Properties

Label 10.38
Level 10
Weight 38
Dimension 29
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 228
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 38 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(228\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{38}(\Gamma_1(10))\).

Total New Old
Modular forms 115 29 86
Cusp forms 107 29 78
Eisenstein series 8 0 8

Trace form

\( 29 q - 262144 q^{2} - 101265596 q^{3} - 481036337152 q^{4} - 6507646614635 q^{5} + 44703658541056 q^{6} - 81\!\cdots\!72 q^{7} - 18\!\cdots\!84 q^{8} - 23\!\cdots\!51 q^{9} - 15\!\cdots\!20 q^{10} - 47\!\cdots\!12 q^{11}+ \cdots + 60\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{38}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.38.a \(\chi_{10}(1, \cdot)\) 10.38.a.a 2 1
10.38.a.b 3
10.38.a.c 3
10.38.a.d 3
10.38.b \(\chi_{10}(9, \cdot)\) 10.38.b.a 18 1

Decomposition of \(S_{38}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{38}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{38}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{38}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{38}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{38}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)