Properties

Label 10.5.c.a.7.1
Level $10$
Weight $5$
Character 10.7
Analytic conductor $1.034$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,5,Mod(3,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.3");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 10.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03369963084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 7.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 10.7
Dual form 10.5.c.a.3.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 2.00000i) q^{2} +(9.00000 - 9.00000i) q^{3} +8.00000i q^{4} +(-15.0000 + 20.0000i) q^{5} -36.0000 q^{6} +(29.0000 + 29.0000i) q^{7} +(16.0000 - 16.0000i) q^{8} -81.0000i q^{9} +(70.0000 - 10.0000i) q^{10} -118.000 q^{11} +(72.0000 + 72.0000i) q^{12} +(69.0000 - 69.0000i) q^{13} -116.000i q^{14} +(45.0000 + 315.000i) q^{15} -64.0000 q^{16} +(-271.000 - 271.000i) q^{17} +(-162.000 + 162.000i) q^{18} +280.000i q^{19} +(-160.000 - 120.000i) q^{20} +522.000 q^{21} +(236.000 + 236.000i) q^{22} +(269.000 - 269.000i) q^{23} -288.000i q^{24} +(-175.000 - 600.000i) q^{25} -276.000 q^{26} +(-232.000 + 232.000i) q^{28} +680.000i q^{29} +(540.000 - 720.000i) q^{30} +202.000 q^{31} +(128.000 + 128.000i) q^{32} +(-1062.00 + 1062.00i) q^{33} +1084.00i q^{34} +(-1015.00 + 145.000i) q^{35} +648.000 q^{36} +(-651.000 - 651.000i) q^{37} +(560.000 - 560.000i) q^{38} -1242.00i q^{39} +(80.0000 + 560.000i) q^{40} +1682.00 q^{41} +(-1044.00 - 1044.00i) q^{42} +(1089.00 - 1089.00i) q^{43} -944.000i q^{44} +(1620.00 + 1215.00i) q^{45} -1076.00 q^{46} +(1269.00 + 1269.00i) q^{47} +(-576.000 + 576.000i) q^{48} -719.000i q^{49} +(-850.000 + 1550.00i) q^{50} -4878.00 q^{51} +(552.000 + 552.000i) q^{52} +(-611.000 + 611.000i) q^{53} +(1770.00 - 2360.00i) q^{55} +928.000 q^{56} +(2520.00 + 2520.00i) q^{57} +(1360.00 - 1360.00i) q^{58} +1160.00i q^{59} +(-2520.00 + 360.000i) q^{60} -5598.00 q^{61} +(-404.000 - 404.000i) q^{62} +(2349.00 - 2349.00i) q^{63} -512.000i q^{64} +(345.000 + 2415.00i) q^{65} +4248.00 q^{66} +(-751.000 - 751.000i) q^{67} +(2168.00 - 2168.00i) q^{68} -4842.00i q^{69} +(2320.00 + 1740.00i) q^{70} +6442.00 q^{71} +(-1296.00 - 1296.00i) q^{72} +(-2951.00 + 2951.00i) q^{73} +2604.00i q^{74} +(-6975.00 - 3825.00i) q^{75} -2240.00 q^{76} +(-3422.00 - 3422.00i) q^{77} +(-2484.00 + 2484.00i) q^{78} +10560.0i q^{79} +(960.000 - 1280.00i) q^{80} +6561.00 q^{81} +(-3364.00 - 3364.00i) q^{82} +(-6231.00 + 6231.00i) q^{83} +4176.00i q^{84} +(9485.00 - 1355.00i) q^{85} -4356.00 q^{86} +(6120.00 + 6120.00i) q^{87} +(-1888.00 + 1888.00i) q^{88} -14480.0i q^{89} +(-810.000 - 5670.00i) q^{90} +4002.00 q^{91} +(2152.00 + 2152.00i) q^{92} +(1818.00 - 1818.00i) q^{93} -5076.00i q^{94} +(-5600.00 - 4200.00i) q^{95} +2304.00 q^{96} +(-7311.00 - 7311.00i) q^{97} +(-1438.00 + 1438.00i) q^{98} +9558.00i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 18 q^{3} - 30 q^{5} - 72 q^{6} + 58 q^{7} + 32 q^{8} + 140 q^{10} - 236 q^{11} + 144 q^{12} + 138 q^{13} + 90 q^{15} - 128 q^{16} - 542 q^{17} - 324 q^{18} - 320 q^{20} + 1044 q^{21} + 472 q^{22}+ \cdots - 2876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 2.00000i −0.500000 0.500000i
\(3\) 9.00000 9.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(4\) 8.00000i 0.500000i
\(5\) −15.0000 + 20.0000i −0.600000 + 0.800000i
\(6\) −36.0000 −1.00000
\(7\) 29.0000 + 29.0000i 0.591837 + 0.591837i 0.938127 0.346291i \(-0.112559\pi\)
−0.346291 + 0.938127i \(0.612559\pi\)
\(8\) 16.0000 16.0000i 0.250000 0.250000i
\(9\) 81.0000i 1.00000i
\(10\) 70.0000 10.0000i 0.700000 0.100000i
\(11\) −118.000 −0.975207 −0.487603 0.873065i \(-0.662129\pi\)
−0.487603 + 0.873065i \(0.662129\pi\)
\(12\) 72.0000 + 72.0000i 0.500000 + 0.500000i
\(13\) 69.0000 69.0000i 0.408284 0.408284i −0.472856 0.881140i \(-0.656777\pi\)
0.881140 + 0.472856i \(0.156777\pi\)
\(14\) 116.000i 0.591837i
\(15\) 45.0000 + 315.000i 0.200000 + 1.40000i
\(16\) −64.0000 −0.250000
\(17\) −271.000 271.000i −0.937716 0.937716i 0.0604547 0.998171i \(-0.480745\pi\)
−0.998171 + 0.0604547i \(0.980745\pi\)
\(18\) −162.000 + 162.000i −0.500000 + 0.500000i
\(19\) 280.000i 0.775623i 0.921739 + 0.387812i \(0.126769\pi\)
−0.921739 + 0.387812i \(0.873231\pi\)
\(20\) −160.000 120.000i −0.400000 0.300000i
\(21\) 522.000 1.18367
\(22\) 236.000 + 236.000i 0.487603 + 0.487603i
\(23\) 269.000 269.000i 0.508507 0.508507i −0.405561 0.914068i \(-0.632924\pi\)
0.914068 + 0.405561i \(0.132924\pi\)
\(24\) 288.000i 0.500000i
\(25\) −175.000 600.000i −0.280000 0.960000i
\(26\) −276.000 −0.408284
\(27\) 0 0
\(28\) −232.000 + 232.000i −0.295918 + 0.295918i
\(29\) 680.000i 0.808561i 0.914635 + 0.404281i \(0.132478\pi\)
−0.914635 + 0.404281i \(0.867522\pi\)
\(30\) 540.000 720.000i 0.600000 0.800000i
\(31\) 202.000 0.210198 0.105099 0.994462i \(-0.466484\pi\)
0.105099 + 0.994462i \(0.466484\pi\)
\(32\) 128.000 + 128.000i 0.125000 + 0.125000i
\(33\) −1062.00 + 1062.00i −0.975207 + 0.975207i
\(34\) 1084.00i 0.937716i
\(35\) −1015.00 + 145.000i −0.828571 + 0.118367i
\(36\) 648.000 0.500000
\(37\) −651.000 651.000i −0.475530 0.475530i 0.428169 0.903699i \(-0.359159\pi\)
−0.903699 + 0.428169i \(0.859159\pi\)
\(38\) 560.000 560.000i 0.387812 0.387812i
\(39\) 1242.00i 0.816568i
\(40\) 80.0000 + 560.000i 0.0500000 + 0.350000i
\(41\) 1682.00 1.00059 0.500297 0.865854i \(-0.333224\pi\)
0.500297 + 0.865854i \(0.333224\pi\)
\(42\) −1044.00 1044.00i −0.591837 0.591837i
\(43\) 1089.00 1089.00i 0.588967 0.588967i −0.348385 0.937352i \(-0.613270\pi\)
0.937352 + 0.348385i \(0.113270\pi\)
\(44\) 944.000i 0.487603i
\(45\) 1620.00 + 1215.00i 0.800000 + 0.600000i
\(46\) −1076.00 −0.508507
\(47\) 1269.00 + 1269.00i 0.574468 + 0.574468i 0.933374 0.358906i \(-0.116850\pi\)
−0.358906 + 0.933374i \(0.616850\pi\)
\(48\) −576.000 + 576.000i −0.250000 + 0.250000i
\(49\) 719.000i 0.299459i
\(50\) −850.000 + 1550.00i −0.340000 + 0.620000i
\(51\) −4878.00 −1.87543
\(52\) 552.000 + 552.000i 0.204142 + 0.204142i
\(53\) −611.000 + 611.000i −0.217515 + 0.217515i −0.807450 0.589935i \(-0.799153\pi\)
0.589935 + 0.807450i \(0.299153\pi\)
\(54\) 0 0
\(55\) 1770.00 2360.00i 0.585124 0.780165i
\(56\) 928.000 0.295918
\(57\) 2520.00 + 2520.00i 0.775623 + 0.775623i
\(58\) 1360.00 1360.00i 0.404281 0.404281i
\(59\) 1160.00i 0.333238i 0.986021 + 0.166619i \(0.0532849\pi\)
−0.986021 + 0.166619i \(0.946715\pi\)
\(60\) −2520.00 + 360.000i −0.700000 + 0.100000i
\(61\) −5598.00 −1.50443 −0.752217 0.658915i \(-0.771016\pi\)
−0.752217 + 0.658915i \(0.771016\pi\)
\(62\) −404.000 404.000i −0.105099 0.105099i
\(63\) 2349.00 2349.00i 0.591837 0.591837i
\(64\) 512.000i 0.125000i
\(65\) 345.000 + 2415.00i 0.0816568 + 0.571598i
\(66\) 4248.00 0.975207
\(67\) −751.000 751.000i −0.167298 0.167298i 0.618493 0.785791i \(-0.287744\pi\)
−0.785791 + 0.618493i \(0.787744\pi\)
\(68\) 2168.00 2168.00i 0.468858 0.468858i
\(69\) 4842.00i 1.01701i
\(70\) 2320.00 + 1740.00i 0.473469 + 0.355102i
\(71\) 6442.00 1.27792 0.638961 0.769240i \(-0.279365\pi\)
0.638961 + 0.769240i \(0.279365\pi\)
\(72\) −1296.00 1296.00i −0.250000 0.250000i
\(73\) −2951.00 + 2951.00i −0.553762 + 0.553762i −0.927525 0.373762i \(-0.878068\pi\)
0.373762 + 0.927525i \(0.378068\pi\)
\(74\) 2604.00i 0.475530i
\(75\) −6975.00 3825.00i −1.24000 0.680000i
\(76\) −2240.00 −0.387812
\(77\) −3422.00 3422.00i −0.577163 0.577163i
\(78\) −2484.00 + 2484.00i −0.408284 + 0.408284i
\(79\) 10560.0i 1.69204i 0.533154 + 0.846018i \(0.321007\pi\)
−0.533154 + 0.846018i \(0.678993\pi\)
\(80\) 960.000 1280.00i 0.150000 0.200000i
\(81\) 6561.00 1.00000
\(82\) −3364.00 3364.00i −0.500297 0.500297i
\(83\) −6231.00 + 6231.00i −0.904485 + 0.904485i −0.995820 0.0913348i \(-0.970887\pi\)
0.0913348 + 0.995820i \(0.470887\pi\)
\(84\) 4176.00i 0.591837i
\(85\) 9485.00 1355.00i 1.31280 0.187543i
\(86\) −4356.00 −0.588967
\(87\) 6120.00 + 6120.00i 0.808561 + 0.808561i
\(88\) −1888.00 + 1888.00i −0.243802 + 0.243802i
\(89\) 14480.0i 1.82805i −0.405656 0.914026i \(-0.632957\pi\)
0.405656 0.914026i \(-0.367043\pi\)
\(90\) −810.000 5670.00i −0.100000 0.700000i
\(91\) 4002.00 0.483275
\(92\) 2152.00 + 2152.00i 0.254253 + 0.254253i
\(93\) 1818.00 1818.00i 0.210198 0.210198i
\(94\) 5076.00i 0.574468i
\(95\) −5600.00 4200.00i −0.620499 0.465374i
\(96\) 2304.00 0.250000
\(97\) −7311.00 7311.00i −0.777022 0.777022i 0.202301 0.979323i \(-0.435158\pi\)
−0.979323 + 0.202301i \(0.935158\pi\)
\(98\) −1438.00 + 1438.00i −0.149729 + 0.149729i
\(99\) 9558.00i 0.975207i
\(100\) 4800.00 1400.00i 0.480000 0.140000i
\(101\) −878.000 −0.0860700 −0.0430350 0.999074i \(-0.513703\pi\)
−0.0430350 + 0.999074i \(0.513703\pi\)
\(102\) 9756.00 + 9756.00i 0.937716 + 0.937716i
\(103\) 10429.0 10429.0i 0.983033 0.983033i −0.0168252 0.999858i \(-0.505356\pi\)
0.999858 + 0.0168252i \(0.00535587\pi\)
\(104\) 2208.00i 0.204142i
\(105\) −7830.00 + 10440.0i −0.710204 + 0.946939i
\(106\) 2444.00 0.217515
\(107\) −4711.00 4711.00i −0.411477 0.411477i 0.470776 0.882253i \(-0.343974\pi\)
−0.882253 + 0.470776i \(0.843974\pi\)
\(108\) 0 0
\(109\) 22040.0i 1.85506i 0.373745 + 0.927531i \(0.378073\pi\)
−0.373745 + 0.927531i \(0.621927\pi\)
\(110\) −8260.00 + 1180.00i −0.682645 + 0.0975207i
\(111\) −11718.0 −0.951059
\(112\) −1856.00 1856.00i −0.147959 0.147959i
\(113\) −2111.00 + 2111.00i −0.165322 + 0.165322i −0.784920 0.619597i \(-0.787296\pi\)
0.619597 + 0.784920i \(0.287296\pi\)
\(114\) 10080.0i 0.775623i
\(115\) 1345.00 + 9415.00i 0.101701 + 0.711909i
\(116\) −5440.00 −0.404281
\(117\) −5589.00 5589.00i −0.408284 0.408284i
\(118\) 2320.00 2320.00i 0.166619 0.166619i
\(119\) 15718.0i 1.10995i
\(120\) 5760.00 + 4320.00i 0.400000 + 0.300000i
\(121\) −717.000 −0.0489721
\(122\) 11196.0 + 11196.0i 0.752217 + 0.752217i
\(123\) 15138.0 15138.0i 1.00059 1.00059i
\(124\) 1616.00i 0.105099i
\(125\) 14625.0 + 5500.00i 0.936000 + 0.352000i
\(126\) −9396.00 −0.591837
\(127\) 5909.00 + 5909.00i 0.366359 + 0.366359i 0.866147 0.499789i \(-0.166589\pi\)
−0.499789 + 0.866147i \(0.666589\pi\)
\(128\) −1024.00 + 1024.00i −0.0625000 + 0.0625000i
\(129\) 19602.0i 1.17793i
\(130\) 4140.00 5520.00i 0.244970 0.326627i
\(131\) −6358.00 −0.370491 −0.185246 0.982692i \(-0.559308\pi\)
−0.185246 + 0.982692i \(0.559308\pi\)
\(132\) −8496.00 8496.00i −0.487603 0.487603i
\(133\) −8120.00 + 8120.00i −0.459042 + 0.459042i
\(134\) 3004.00i 0.167298i
\(135\) 0 0
\(136\) −8672.00 −0.468858
\(137\) 20409.0 + 20409.0i 1.08738 + 1.08738i 0.995798 + 0.0915804i \(0.0291919\pi\)
0.0915804 + 0.995798i \(0.470808\pi\)
\(138\) −9684.00 + 9684.00i −0.508507 + 0.508507i
\(139\) 9400.00i 0.486517i −0.969961 0.243259i \(-0.921784\pi\)
0.969961 0.243259i \(-0.0782164\pi\)
\(140\) −1160.00 8120.00i −0.0591837 0.414286i
\(141\) 22842.0 1.14894
\(142\) −12884.0 12884.0i −0.638961 0.638961i
\(143\) −8142.00 + 8142.00i −0.398161 + 0.398161i
\(144\) 5184.00i 0.250000i
\(145\) −13600.0 10200.0i −0.646849 0.485137i
\(146\) 11804.0 0.553762
\(147\) −6471.00 6471.00i −0.299459 0.299459i
\(148\) 5208.00 5208.00i 0.237765 0.237765i
\(149\) 13800.0i 0.621594i 0.950476 + 0.310797i \(0.100596\pi\)
−0.950476 + 0.310797i \(0.899404\pi\)
\(150\) 6300.00 + 21600.0i 0.280000 + 0.960000i
\(151\) −18998.0 −0.833209 −0.416605 0.909088i \(-0.636780\pi\)
−0.416605 + 0.909088i \(0.636780\pi\)
\(152\) 4480.00 + 4480.00i 0.193906 + 0.193906i
\(153\) −21951.0 + 21951.0i −0.937716 + 0.937716i
\(154\) 13688.0i 0.577163i
\(155\) −3030.00 + 4040.00i −0.126119 + 0.168158i
\(156\) 9936.00 0.408284
\(157\) −16371.0 16371.0i −0.664165 0.664165i 0.292194 0.956359i \(-0.405615\pi\)
−0.956359 + 0.292194i \(0.905615\pi\)
\(158\) 21120.0 21120.0i 0.846018 0.846018i
\(159\) 10998.0i 0.435030i
\(160\) −4480.00 + 640.000i −0.175000 + 0.0250000i
\(161\) 15602.0 0.601906
\(162\) −13122.0 13122.0i −0.500000 0.500000i
\(163\) 20009.0 20009.0i 0.753096 0.753096i −0.221960 0.975056i \(-0.571245\pi\)
0.975056 + 0.221960i \(0.0712455\pi\)
\(164\) 13456.0i 0.500297i
\(165\) −5310.00 37170.0i −0.195041 1.36529i
\(166\) 24924.0 0.904485
\(167\) 1549.00 + 1549.00i 0.0555416 + 0.0555416i 0.734332 0.678790i \(-0.237496\pi\)
−0.678790 + 0.734332i \(0.737496\pi\)
\(168\) 8352.00 8352.00i 0.295918 0.295918i
\(169\) 19039.0i 0.666608i
\(170\) −21680.0 16260.0i −0.750173 0.562630i
\(171\) 22680.0 0.775623
\(172\) 8712.00 + 8712.00i 0.294484 + 0.294484i
\(173\) 2789.00 2789.00i 0.0931872 0.0931872i −0.658976 0.752164i \(-0.729010\pi\)
0.752164 + 0.658976i \(0.229010\pi\)
\(174\) 24480.0i 0.808561i
\(175\) 12325.0 22475.0i 0.402449 0.733878i
\(176\) 7552.00 0.243802
\(177\) 10440.0 + 10440.0i 0.333238 + 0.333238i
\(178\) −28960.0 + 28960.0i −0.914026 + 0.914026i
\(179\) 2600.00i 0.0811460i −0.999177 0.0405730i \(-0.987082\pi\)
0.999177 0.0405730i \(-0.0129183\pi\)
\(180\) −9720.00 + 12960.0i −0.300000 + 0.400000i
\(181\) −44398.0 −1.35521 −0.677604 0.735427i \(-0.736982\pi\)
−0.677604 + 0.735427i \(0.736982\pi\)
\(182\) −8004.00 8004.00i −0.241637 0.241637i
\(183\) −50382.0 + 50382.0i −1.50443 + 1.50443i
\(184\) 8608.00i 0.254253i
\(185\) 22785.0 3255.00i 0.665741 0.0951059i
\(186\) −7272.00 −0.210198
\(187\) 31978.0 + 31978.0i 0.914467 + 0.914467i
\(188\) −10152.0 + 10152.0i −0.287234 + 0.287234i
\(189\) 0 0
\(190\) 2800.00 + 19600.0i 0.0775623 + 0.542936i
\(191\) −14678.0 −0.402346 −0.201173 0.979556i \(-0.564475\pi\)
−0.201173 + 0.979556i \(0.564475\pi\)
\(192\) −4608.00 4608.00i −0.125000 0.125000i
\(193\) 42849.0 42849.0i 1.15034 1.15034i 0.163855 0.986484i \(-0.447607\pi\)
0.986484 0.163855i \(-0.0523930\pi\)
\(194\) 29244.0i 0.777022i
\(195\) 24840.0 + 18630.0i 0.653254 + 0.489941i
\(196\) 5752.00 0.149729
\(197\) −10971.0 10971.0i −0.282692 0.282692i 0.551490 0.834182i \(-0.314060\pi\)
−0.834182 + 0.551490i \(0.814060\pi\)
\(198\) 19116.0 19116.0i 0.487603 0.487603i
\(199\) 38160.0i 0.963612i −0.876278 0.481806i \(-0.839981\pi\)
0.876278 0.481806i \(-0.160019\pi\)
\(200\) −12400.0 6800.00i −0.310000 0.170000i
\(201\) −13518.0 −0.334596
\(202\) 1756.00 + 1756.00i 0.0430350 + 0.0430350i
\(203\) −19720.0 + 19720.0i −0.478536 + 0.478536i
\(204\) 39024.0i 0.937716i
\(205\) −25230.0 + 33640.0i −0.600357 + 0.800476i
\(206\) −41716.0 −0.983033
\(207\) −21789.0 21789.0i −0.508507 0.508507i
\(208\) −4416.00 + 4416.00i −0.102071 + 0.102071i
\(209\) 33040.0i 0.756393i
\(210\) 36540.0 5220.00i 0.828571 0.118367i
\(211\) 72842.0 1.63613 0.818063 0.575128i \(-0.195048\pi\)
0.818063 + 0.575128i \(0.195048\pi\)
\(212\) −4888.00 4888.00i −0.108758 0.108758i
\(213\) 57978.0 57978.0i 1.27792 1.27792i
\(214\) 18844.0i 0.411477i
\(215\) 5445.00 + 38115.0i 0.117793 + 0.824554i
\(216\) 0 0
\(217\) 5858.00 + 5858.00i 0.124403 + 0.124403i
\(218\) 44080.0 44080.0i 0.927531 0.927531i
\(219\) 53118.0i 1.10752i
\(220\) 18880.0 + 14160.0i 0.390083 + 0.292562i
\(221\) −37398.0 −0.765709
\(222\) 23436.0 + 23436.0i 0.475530 + 0.475530i
\(223\) −30891.0 + 30891.0i −0.621187 + 0.621187i −0.945835 0.324648i \(-0.894754\pi\)
0.324648 + 0.945835i \(0.394754\pi\)
\(224\) 7424.00i 0.147959i
\(225\) −48600.0 + 14175.0i −0.960000 + 0.280000i
\(226\) 8444.00 0.165322
\(227\) −54911.0 54911.0i −1.06563 1.06563i −0.997689 0.0679438i \(-0.978356\pi\)
−0.0679438 0.997689i \(-0.521644\pi\)
\(228\) −20160.0 + 20160.0i −0.387812 + 0.387812i
\(229\) 50280.0i 0.958792i −0.877599 0.479396i \(-0.840856\pi\)
0.877599 0.479396i \(-0.159144\pi\)
\(230\) 16140.0 21520.0i 0.305104 0.406805i
\(231\) −61596.0 −1.15433
\(232\) 10880.0 + 10880.0i 0.202140 + 0.202140i
\(233\) −2391.00 + 2391.00i −0.0440421 + 0.0440421i −0.728785 0.684743i \(-0.759915\pi\)
0.684743 + 0.728785i \(0.259915\pi\)
\(234\) 22356.0i 0.408284i
\(235\) −44415.0 + 6345.00i −0.804255 + 0.114894i
\(236\) −9280.00 −0.166619
\(237\) 95040.0 + 95040.0i 1.69204 + 1.69204i
\(238\) −31436.0 + 31436.0i −0.554975 + 0.554975i
\(239\) 17760.0i 0.310919i −0.987842 0.155459i \(-0.950314\pi\)
0.987842 0.155459i \(-0.0496858\pi\)
\(240\) −2880.00 20160.0i −0.0500000 0.350000i
\(241\) −28238.0 −0.486183 −0.243092 0.970003i \(-0.578162\pi\)
−0.243092 + 0.970003i \(0.578162\pi\)
\(242\) 1434.00 + 1434.00i 0.0244860 + 0.0244860i
\(243\) 59049.0 59049.0i 1.00000 1.00000i
\(244\) 44784.0i 0.752217i
\(245\) 14380.0 + 10785.0i 0.239567 + 0.179675i
\(246\) −60552.0 −1.00059
\(247\) 19320.0 + 19320.0i 0.316675 + 0.316675i
\(248\) 3232.00 3232.00i 0.0525494 0.0525494i
\(249\) 112158.i 1.80897i
\(250\) −18250.0 40250.0i −0.292000 0.644000i
\(251\) 121002. 1.92064 0.960318 0.278907i \(-0.0899722\pi\)
0.960318 + 0.278907i \(0.0899722\pi\)
\(252\) 18792.0 + 18792.0i 0.295918 + 0.295918i
\(253\) −31742.0 + 31742.0i −0.495899 + 0.495899i
\(254\) 23636.0i 0.366359i
\(255\) 73170.0 97560.0i 1.12526 1.50035i
\(256\) 4096.00 0.0625000
\(257\) −72431.0 72431.0i −1.09663 1.09663i −0.994803 0.101823i \(-0.967533\pi\)
−0.101823 0.994803i \(-0.532467\pi\)
\(258\) −39204.0 + 39204.0i −0.588967 + 0.588967i
\(259\) 37758.0i 0.562872i
\(260\) −19320.0 + 2760.00i −0.285799 + 0.0408284i
\(261\) 55080.0 0.808561
\(262\) 12716.0 + 12716.0i 0.185246 + 0.185246i
\(263\) −14771.0 + 14771.0i −0.213549 + 0.213549i −0.805773 0.592224i \(-0.798250\pi\)
0.592224 + 0.805773i \(0.298250\pi\)
\(264\) 33984.0i 0.487603i
\(265\) −3055.00 21385.0i −0.0435030 0.304521i
\(266\) 32480.0 0.459042
\(267\) −130320. 130320.i −1.82805 1.82805i
\(268\) 6008.00 6008.00i 0.0836489 0.0836489i
\(269\) 89720.0i 1.23989i 0.784644 + 0.619947i \(0.212846\pi\)
−0.784644 + 0.619947i \(0.787154\pi\)
\(270\) 0 0
\(271\) 68202.0 0.928664 0.464332 0.885661i \(-0.346294\pi\)
0.464332 + 0.885661i \(0.346294\pi\)
\(272\) 17344.0 + 17344.0i 0.234429 + 0.234429i
\(273\) 36018.0 36018.0i 0.483275 0.483275i
\(274\) 81636.0i 1.08738i
\(275\) 20650.0 + 70800.0i 0.273058 + 0.936198i
\(276\) 38736.0 0.508507
\(277\) 18549.0 + 18549.0i 0.241747 + 0.241747i 0.817573 0.575826i \(-0.195319\pi\)
−0.575826 + 0.817573i \(0.695319\pi\)
\(278\) −18800.0 + 18800.0i −0.243259 + 0.243259i
\(279\) 16362.0i 0.210198i
\(280\) −13920.0 + 18560.0i −0.177551 + 0.236735i
\(281\) 2322.00 0.0294069 0.0147035 0.999892i \(-0.495320\pi\)
0.0147035 + 0.999892i \(0.495320\pi\)
\(282\) −45684.0 45684.0i −0.574468 0.574468i
\(283\) −91711.0 + 91711.0i −1.14511 + 1.14511i −0.157613 + 0.987501i \(0.550380\pi\)
−0.987501 + 0.157613i \(0.949620\pi\)
\(284\) 51536.0i 0.638961i
\(285\) −88200.0 + 12600.0i −1.08587 + 0.155125i
\(286\) 32568.0 0.398161
\(287\) 48778.0 + 48778.0i 0.592189 + 0.592189i
\(288\) 10368.0 10368.0i 0.125000 0.125000i
\(289\) 63361.0i 0.758624i
\(290\) 6800.00 + 47600.0i 0.0808561 + 0.565993i
\(291\) −131598. −1.55404
\(292\) −23608.0 23608.0i −0.276881 0.276881i
\(293\) −4851.00 + 4851.00i −0.0565062 + 0.0565062i −0.734795 0.678289i \(-0.762722\pi\)
0.678289 + 0.734795i \(0.262722\pi\)
\(294\) 25884.0i 0.299459i
\(295\) −23200.0 17400.0i −0.266590 0.199943i
\(296\) −20832.0 −0.237765
\(297\) 0 0
\(298\) 27600.0 27600.0i 0.310797 0.310797i
\(299\) 37122.0i 0.415230i
\(300\) 30600.0 55800.0i 0.340000 0.620000i
\(301\) 63162.0 0.697145
\(302\) 37996.0 + 37996.0i 0.416605 + 0.416605i
\(303\) −7902.00 + 7902.00i −0.0860700 + 0.0860700i
\(304\) 17920.0i 0.193906i
\(305\) 83970.0 111960.i 0.902661 1.20355i
\(306\) 87804.0 0.937716
\(307\) 42849.0 + 42849.0i 0.454636 + 0.454636i 0.896890 0.442254i \(-0.145821\pi\)
−0.442254 + 0.896890i \(0.645821\pi\)
\(308\) 27376.0 27376.0i 0.288582 0.288582i
\(309\) 187722.i 1.96607i
\(310\) 14140.0 2020.00i 0.147138 0.0210198i
\(311\) −72278.0 −0.747283 −0.373642 0.927573i \(-0.621891\pi\)
−0.373642 + 0.927573i \(0.621891\pi\)
\(312\) −19872.0 19872.0i −0.204142 0.204142i
\(313\) 18249.0 18249.0i 0.186273 0.186273i −0.607810 0.794083i \(-0.707952\pi\)
0.794083 + 0.607810i \(0.207952\pi\)
\(314\) 65484.0i 0.664165i
\(315\) 11745.0 + 82215.0i 0.118367 + 0.828571i
\(316\) −84480.0 −0.846018
\(317\) 25149.0 + 25149.0i 0.250266 + 0.250266i 0.821080 0.570814i \(-0.193372\pi\)
−0.570814 + 0.821080i \(0.693372\pi\)
\(318\) 21996.0 21996.0i 0.217515 0.217515i
\(319\) 80240.0i 0.788514i
\(320\) 10240.0 + 7680.00i 0.100000 + 0.0750000i
\(321\) −84798.0 −0.822954
\(322\) −31204.0 31204.0i −0.300953 0.300953i
\(323\) 75880.0 75880.0i 0.727315 0.727315i
\(324\) 52488.0i 0.500000i
\(325\) −53475.0 29325.0i −0.506272 0.277633i
\(326\) −80036.0 −0.753096
\(327\) 198360. + 198360.i 1.85506 + 1.85506i
\(328\) 26912.0 26912.0i 0.250149 0.250149i
\(329\) 73602.0i 0.679983i
\(330\) −63720.0 + 84960.0i −0.585124 + 0.780165i
\(331\) −54038.0 −0.493223 −0.246611 0.969114i \(-0.579317\pi\)
−0.246611 + 0.969114i \(0.579317\pi\)
\(332\) −49848.0 49848.0i −0.452243 0.452243i
\(333\) −52731.0 + 52731.0i −0.475530 + 0.475530i
\(334\) 6196.00i 0.0555416i
\(335\) 26285.0 3755.00i 0.234217 0.0334596i
\(336\) −33408.0 −0.295918
\(337\) 8529.00 + 8529.00i 0.0750997 + 0.0750997i 0.743659 0.668559i \(-0.233089\pi\)
−0.668559 + 0.743659i \(0.733089\pi\)
\(338\) 38078.0 38078.0i 0.333304 0.333304i
\(339\) 37998.0i 0.330645i
\(340\) 10840.0 + 75880.0i 0.0937716 + 0.656401i
\(341\) −23836.0 −0.204986
\(342\) −45360.0 45360.0i −0.387812 0.387812i
\(343\) 90480.0 90480.0i 0.769067 0.769067i
\(344\) 34848.0i 0.294484i
\(345\) 96840.0 + 72630.0i 0.813611 + 0.610208i
\(346\) −11156.0 −0.0931872
\(347\) −56551.0 56551.0i −0.469658 0.469658i 0.432146 0.901804i \(-0.357756\pi\)
−0.901804 + 0.432146i \(0.857756\pi\)
\(348\) −48960.0 + 48960.0i −0.404281 + 0.404281i
\(349\) 22520.0i 0.184892i −0.995718 0.0924459i \(-0.970531\pi\)
0.995718 0.0924459i \(-0.0294685\pi\)
\(350\) −69600.0 + 20300.0i −0.568163 + 0.165714i
\(351\) 0 0
\(352\) −15104.0 15104.0i −0.121901 0.121901i
\(353\) −44511.0 + 44511.0i −0.357205 + 0.357205i −0.862782 0.505576i \(-0.831280\pi\)
0.505576 + 0.862782i \(0.331280\pi\)
\(354\) 41760.0i 0.333238i
\(355\) −96630.0 + 128840.i −0.766753 + 1.02234i
\(356\) 115840. 0.914026
\(357\) −141462. 141462.i −1.10995 1.10995i
\(358\) −5200.00 + 5200.00i −0.0405730 + 0.0405730i
\(359\) 9680.00i 0.0751080i −0.999295 0.0375540i \(-0.988043\pi\)
0.999295 0.0375540i \(-0.0119566\pi\)
\(360\) 45360.0 6480.00i 0.350000 0.0500000i
\(361\) 51921.0 0.398409
\(362\) 88796.0 + 88796.0i 0.677604 + 0.677604i
\(363\) −6453.00 + 6453.00i −0.0489721 + 0.0489721i
\(364\) 32016.0i 0.241637i
\(365\) −14755.0 103285.i −0.110752 0.775267i
\(366\) 201528. 1.50443
\(367\) −14971.0 14971.0i −0.111152 0.111152i 0.649343 0.760496i \(-0.275044\pi\)
−0.760496 + 0.649343i \(0.775044\pi\)
\(368\) −17216.0 + 17216.0i −0.127127 + 0.127127i
\(369\) 136242.i 1.00059i
\(370\) −52080.0 39060.0i −0.380424 0.285318i
\(371\) −35438.0 −0.257467
\(372\) 14544.0 + 14544.0i 0.105099 + 0.105099i
\(373\) −13811.0 + 13811.0i −0.0992676 + 0.0992676i −0.754996 0.655729i \(-0.772361\pi\)
0.655729 + 0.754996i \(0.272361\pi\)
\(374\) 127912.i 0.914467i
\(375\) 181125. 82125.0i 1.28800 0.584000i
\(376\) 40608.0 0.287234
\(377\) 46920.0 + 46920.0i 0.330123 + 0.330123i
\(378\) 0 0
\(379\) 251080.i 1.74797i 0.485954 + 0.873984i \(0.338472\pi\)
−0.485954 + 0.873984i \(0.661528\pi\)
\(380\) 33600.0 44800.0i 0.232687 0.310249i
\(381\) 106362. 0.732717
\(382\) 29356.0 + 29356.0i 0.201173 + 0.201173i
\(383\) −86091.0 + 86091.0i −0.586895 + 0.586895i −0.936789 0.349894i \(-0.886217\pi\)
0.349894 + 0.936789i \(0.386217\pi\)
\(384\) 18432.0i 0.125000i
\(385\) 119770. 17110.0i 0.808028 0.115433i
\(386\) −171396. −1.15034
\(387\) −88209.0 88209.0i −0.588967 0.588967i
\(388\) 58488.0 58488.0i 0.388511 0.388511i
\(389\) 75000.0i 0.495635i −0.968807 0.247818i \(-0.920287\pi\)
0.968807 0.247818i \(-0.0797134\pi\)
\(390\) −12420.0 86940.0i −0.0816568 0.571598i
\(391\) −145798. −0.953670
\(392\) −11504.0 11504.0i −0.0748646 0.0748646i
\(393\) −57222.0 + 57222.0i −0.370491 + 0.370491i
\(394\) 43884.0i 0.282692i
\(395\) −211200. 158400.i −1.35363 1.01522i
\(396\) −76464.0 −0.487603
\(397\) 29149.0 + 29149.0i 0.184945 + 0.184945i 0.793507 0.608562i \(-0.208253\pi\)
−0.608562 + 0.793507i \(0.708253\pi\)
\(398\) −76320.0 + 76320.0i −0.481806 + 0.481806i
\(399\) 146160.i 0.918085i
\(400\) 11200.0 + 38400.0i 0.0700000 + 0.240000i
\(401\) −45918.0 −0.285558 −0.142779 0.989755i \(-0.545604\pi\)
−0.142779 + 0.989755i \(0.545604\pi\)
\(402\) 27036.0 + 27036.0i 0.167298 + 0.167298i
\(403\) 13938.0 13938.0i 0.0858204 0.0858204i
\(404\) 7024.00i 0.0430350i
\(405\) −98415.0 + 131220.i −0.600000 + 0.800000i
\(406\) 78880.0 0.478536
\(407\) 76818.0 + 76818.0i 0.463740 + 0.463740i
\(408\) −78048.0 + 78048.0i −0.468858 + 0.468858i
\(409\) 78720.0i 0.470585i 0.971925 + 0.235293i \(0.0756049\pi\)
−0.971925 + 0.235293i \(0.924395\pi\)
\(410\) 117740. 16820.0i 0.700416 0.100059i
\(411\) 367362. 2.17476
\(412\) 83432.0 + 83432.0i 0.491517 + 0.491517i
\(413\) −33640.0 + 33640.0i −0.197222 + 0.197222i
\(414\) 87156.0i 0.508507i
\(415\) −31155.0 218085.i −0.180897 1.26628i
\(416\) 17664.0 0.102071
\(417\) −84600.0 84600.0i −0.486517 0.486517i
\(418\) −66080.0 + 66080.0i −0.378196 + 0.378196i
\(419\) 14760.0i 0.0840733i −0.999116 0.0420367i \(-0.986615\pi\)
0.999116 0.0420367i \(-0.0133846\pi\)
\(420\) −83520.0 62640.0i −0.473469 0.355102i
\(421\) 221282. 1.24848 0.624240 0.781232i \(-0.285409\pi\)
0.624240 + 0.781232i \(0.285409\pi\)
\(422\) −145684. 145684.i −0.818063 0.818063i
\(423\) 102789. 102789.i 0.574468 0.574468i
\(424\) 19552.0i 0.108758i
\(425\) −115175. + 210025.i −0.637647 + 1.16277i
\(426\) −231912. −1.27792
\(427\) −162342. 162342.i −0.890379 0.890379i
\(428\) 37688.0 37688.0i 0.205738 0.205738i
\(429\) 146556.i 0.796323i
\(430\) 65340.0 87120.0i 0.353380 0.471174i
\(431\) 212522. 1.14406 0.572031 0.820232i \(-0.306156\pi\)
0.572031 + 0.820232i \(0.306156\pi\)
\(432\) 0 0
\(433\) 145409. 145409.i 0.775560 0.775560i −0.203512 0.979072i \(-0.565236\pi\)
0.979072 + 0.203512i \(0.0652357\pi\)
\(434\) 23432.0i 0.124403i
\(435\) −214200. + 30600.0i −1.13199 + 0.161712i
\(436\) −176320. −0.927531
\(437\) 75320.0 + 75320.0i 0.394410 + 0.394410i
\(438\) 106236. 106236.i 0.553762 0.553762i
\(439\) 299440.i 1.55375i −0.629656 0.776874i \(-0.716804\pi\)
0.629656 0.776874i \(-0.283196\pi\)
\(440\) −9440.00 66080.0i −0.0487603 0.341322i
\(441\) −58239.0 −0.299459
\(442\) 74796.0 + 74796.0i 0.382855 + 0.382855i
\(443\) 240609. 240609.i 1.22604 1.22604i 0.260590 0.965450i \(-0.416083\pi\)
0.965450 0.260590i \(-0.0839170\pi\)
\(444\) 93744.0i 0.475530i
\(445\) 289600. + 217200.i 1.46244 + 1.09683i
\(446\) 123564. 0.621187
\(447\) 124200. + 124200.i 0.621594 + 0.621594i
\(448\) 14848.0 14848.0i 0.0739796 0.0739796i
\(449\) 82480.0i 0.409125i −0.978854 0.204562i \(-0.934423\pi\)
0.978854 0.204562i \(-0.0655772\pi\)
\(450\) 125550. + 68850.0i 0.620000 + 0.340000i
\(451\) −198476. −0.975787
\(452\) −16888.0 16888.0i −0.0826611 0.0826611i
\(453\) −170982. + 170982.i −0.833209 + 0.833209i
\(454\) 219644.i 1.06563i
\(455\) −60030.0 + 80040.0i −0.289965 + 0.386620i
\(456\) 80640.0 0.387812
\(457\) −188151. 188151.i −0.900895 0.900895i 0.0946187 0.995514i \(-0.469837\pi\)
−0.995514 + 0.0946187i \(0.969837\pi\)
\(458\) −100560. + 100560.i −0.479396 + 0.479396i
\(459\) 0 0
\(460\) −75320.0 + 10760.0i −0.355955 + 0.0508507i
\(461\) −326158. −1.53471 −0.767355 0.641223i \(-0.778427\pi\)
−0.767355 + 0.641223i \(0.778427\pi\)
\(462\) 123192. + 123192.i 0.577163 + 0.577163i
\(463\) −218731. + 218731.i −1.02035 + 1.02035i −0.0205595 + 0.999789i \(0.506545\pi\)
−0.999789 + 0.0205595i \(0.993455\pi\)
\(464\) 43520.0i 0.202140i
\(465\) 9090.00 + 63630.0i 0.0420395 + 0.294277i
\(466\) 9564.00 0.0440421
\(467\) 59249.0 + 59249.0i 0.271673 + 0.271673i 0.829774 0.558100i \(-0.188470\pi\)
−0.558100 + 0.829774i \(0.688470\pi\)
\(468\) 44712.0 44712.0i 0.204142 0.204142i
\(469\) 43558.0i 0.198026i
\(470\) 101520. + 76140.0i 0.459574 + 0.344681i
\(471\) −294678. −1.32833
\(472\) 18560.0 + 18560.0i 0.0833094 + 0.0833094i
\(473\) −128502. + 128502.i −0.574365 + 0.574365i
\(474\) 380160.i 1.69204i
\(475\) 168000. 49000.0i 0.744598 0.217175i
\(476\) 125744. 0.554975
\(477\) 49491.0 + 49491.0i 0.217515 + 0.217515i
\(478\) −35520.0 + 35520.0i −0.155459 + 0.155459i
\(479\) 273440.i 1.19177i 0.803071 + 0.595883i \(0.203198\pi\)
−0.803071 + 0.595883i \(0.796802\pi\)
\(480\) −34560.0 + 46080.0i −0.150000 + 0.200000i
\(481\) −89838.0 −0.388302
\(482\) 56476.0 + 56476.0i 0.243092 + 0.243092i
\(483\) 140418. 140418.i 0.601906 0.601906i
\(484\) 5736.00i 0.0244860i
\(485\) 255885. 36555.0i 1.08783 0.155404i
\(486\) −236196. −1.00000
\(487\) −123651. 123651.i −0.521362 0.521362i 0.396620 0.917983i \(-0.370183\pi\)
−0.917983 + 0.396620i \(0.870183\pi\)
\(488\) −89568.0 + 89568.0i −0.376109 + 0.376109i
\(489\) 360162.i 1.50619i
\(490\) −7190.00 50330.0i −0.0299459 0.209621i
\(491\) 198442. 0.823134 0.411567 0.911379i \(-0.364982\pi\)
0.411567 + 0.911379i \(0.364982\pi\)
\(492\) 121104. + 121104.i 0.500297 + 0.500297i
\(493\) 184280. 184280.i 0.758201 0.758201i
\(494\) 77280.0i 0.316675i
\(495\) −191160. 143370.i −0.780165 0.585124i
\(496\) −12928.0 −0.0525494
\(497\) 186818. + 186818.i 0.756321 + 0.756321i
\(498\) 224316. 224316.i 0.904485 0.904485i
\(499\) 269240.i 1.08128i 0.841254 + 0.540640i \(0.181818\pi\)
−0.841254 + 0.540640i \(0.818182\pi\)
\(500\) −44000.0 + 117000.i −0.176000 + 0.468000i
\(501\) 27882.0 0.111083
\(502\) −242004. 242004.i −0.960318 0.960318i
\(503\) 109869. 109869.i 0.434249 0.434249i −0.455822 0.890071i \(-0.650655\pi\)
0.890071 + 0.455822i \(0.150655\pi\)
\(504\) 75168.0i 0.295918i
\(505\) 13170.0 17560.0i 0.0516420 0.0688560i
\(506\) 126968. 0.495899
\(507\) 171351. + 171351.i 0.666608 + 0.666608i
\(508\) −47272.0 + 47272.0i −0.183179 + 0.183179i
\(509\) 211000.i 0.814417i −0.913335 0.407209i \(-0.866502\pi\)
0.913335 0.407209i \(-0.133498\pi\)
\(510\) −341460. + 48780.0i −1.31280 + 0.187543i
\(511\) −171158. −0.655474
\(512\) −8192.00 8192.00i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 289724.i 1.09663i
\(515\) 52145.0 + 365015.i 0.196607 + 1.37625i
\(516\) 156816. 0.588967
\(517\) −149742. 149742.i −0.560225 0.560225i
\(518\) −75516.0 + 75516.0i −0.281436 + 0.281436i
\(519\) 50202.0i 0.186374i
\(520\) 44160.0 + 33120.0i 0.163314 + 0.122485i
\(521\) 297282. 1.09520 0.547600 0.836740i \(-0.315542\pi\)
0.547600 + 0.836740i \(0.315542\pi\)
\(522\) −110160. 110160.i −0.404281 0.404281i
\(523\) −25071.0 + 25071.0i −0.0916576 + 0.0916576i −0.751449 0.659791i \(-0.770645\pi\)
0.659791 + 0.751449i \(0.270645\pi\)
\(524\) 50864.0i 0.185246i
\(525\) −91350.0 313200.i −0.331429 1.13633i
\(526\) 59084.0 0.213549
\(527\) −54742.0 54742.0i −0.197106 0.197106i
\(528\) 67968.0 67968.0i 0.243802 0.243802i
\(529\) 135119.i 0.482842i
\(530\) −36660.0 + 48880.0i −0.130509 + 0.174012i
\(531\) 93960.0 0.333238
\(532\) −64960.0 64960.0i −0.229521 0.229521i
\(533\) 116058. 116058.i 0.408527 0.408527i
\(534\) 521280.i 1.82805i
\(535\) 164885. 23555.0i 0.576068 0.0822954i
\(536\) −24032.0 −0.0836489
\(537\) −23400.0 23400.0i −0.0811460 0.0811460i
\(538\) 179440. 179440.i 0.619947 0.619947i
\(539\) 84842.0i 0.292034i
\(540\) 0 0
\(541\) −142478. −0.486803 −0.243402 0.969926i \(-0.578263\pi\)
−0.243402 + 0.969926i \(0.578263\pi\)
\(542\) −136404. 136404.i −0.464332 0.464332i
\(543\) −399582. + 399582.i −1.35521 + 1.35521i
\(544\) 69376.0i 0.234429i
\(545\) −440800. 330600.i −1.48405 1.11304i
\(546\) −144072. −0.483275
\(547\) 291009. + 291009.i 0.972594 + 0.972594i 0.999634 0.0270399i \(-0.00860813\pi\)
−0.0270399 + 0.999634i \(0.508608\pi\)
\(548\) −163272. + 163272.i −0.543689 + 0.543689i
\(549\) 453438.i 1.50443i
\(550\) 100300. 182900.i 0.331570 0.604628i
\(551\) −190400. −0.627139
\(552\) −77472.0 77472.0i −0.254253 0.254253i
\(553\) −306240. + 306240.i −1.00141 + 1.00141i
\(554\) 74196.0i 0.241747i
\(555\) 175770. 234360.i 0.570636 0.760847i
\(556\) 75200.0 0.243259
\(557\) −83091.0 83091.0i −0.267820 0.267820i 0.560401 0.828221i \(-0.310647\pi\)
−0.828221 + 0.560401i \(0.810647\pi\)
\(558\) −32724.0 + 32724.0i −0.105099 + 0.105099i
\(559\) 150282.i 0.480932i
\(560\) 64960.0 9280.00i 0.207143 0.0295918i
\(561\) 575604. 1.82893
\(562\) −4644.00 4644.00i −0.0147035 0.0147035i
\(563\) 43449.0 43449.0i 0.137076 0.137076i −0.635239 0.772316i \(-0.719098\pi\)
0.772316 + 0.635239i \(0.219098\pi\)
\(564\) 182736.i 0.574468i
\(565\) −10555.0 73885.0i −0.0330645 0.231451i
\(566\) 366844. 1.14511
\(567\) 190269. + 190269.i 0.591837 + 0.591837i
\(568\) 103072. 103072.i 0.319480 0.319480i
\(569\) 270560.i 0.835678i −0.908521 0.417839i \(-0.862788\pi\)
0.908521 0.417839i \(-0.137212\pi\)
\(570\) 201600. + 151200.i 0.620499 + 0.465374i
\(571\) 57482.0 0.176303 0.0881515 0.996107i \(-0.471904\pi\)
0.0881515 + 0.996107i \(0.471904\pi\)
\(572\) −65136.0 65136.0i −0.199081 0.199081i
\(573\) −132102. + 132102.i −0.402346 + 0.402346i
\(574\) 195112.i 0.592189i
\(575\) −208475. 114325.i −0.630548 0.345784i
\(576\) −41472.0 −0.125000
\(577\) 195889. + 195889.i 0.588381 + 0.588381i 0.937193 0.348812i \(-0.113415\pi\)
−0.348812 + 0.937193i \(0.613415\pi\)
\(578\) 126722. 126722.i 0.379312 0.379312i
\(579\) 771282.i 2.30068i
\(580\) 81600.0 108800.i 0.242568 0.323424i
\(581\) −361398. −1.07062
\(582\) 263196. + 263196.i 0.777022 + 0.777022i
\(583\) 72098.0 72098.0i 0.212122 0.212122i
\(584\) 94432.0i 0.276881i
\(585\) 195615. 27945.0i 0.571598 0.0816568i
\(586\) 19404.0 0.0565062
\(587\) −404631. 404631.i −1.17431 1.17431i −0.981171 0.193139i \(-0.938133\pi\)
−0.193139 0.981171i \(-0.561867\pi\)
\(588\) 51768.0 51768.0i 0.149729 0.149729i
\(589\) 56560.0i 0.163034i
\(590\) 11600.0 + 81200.0i 0.0333238 + 0.233266i
\(591\) −197478. −0.565384
\(592\) 41664.0 + 41664.0i 0.118882 + 0.118882i
\(593\) −210991. + 210991.i −0.600005 + 0.600005i −0.940314 0.340309i \(-0.889468\pi\)
0.340309 + 0.940314i \(0.389468\pi\)
\(594\) 0 0
\(595\) 314360. + 235770.i 0.887960 + 0.665970i
\(596\) −110400. −0.310797
\(597\) −343440. 343440.i −0.963612 0.963612i
\(598\) −74244.0 + 74244.0i −0.207615 + 0.207615i
\(599\) 300560.i 0.837679i 0.908060 + 0.418839i \(0.137563\pi\)
−0.908060 + 0.418839i \(0.862437\pi\)
\(600\) −172800. + 50400.0i −0.480000 + 0.140000i
\(601\) 367442. 1.01728 0.508639 0.860980i \(-0.330149\pi\)
0.508639 + 0.860980i \(0.330149\pi\)
\(602\) −126324. 126324.i −0.348572 0.348572i
\(603\) −60831.0 + 60831.0i −0.167298 + 0.167298i
\(604\) 151984.i 0.416605i
\(605\) 10755.0 14340.0i 0.0293832 0.0391777i
\(606\) 31608.0 0.0860700
\(607\) 146469. + 146469.i 0.397529 + 0.397529i 0.877360 0.479832i \(-0.159302\pi\)
−0.479832 + 0.877360i \(0.659302\pi\)
\(608\) −35840.0 + 35840.0i −0.0969529 + 0.0969529i
\(609\) 354960.i 0.957072i
\(610\) −391860. + 55980.0i −1.05310 + 0.150443i
\(611\) 175122. 0.469092
\(612\) −175608. 175608.i −0.468858 0.468858i
\(613\) 160989. 160989.i 0.428425 0.428425i −0.459666 0.888092i \(-0.652031\pi\)
0.888092 + 0.459666i \(0.152031\pi\)
\(614\) 171396.i 0.454636i
\(615\) 75690.0 + 529830.i 0.200119 + 1.40083i
\(616\) −109504. −0.288582
\(617\) 320409. + 320409.i 0.841656 + 0.841656i 0.989074 0.147419i \(-0.0470965\pi\)
−0.147419 + 0.989074i \(0.547096\pi\)
\(618\) −375444. + 375444.i −0.983033 + 0.983033i
\(619\) 341160.i 0.890383i 0.895435 + 0.445191i \(0.146864\pi\)
−0.895435 + 0.445191i \(0.853136\pi\)
\(620\) −32320.0 24240.0i −0.0840791 0.0630593i
\(621\) 0 0
\(622\) 144556. + 144556.i 0.373642 + 0.373642i
\(623\) 419920. 419920.i 1.08191 1.08191i
\(624\) 79488.0i 0.204142i
\(625\) −329375. + 210000.i −0.843200 + 0.537600i
\(626\) −72996.0 −0.186273
\(627\) −297360. 297360.i −0.756393 0.756393i
\(628\) 130968. 130968.i 0.332082 0.332082i
\(629\) 352842.i 0.891824i
\(630\) 140940. 187920.i 0.355102 0.473469i
\(631\) −390998. −0.982010 −0.491005 0.871157i \(-0.663370\pi\)
−0.491005 + 0.871157i \(0.663370\pi\)
\(632\) 168960. + 168960.i 0.423009 + 0.423009i
\(633\) 655578. 655578.i 1.63613 1.63613i
\(634\) 100596.i 0.250266i
\(635\) −206815. + 29545.0i −0.512902 + 0.0732717i
\(636\) −87984.0 −0.217515
\(637\) −49611.0 49611.0i −0.122264 0.122264i
\(638\) −160480. + 160480.i −0.394257 + 0.394257i
\(639\) 521802.i 1.27792i
\(640\) −5120.00 35840.0i −0.0125000 0.0875000i
\(641\) −585038. −1.42386 −0.711931 0.702249i \(-0.752179\pi\)
−0.711931 + 0.702249i \(0.752179\pi\)
\(642\) 169596. + 169596.i 0.411477 + 0.411477i
\(643\) −31911.0 + 31911.0i −0.0771824 + 0.0771824i −0.744644 0.667462i \(-0.767381\pi\)
0.667462 + 0.744644i \(0.267381\pi\)
\(644\) 124816.i 0.300953i
\(645\) 392040. + 294030.i 0.942347 + 0.706760i
\(646\) −303520. −0.727315
\(647\) −280931. 280931.i −0.671106 0.671106i 0.286865 0.957971i \(-0.407387\pi\)
−0.957971 + 0.286865i \(0.907387\pi\)
\(648\) 104976. 104976.i 0.250000 0.250000i
\(649\) 136880.i 0.324975i
\(650\) 48300.0 + 165600.i 0.114320 + 0.391953i
\(651\) 105444. 0.248805
\(652\) 160072. + 160072.i 0.376548 + 0.376548i
\(653\) 523989. 523989.i 1.22884 1.22884i 0.264439 0.964402i \(-0.414813\pi\)
0.964402 0.264439i \(-0.0851867\pi\)
\(654\) 793440.i 1.85506i
\(655\) 95370.0 127160.i 0.222295 0.296393i
\(656\) −107648. −0.250149
\(657\) 239031. + 239031.i 0.553762 + 0.553762i
\(658\) 147204. 147204.i 0.339991 0.339991i
\(659\) 404360.i 0.931102i −0.885021 0.465551i \(-0.845856\pi\)
0.885021 0.465551i \(-0.154144\pi\)
\(660\) 297360. 42480.0i 0.682645 0.0975207i
\(661\) −5278.00 −0.0120800 −0.00603999 0.999982i \(-0.501923\pi\)
−0.00603999 + 0.999982i \(0.501923\pi\)
\(662\) 108076. + 108076.i 0.246611 + 0.246611i
\(663\) −336582. + 336582.i −0.765709 + 0.765709i
\(664\) 199392.i 0.452243i
\(665\) −40600.0 284200.i −0.0918085 0.642659i
\(666\) 210924. 0.475530
\(667\) 182920. + 182920.i 0.411159 + 0.411159i
\(668\) −12392.0 + 12392.0i −0.0277708 + 0.0277708i
\(669\) 556038.i 1.24237i
\(670\) −60080.0 45060.0i −0.133838 0.100379i
\(671\) 660564. 1.46713
\(672\) 66816.0 + 66816.0i 0.147959 + 0.147959i
\(673\) −332111. + 332111.i −0.733252 + 0.733252i −0.971263 0.238011i \(-0.923505\pi\)
0.238011 + 0.971263i \(0.423505\pi\)
\(674\) 34116.0i 0.0750997i
\(675\) 0 0
\(676\) −152312. −0.333304
\(677\) 578309. + 578309.i 1.26178 + 1.26178i 0.950231 + 0.311546i \(0.100847\pi\)
0.311546 + 0.950231i \(0.399153\pi\)
\(678\) 75996.0 75996.0i 0.165322 0.165322i
\(679\) 424038.i 0.919740i
\(680\) 130080. 173440.i 0.281315 0.375087i
\(681\) −988398. −2.13127
\(682\) 47672.0 + 47672.0i 0.102493 + 0.102493i
\(683\) −349311. + 349311.i −0.748809 + 0.748809i −0.974255 0.225447i \(-0.927616\pi\)
0.225447 + 0.974255i \(0.427616\pi\)
\(684\) 181440.i 0.387812i
\(685\) −714315. + 102045.i −1.52233 + 0.217476i
\(686\) −361920. −0.769067
\(687\) −452520. 452520.i −0.958792 0.958792i
\(688\) −69696.0 + 69696.0i −0.147242 + 0.147242i
\(689\) 84318.0i 0.177616i
\(690\) −48420.0 338940.i −0.101701 0.711909i
\(691\) 282762. 0.592195 0.296098 0.955158i \(-0.404315\pi\)
0.296098 + 0.955158i \(0.404315\pi\)
\(692\) 22312.0 + 22312.0i 0.0465936 + 0.0465936i
\(693\) −277182. + 277182.i −0.577163 + 0.577163i
\(694\) 226204.i 0.469658i
\(695\) 188000. + 141000.i 0.389214 + 0.291910i
\(696\) 195840. 0.404281
\(697\) −455822. 455822.i −0.938274 0.938274i
\(698\) −45040.0 + 45040.0i −0.0924459 + 0.0924459i
\(699\) 43038.0i 0.0880841i
\(700\) 179800. + 98600.0i 0.366939 + 0.201224i
\(701\) 270242. 0.549942 0.274971 0.961453i \(-0.411332\pi\)
0.274971 + 0.961453i \(0.411332\pi\)
\(702\) 0 0
\(703\) 182280. 182280.i 0.368832 0.368832i
\(704\) 60416.0i 0.121901i
\(705\) −342630. + 456840.i −0.689362 + 0.919149i
\(706\) 178044. 0.357205
\(707\) −25462.0 25462.0i −0.0509394 0.0509394i
\(708\) −83520.0 + 83520.0i −0.166619 + 0.166619i
\(709\) 297800.i 0.592423i −0.955122 0.296212i \(-0.904277\pi\)
0.955122 0.296212i \(-0.0957234\pi\)
\(710\) 450940. 64420.0i 0.894545 0.127792i
\(711\) 855360. 1.69204
\(712\) −231680. 231680.i −0.457013 0.457013i
\(713\) 54338.0 54338.0i 0.106887 0.106887i
\(714\) 565848.i 1.10995i
\(715\) −40710.0 284970.i −0.0796323 0.557426i
\(716\) 20800.0 0.0405730
\(717\) −159840. 159840.i −0.310919 0.310919i
\(718\) −19360.0 + 19360.0i −0.0375540 + 0.0375540i
\(719\) 913760.i 1.76756i 0.467902 + 0.883780i \(0.345010\pi\)
−0.467902 + 0.883780i \(0.654990\pi\)
\(720\) −103680. 77760.0i −0.200000 0.150000i
\(721\) 604882. 1.16359
\(722\) −103842. 103842.i −0.199204 0.199204i
\(723\) −254142. + 254142.i −0.486183 + 0.486183i
\(724\) 355184.i 0.677604i
\(725\) 408000. 119000.i 0.776219 0.226397i
\(726\) 25812.0 0.0489721
\(727\) −417651. 417651.i −0.790214 0.790214i 0.191315 0.981529i \(-0.438725\pi\)
−0.981529 + 0.191315i \(0.938725\pi\)
\(728\) 64032.0 64032.0i 0.120819 0.120819i
\(729\) 531441.i 1.00000i
\(730\) −177060. + 236080.i −0.332257 + 0.443010i
\(731\) −590238. −1.10457
\(732\) −403056. 403056.i −0.752217 0.752217i
\(733\) 394549. 394549.i 0.734333 0.734333i −0.237142 0.971475i \(-0.576211\pi\)
0.971475 + 0.237142i \(0.0762107\pi\)
\(734\) 59884.0i 0.111152i
\(735\) 226485. 32355.0i 0.419242 0.0598917i
\(736\) 68864.0 0.127127
\(737\) 88618.0 + 88618.0i 0.163150 + 0.163150i
\(738\) −272484. + 272484.i −0.500297 + 0.500297i
\(739\) 109880.i 0.201201i 0.994927 + 0.100600i \(0.0320764\pi\)
−0.994927 + 0.100600i \(0.967924\pi\)
\(740\) 26040.0 + 182280.i 0.0475530 + 0.332871i
\(741\) 347760. 0.633349
\(742\) 70876.0 + 70876.0i 0.128733 + 0.128733i
\(743\) −466451. + 466451.i −0.844945 + 0.844945i −0.989497 0.144552i \(-0.953826\pi\)
0.144552 + 0.989497i \(0.453826\pi\)
\(744\) 58176.0i 0.105099i
\(745\) −276000. 207000.i −0.497275 0.372956i
\(746\) 55244.0 0.0992676
\(747\) 504711. + 504711.i 0.904485 + 0.904485i
\(748\) −255824. + 255824.i −0.457234 + 0.457234i
\(749\) 273238.i 0.487054i
\(750\) −526500. 198000.i −0.936000 0.352000i
\(751\) 1.01092e6 1.79241 0.896206 0.443638i \(-0.146313\pi\)
0.896206 + 0.443638i \(0.146313\pi\)
\(752\) −81216.0 81216.0i −0.143617 0.143617i
\(753\) 1.08902e6 1.08902e6i 1.92064 1.92064i
\(754\) 187680.i 0.330123i
\(755\) 284970. 379960.i 0.499925 0.666567i
\(756\) 0 0
\(757\) 313269. + 313269.i 0.546671 + 0.546671i 0.925476 0.378806i \(-0.123665\pi\)
−0.378806 + 0.925476i \(0.623665\pi\)
\(758\) 502160. 502160.i 0.873984 0.873984i
\(759\) 571356.i 0.991798i
\(760\) −156800. + 22400.0i −0.271468 + 0.0387812i
\(761\) 142082. 0.245341 0.122670 0.992447i \(-0.460854\pi\)
0.122670 + 0.992447i \(0.460854\pi\)
\(762\) −212724. 212724.i −0.366359 0.366359i
\(763\) −639160. + 639160.i −1.09789 + 1.09789i
\(764\) 117424.i 0.201173i
\(765\) −109755. 768285.i −0.187543 1.31280i
\(766\) 344364. 0.586895
\(767\) 80040.0 + 80040.0i 0.136056 + 0.136056i
\(768\) 36864.0 36864.0i 0.0625000 0.0625000i
\(769\) 13280.0i 0.0224567