Properties

Label 10.38.a.a
Level $10$
Weight $38$
Character orbit 10.a
Self dual yes
Analytic conductor $86.714$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,38,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 38, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 38);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 38 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.7140381246\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1222518952080 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 30\sqrt{4890075808321}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 262144 q^{2} + ( - 9 \beta - 92750454) q^{3} + 68719476736 q^{4} + 3814697265625 q^{5} + ( - 2359296 \beta - 24313975013376) q^{6} + (54596437 \beta - 325790125921078) q^{7} + 18\!\cdots\!84 q^{8}+ \cdots + (1669508172 \beta - 85\!\cdots\!47) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 262144 q^{2} + ( - 9 \beta - 92750454) q^{3} + 68719476736 q^{4} + 3814697265625 q^{5} + ( - 2359296 \beta - 24313975013376) q^{6} + (54596437 \beta - 325790125921078) q^{7} + 18\!\cdots\!84 q^{8}+ \cdots + ( - 58\!\cdots\!30 \beta + 39\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 524288 q^{2} - 185500908 q^{3} + 137438953472 q^{4} + 7629394531250 q^{5} - 48627950026752 q^{6} - 651580251842156 q^{7} + 36\!\cdots\!68 q^{8}+ \cdots - 17\!\cdots\!94 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 524288 q^{2} - 185500908 q^{3} + 137438953472 q^{4} + 7629394531250 q^{5} - 48627950026752 q^{6} - 651580251842156 q^{7} + 36\!\cdots\!68 q^{8}+ \cdots + 78\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.10568e6
−1.10568e6
262144. −6.89815e8 6.87195e10 3.81470e12 −1.80831e14 3.29617e15 1.80144e16 2.55614e16 1.00000e18
1.2 262144. 5.04314e8 6.87195e10 3.81470e12 1.32203e14 −3.94775e15 1.80144e16 −1.95951e17 1.00000e18
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.38.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.38.a.a 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 185500908T_{3} - 347883879709394784 \) acting on \(S_{38}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 262144)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 34\!\cdots\!84 \) Copy content Toggle raw display
$5$ \( (T - 3814697265625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 13\!\cdots\!16 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 29\!\cdots\!04 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 31\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 26\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 84\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 48\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 12\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 85\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 35\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 67\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 39\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 55\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 51\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 68\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 92\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 66\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 80\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 55\!\cdots\!16 \) Copy content Toggle raw display
show more
show less