Defining parameters
| Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 10.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(6\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(10, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6 | 2 | 4 |
| Cusp forms | 2 | 2 | 0 |
| Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(10, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 10.4.b.a | $2$ | $0.590$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-10\) | \(0\) | \(q+\beta q^{2}-\beta q^{3}-4 q^{4}+(-5\beta-5)q^{5}+\cdots\) |