Properties

Label 10.38.a
Level $10$
Weight $38$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $4$
Sturm bound $57$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 38 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(57\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{38}(\Gamma_0(10))\).

Total New Old
Modular forms 57 11 46
Cusp forms 53 11 42
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(5\)
Minus space\(-\)\(6\)

Trace form

\( 11 q - 262144 q^{2} - 101265596 q^{3} + 755914244096 q^{4} - 3814697265625 q^{5} + 467891507953664 q^{6} - 81\!\cdots\!72 q^{7} - 18\!\cdots\!84 q^{8} + 24\!\cdots\!83 q^{9} - 10\!\cdots\!00 q^{10} - 88\!\cdots\!28 q^{11}+ \cdots - 52\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{38}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.38.a.a 10.a 1.a $2$ $86.714$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.38.a.a \(524288\) \(-185500908\) \(76\!\cdots\!50\) \(-65\!\cdots\!56\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{18}q^{2}+(-92750454-9\beta )q^{3}+\cdots\)
10.38.a.b 10.a 1.a $3$ $86.714$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 10.38.a.b \(-786432\) \(-550394388\) \(11\!\cdots\!75\) \(-45\!\cdots\!16\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{18}q^{2}+(-183464796+\beta _{1})q^{3}+\cdots\)
10.38.a.c 10.a 1.a $3$ $86.714$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 10.38.a.c \(-786432\) \(-392670638\) \(-11\!\cdots\!75\) \(-58\!\cdots\!66\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{18}q^{2}+(-130890213-\beta _{1})q^{3}+\cdots\)
10.38.a.d 10.a 1.a $3$ $86.714$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 10.38.a.d \(786432\) \(1027300338\) \(-11\!\cdots\!75\) \(29\!\cdots\!66\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{18}q^{2}+(342433446+\beta _{1})q^{3}+\cdots\)

Decomposition of \(S_{38}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{38}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{38}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{38}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{38}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)