 99990.0i 1.36912 0.195589i
\(716\) 263360. 0.513717
\(717\) −45600.0 + 45600.0i −0.0887006 + 0.0887006i
\(718\) 343520. + 343520.i 0.666351 + 0.666351i
\(719\) 239840.i 0.463942i 0.972723 + 0.231971i \(0.0745175\pi\)
−0.972723 + 0.231971i \(0.925483\pi\)
\(720\) −101120. 75840.0i −0.195062 0.146296i
\(721\) −266798. −0.513230
\(722\) 257442. 257442.i 0.493861 0.493861i
\(723\) −57038.0 57038.0i −0.109116 0.109116i
\(724\) 324464.i 0.618998i
\(725\) 120000. 35000.0i 0.228300 0.0665874i
\(726\) 104652. 0.198552
\(727\) −438339. + 438339.i −0.829357 + 0.829357i −0.987428 0.158071i \(-0.949472\pi\)
0.158071 + 0.987428i \(0.449472\pi\)
\(728\) −60192.0 60192.0i −0.113573 0.113573i
\(729\) 454321.i 0.854885i
\(730\) 208740. 278320.i 0.391706 0.522274i
\(731\) 362802. 0.678946
\(732\) 16656.0 16656.0i 0.0310848 0.0310848i
\(733\) 145261. + 145261.i 0.270359 + 0.270359i 0.829245 0.558886i \(-0.188771\pi\)
−0.558886 + 0.829245i \(0.688771\pi\)
\(734\) 609044.i 1.13046i
\(735\) −8395.00 58765.0i −0.0155398 0.108779i
\(736\) −138496. −0.255671
\(737\) 1.02636e6 1.02636e6i 1.88958 1.88958i
\(738\) −164636. 164636.i −0.302282 0.302282i
\(739\) 738040.i 1.35142i 0.737167 + 0.675711i \(0.236163\pi\)
−0.737167 + 0.675711i \(0.763837\pi\)
\(740\) 39480.0 5640.00i 0.0720964 0.0102995i
\(741\) −7920.00 −0.0144241
\(742\) 138244. 138244.i 0.251095 0.251095i
\(743\) 579101. + 579101.i 1.04900 + 1.04900i 0.998736 + 0.0502671i \(0.0160073\pi\)
0.0502671 + 0.998736i \(0.483993\pi\)
\(744\) 24256.0i 0.0438201i
\(745\) −180000. 135000.i −0.324310 0.243232i
\(746\) −285356. −0.512754
\(747\) 480399. 480399.i 0.860916 0.860916i
\(748\) 386224. + 386224.i 0.690297 + 0.690297i
\(749\) 82042.0i 0.146242i
\(750\) 58500.0 + 22000.0i 0.104000 + 0.0391111i
\(751\) −495318. −0.878222 −0.439111 0.898433i \(-0.644706\pi\)
−0.439111 + 0.898433i \(0.644706\pi\)
\(752\) 29376.0 29376.0i 0.0519466 0.0519466i
\(753\) 39402.0 + 39402.0i 0.0694910 + 0.0694910i
\(754\) 79200.0i 0.139310i
\(755\) 356970. 475960.i 0.626236 0.834981i
\(756\) 48640.0 0.0851040
\(757\) −536979. + 536979.i −0.937056 + 0.937056i −0.998133 0.0610771i \(-0.980546\pi\)
0.0610771 + 0.998133i \(0.480546\pi\)
\(758\) −345200. 345200.i −0.600803 0.600803i
\(759\) 218564.i 0.379398i
\(760\) −3200.00 22400.0i −0.00554017 0.0387812i
\(761\) −908798. −1.56927 −0.784636 0.619957i \(-0.787150\pi\)
−0.784636 + 0.619957i \(0.787150\pi\)
\(762\) 3284.00 3284.00i 0.00565579 0.00565579i
\(763\) −5320.00 5320.00i −0.00913824 0.00913824i
\(764\) 264016.i 0.452318i
\(765\) −660835. + 94405.0i −1.12920 + 0.161314i
\(766\) 633684. 1.07998
\(767\) −455400. + 455400.i −0.774109 + 0.774109i
\(768\) 4096.00 + 4096.00i 0.00694444 + 0.00694444i
\(769\) 1.02704e6i 1.73674i −0.495917 0.868370i \(-0.665168\pi\)
0.495917 0.868370i \(-0.334832\pi\)
\(770\) −307040. 230280.i −0.517861 0.388396i
\(771\) 62242.0 0.104707
\(772\) −185592. + 185592.i −0.311404 + 0.311404i
\(773\) 161061. + 161061.i 0.269545 + 0.269545i 0.828917 0.559372i \(-0.188958\pi\)
−0.559372 + 0.828917i \(0.688958\pi\)
\(774\) 239844.i 0.400357i
\(775\) 132650. + 454800.i 0.220853 + 0.757211i
\(776\) −17952.0 −0.0298119
\(777\) −5358.00 + 5358.00i −0.00887484 + 0.00887484i
\(778\) 293520. + 293520.i 0.484929 + 0.484929i
\(779\) 41680.0i 0.0686836i
\(780\) 23760.0 31680.0i 0.0390533 0.0520710i
\(781\) −702556. −1.15180
\(782\) −517196. + 517196.i −0.845749 + 0.845749i
\(783\) 32000.0 + 32000.0i 0.0521947 + 0.0521947i
\(784\) 107456.i 0.174823i
\(785\) 148905. + 1.04234e6i