Properties

Label 10.5.c.a
Level $10$
Weight $5$
Character orbit 10.c
Analytic conductor $1.034$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,5,Mod(3,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.3");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 10.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03369963084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 i - 2) q^{2} + ( - 9 i + 9) q^{3} + 8 i q^{4} + (20 i - 15) q^{5} - 36 q^{6} + (29 i + 29) q^{7} + ( - 16 i + 16) q^{8} - 81 i q^{9} + ( - 10 i + 70) q^{10} - 118 q^{11} + (72 i + 72) q^{12} + \cdots + 9558 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 18 q^{3} - 30 q^{5} - 72 q^{6} + 58 q^{7} + 32 q^{8} + 140 q^{10} - 236 q^{11} + 144 q^{12} + 138 q^{13} + 90 q^{15} - 128 q^{16} - 542 q^{17} - 324 q^{18} - 320 q^{20} + 1044 q^{21} + 472 q^{22}+ \cdots - 2876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
1.00000i
1.00000i
−2.00000 + 2.00000i 9.00000 + 9.00000i 8.00000i −15.0000 20.0000i −36.0000 29.0000 29.0000i 16.0000 + 16.0000i 81.0000i 70.0000 + 10.0000i
7.1 −2.00000 2.00000i 9.00000 9.00000i 8.00000i −15.0000 + 20.0000i −36.0000 29.0000 + 29.0000i 16.0000 16.0000i 81.0000i 70.0000 10.0000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.5.c.a 2
3.b odd 2 1 90.5.g.b 2
4.b odd 2 1 80.5.p.b 2
5.b even 2 1 50.5.c.b 2
5.c odd 4 1 inner 10.5.c.a 2
5.c odd 4 1 50.5.c.b 2
8.b even 2 1 320.5.p.b 2
8.d odd 2 1 320.5.p.i 2
15.d odd 2 1 450.5.g.a 2
15.e even 4 1 90.5.g.b 2
15.e even 4 1 450.5.g.a 2
20.d odd 2 1 400.5.p.c 2
20.e even 4 1 80.5.p.b 2
20.e even 4 1 400.5.p.c 2
40.i odd 4 1 320.5.p.b 2
40.k even 4 1 320.5.p.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.5.c.a 2 1.a even 1 1 trivial
10.5.c.a 2 5.c odd 4 1 inner
50.5.c.b 2 5.b even 2 1
50.5.c.b 2 5.c odd 4 1
80.5.p.b 2 4.b odd 2 1
80.5.p.b 2 20.e even 4 1
90.5.g.b 2 3.b odd 2 1
90.5.g.b 2 15.e even 4 1
320.5.p.b 2 8.b even 2 1
320.5.p.b 2 40.i odd 4 1
320.5.p.i 2 8.d odd 2 1
320.5.p.i 2 40.k even 4 1
400.5.p.c 2 20.d odd 2 1
400.5.p.c 2 20.e even 4 1
450.5.g.a 2 15.d odd 2 1
450.5.g.a 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 18T_{3} + 162 \) acting on \(S_{5}^{\mathrm{new}}(10, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4T + 8 \) Copy content Toggle raw display
$3$ \( T^{2} - 18T + 162 \) Copy content Toggle raw display
$5$ \( T^{2} + 30T + 625 \) Copy content Toggle raw display
$7$ \( T^{2} - 58T + 1682 \) Copy content Toggle raw display
$11$ \( (T + 118)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 138T + 9522 \) Copy content Toggle raw display
$17$ \( T^{2} + 542T + 146882 \) Copy content Toggle raw display
$19$ \( T^{2} + 78400 \) Copy content Toggle raw display
$23$ \( T^{2} - 538T + 144722 \) Copy content Toggle raw display
$29$ \( T^{2} + 462400 \) Copy content Toggle raw display
$31$ \( (T - 202)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 1302 T + 847602 \) Copy content Toggle raw display
$41$ \( (T - 1682)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 2178 T + 2371842 \) Copy content Toggle raw display
$47$ \( T^{2} - 2538 T + 3220722 \) Copy content Toggle raw display
$53$ \( T^{2} + 1222 T + 746642 \) Copy content Toggle raw display
$59$ \( T^{2} + 1345600 \) Copy content Toggle raw display
$61$ \( (T + 5598)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 1502 T + 1128002 \) Copy content Toggle raw display
$71$ \( (T - 6442)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 5902 T + 17416802 \) Copy content Toggle raw display
$79$ \( T^{2} + 111513600 \) Copy content Toggle raw display
$83$ \( T^{2} + 12462 T + 77650722 \) Copy content Toggle raw display
$89$ \( T^{2} + 209670400 \) Copy content Toggle raw display
$97$ \( T^{2} + 14622 T + 106901442 \) Copy content Toggle raw display
show more
show less