Defining parameters
| Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 10.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(6\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(10))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 7 | 1 | 6 |
| Cusp forms | 3 | 1 | 2 |
| Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(1\) | \(0\) | \(1\) | \(0\) | \(0\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(2\) | \(1\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(4\) | \(1\) | \(3\) | \(2\) | \(1\) | \(1\) | \(2\) | \(0\) | \(2\) | ||||
| Minus space | \(-\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | \(2\) | \(0\) | \(2\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
| 10.4.a.a | $1$ | $0.590$ | \(\Q\) | None | \(2\) | \(-8\) | \(5\) | \(-4\) | $-$ | $-$ | \(q+2q^{2}-8q^{3}+4q^{4}+5q^{5}-2^{4}q^{6}+\cdots\) | |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)