Properties

Label 10.4
Level 10
Weight 4
Dimension 3
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 24
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(10))\).

Total New Old
Modular forms 13 3 10
Cusp forms 5 3 2
Eisenstein series 8 0 8

Trace form

\( 3 q + 2 q^{2} - 8 q^{3} - 4 q^{4} - 5 q^{5} - 8 q^{6} - 4 q^{7} + 8 q^{8} + 83 q^{9} + 50 q^{10} - 44 q^{11} - 32 q^{12} - 58 q^{13} - 112 q^{14} - 80 q^{15} + 48 q^{16} + 66 q^{17} + 74 q^{18} + 20 q^{19}+ \cdots - 844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.4.a \(\chi_{10}(1, \cdot)\) 10.4.a.a 1 1
10.4.b \(\chi_{10}(9, \cdot)\) 10.4.b.a 2 1

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)