Properties

Label 10.32.a.c.1.2
Level $10$
Weight $32$
Character 10.1
Self dual yes
Analytic conductor $60.877$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,32,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 32, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 32);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 32 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8771328190\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 478673959 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(21878.6\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32768.0 q^{2} +3.52218e7 q^{3} +1.07374e9 q^{4} -3.05176e10 q^{5} +1.15415e12 q^{6} -2.37582e13 q^{7} +3.51844e13 q^{8} +6.22901e14 q^{9} -1.00000e15 q^{10} +5.09810e15 q^{11} +3.78191e16 q^{12} -5.15620e16 q^{13} -7.78507e17 q^{14} -1.07488e18 q^{15} +1.15292e18 q^{16} +8.28488e18 q^{17} +2.04112e19 q^{18} -9.12619e19 q^{19} -3.27680e19 q^{20} -8.36805e20 q^{21} +1.67054e20 q^{22} -1.66930e21 q^{23} +1.23926e21 q^{24} +9.31323e20 q^{25} -1.68959e21 q^{26} +1.84113e20 q^{27} -2.55101e22 q^{28} -4.80046e22 q^{29} -3.52218e22 q^{30} -1.93527e22 q^{31} +3.77789e22 q^{32} +1.79564e23 q^{33} +2.71479e23 q^{34} +7.25041e23 q^{35} +6.68834e23 q^{36} -3.21629e24 q^{37} -2.99047e24 q^{38} -1.81611e24 q^{39} -1.07374e24 q^{40} +4.47937e24 q^{41} -2.74204e25 q^{42} +1.68868e25 q^{43} +5.47404e24 q^{44} -1.90094e25 q^{45} -5.46995e25 q^{46} -6.67134e25 q^{47} +4.06080e25 q^{48} +4.06675e26 q^{49} +3.05176e25 q^{50} +2.91808e26 q^{51} -5.53643e25 q^{52} +1.30582e26 q^{53} +6.03301e24 q^{54} -1.55582e26 q^{55} -8.35916e26 q^{56} -3.21441e27 q^{57} -1.57301e27 q^{58} +4.20335e27 q^{59} -1.15415e27 q^{60} -9.20102e27 q^{61} -6.34148e26 q^{62} -1.47990e28 q^{63} +1.23794e27 q^{64} +1.57355e27 q^{65} +5.88395e27 q^{66} -7.54919e27 q^{67} +8.89582e27 q^{68} -5.87956e28 q^{69} +2.37582e28 q^{70} +2.25373e28 q^{71} +2.19164e28 q^{72} -1.27400e29 q^{73} -1.05391e29 q^{74} +3.28028e28 q^{75} -9.79917e28 q^{76} -1.21121e29 q^{77} -5.95102e28 q^{78} -6.18893e28 q^{79} -3.51844e28 q^{80} -3.78264e29 q^{81} +1.46780e29 q^{82} +9.49780e29 q^{83} -8.98512e29 q^{84} -2.52835e29 q^{85} +5.53348e29 q^{86} -1.69081e30 q^{87} +1.79373e29 q^{88} +2.46648e30 q^{89} -6.22901e29 q^{90} +1.22502e30 q^{91} -1.79239e30 q^{92} -6.81635e29 q^{93} -2.18606e30 q^{94} +2.78509e30 q^{95} +1.33064e30 q^{96} -5.11548e30 q^{97} +1.33259e31 q^{98} +3.17561e30 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 65536 q^{2} + 38938356 q^{3} + 2147483648 q^{4} - 61035156250 q^{5} + 1275932049408 q^{6} - 12036181345412 q^{7} + 70368744177664 q^{8} + 19040152114674 q^{9} - 20\!\cdots\!00 q^{10} - 39\!\cdots\!76 q^{11}+ \cdots + 86\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32768.0 0.707107
\(3\) 3.52218e7 1.41720 0.708601 0.705609i \(-0.249327\pi\)
0.708601 + 0.705609i \(0.249327\pi\)
\(4\) 1.07374e9 0.500000
\(5\) −3.05176e10 −0.447214
\(6\) 1.15415e12 1.00211
\(7\) −2.37582e13 −1.89144 −0.945721 0.324979i \(-0.894643\pi\)
−0.945721 + 0.324979i \(0.894643\pi\)
\(8\) 3.51844e13 0.353553
\(9\) 6.22901e14 1.00846
\(10\) −1.00000e15 −0.316228
\(11\) 5.09810e15 0.367978 0.183989 0.982928i \(-0.441099\pi\)
0.183989 + 0.982928i \(0.441099\pi\)
\(12\) 3.78191e16 0.708601
\(13\) −5.15620e16 −0.279388 −0.139694 0.990195i \(-0.544612\pi\)
−0.139694 + 0.990195i \(0.544612\pi\)
\(14\) −7.78507e17 −1.33745
\(15\) −1.07488e18 −0.633792
\(16\) 1.15292e18 0.250000
\(17\) 8.28488e18 0.701985 0.350993 0.936378i \(-0.385844\pi\)
0.350993 + 0.936378i \(0.385844\pi\)
\(18\) 2.04112e19 0.713091
\(19\) −9.12619e19 −1.37914 −0.689570 0.724219i \(-0.742201\pi\)
−0.689570 + 0.724219i \(0.742201\pi\)
\(20\) −3.27680e19 −0.223607
\(21\) −8.36805e20 −2.68056
\(22\) 1.67054e20 0.260199
\(23\) −1.66930e21 −1.30542 −0.652712 0.757606i \(-0.726369\pi\)
−0.652712 + 0.757606i \(0.726369\pi\)
\(24\) 1.23926e21 0.501057
\(25\) 9.31323e20 0.200000
\(26\) −1.68959e21 −0.197557
\(27\) 1.84113e20 0.0119935
\(28\) −2.55101e22 −0.945721
\(29\) −4.80046e22 −1.03303 −0.516516 0.856277i \(-0.672771\pi\)
−0.516516 + 0.856277i \(0.672771\pi\)
\(30\) −3.52218e22 −0.448159
\(31\) −1.93527e22 −0.148127 −0.0740635 0.997254i \(-0.523597\pi\)
−0.0740635 + 0.997254i \(0.523597\pi\)
\(32\) 3.77789e22 0.176777
\(33\) 1.79564e23 0.521499
\(34\) 2.71479e23 0.496379
\(35\) 7.25041e23 0.845879
\(36\) 6.68834e23 0.504231
\(37\) −3.21629e24 −1.58573 −0.792864 0.609399i \(-0.791411\pi\)
−0.792864 + 0.609399i \(0.791411\pi\)
\(38\) −2.99047e24 −0.975200
\(39\) −1.81611e24 −0.395950
\(40\) −1.07374e24 −0.158114
\(41\) 4.47937e24 0.449849 0.224925 0.974376i \(-0.427786\pi\)
0.224925 + 0.974376i \(0.427786\pi\)
\(42\) −2.74204e25 −1.89544
\(43\) 1.68868e25 0.810564 0.405282 0.914192i \(-0.367173\pi\)
0.405282 + 0.914192i \(0.367173\pi\)
\(44\) 5.47404e24 0.183989
\(45\) −1.90094e25 −0.450998
\(46\) −5.46995e25 −0.923074
\(47\) −6.67134e25 −0.806671 −0.403335 0.915052i \(-0.632149\pi\)
−0.403335 + 0.915052i \(0.632149\pi\)
\(48\) 4.06080e25 0.354301
\(49\) 4.06675e26 2.57755
\(50\) 3.05176e25 0.141421
\(51\) 2.91808e26 0.994855
\(52\) −5.53643e25 −0.139694
\(53\) 1.30582e26 0.245248 0.122624 0.992453i \(-0.460869\pi\)
0.122624 + 0.992453i \(0.460869\pi\)
\(54\) 6.03301e24 0.00848068
\(55\) −1.55582e26 −0.164565
\(56\) −8.35916e26 −0.668726
\(57\) −3.21441e27 −1.95452
\(58\) −1.57301e27 −0.730464
\(59\) 4.20335e27 1.49758 0.748789 0.662809i \(-0.230636\pi\)
0.748789 + 0.662809i \(0.230636\pi\)
\(60\) −1.15415e27 −0.316896
\(61\) −9.20102e27 −1.95534 −0.977672 0.210135i \(-0.932610\pi\)
−0.977672 + 0.210135i \(0.932610\pi\)
\(62\) −6.34148e26 −0.104742
\(63\) −1.47990e28 −1.90745
\(64\) 1.23794e27 0.125000
\(65\) 1.57355e27 0.124946
\(66\) 5.88395e27 0.368755
\(67\) −7.54919e27 −0.374750 −0.187375 0.982288i \(-0.559998\pi\)
−0.187375 + 0.982288i \(0.559998\pi\)
\(68\) 8.89582e27 0.350993
\(69\) −5.87956e28 −1.85005
\(70\) 2.37582e28 0.598127
\(71\) 2.25373e28 0.455406 0.227703 0.973731i \(-0.426879\pi\)
0.227703 + 0.973731i \(0.426879\pi\)
\(72\) 2.19164e28 0.356545
\(73\) −1.27400e29 −1.67365 −0.836823 0.547474i \(-0.815590\pi\)
−0.836823 + 0.547474i \(0.815590\pi\)
\(74\) −1.05391e29 −1.12128
\(75\) 3.28028e28 0.283440
\(76\) −9.79917e28 −0.689570
\(77\) −1.21121e29 −0.696008
\(78\) −5.95102e28 −0.279979
\(79\) −6.18893e28 −0.238999 −0.119499 0.992834i \(-0.538129\pi\)
−0.119499 + 0.992834i \(0.538129\pi\)
\(80\) −3.51844e28 −0.111803
\(81\) −3.78264e29 −0.991466
\(82\) 1.46780e29 0.318091
\(83\) 9.49780e29 1.70574 0.852870 0.522124i \(-0.174860\pi\)
0.852870 + 0.522124i \(0.174860\pi\)
\(84\) −8.98512e29 −1.34028
\(85\) −2.52835e29 −0.313937
\(86\) 5.53348e29 0.573155
\(87\) −1.69081e30 −1.46402
\(88\) 1.79373e29 0.130100
\(89\) 2.46648e30 1.50153 0.750763 0.660572i \(-0.229686\pi\)
0.750763 + 0.660572i \(0.229686\pi\)
\(90\) −6.22901e29 −0.318904
\(91\) 1.22502e30 0.528447
\(92\) −1.79239e30 −0.652712
\(93\) −6.81635e29 −0.209926
\(94\) −2.18606e30 −0.570402
\(95\) 2.78509e30 0.616770
\(96\) 1.33064e30 0.250528
\(97\) −5.11548e30 −0.820210 −0.410105 0.912038i \(-0.634508\pi\)
−0.410105 + 0.912038i \(0.634508\pi\)
\(98\) 1.33259e31 1.82261
\(99\) 3.17561e30 0.371092
\(100\) 1.00000e30 0.100000
\(101\) 2.57238e30 0.220473 0.110236 0.993905i \(-0.464839\pi\)
0.110236 + 0.993905i \(0.464839\pi\)
\(102\) 9.56197e30 0.703469
\(103\) 4.46866e30 0.282618 0.141309 0.989966i \(-0.454869\pi\)
0.141309 + 0.989966i \(0.454869\pi\)
\(104\) −1.81418e30 −0.0987787
\(105\) 2.55372e31 1.19878
\(106\) 4.27890e30 0.173417
\(107\) 3.84053e31 1.34568 0.672842 0.739787i \(-0.265074\pi\)
0.672842 + 0.739787i \(0.265074\pi\)
\(108\) 1.97690e29 0.00599674
\(109\) 6.21983e31 1.63556 0.817782 0.575528i \(-0.195203\pi\)
0.817782 + 0.575528i \(0.195203\pi\)
\(110\) −5.09810e30 −0.116365
\(111\) −1.13284e32 −2.24730
\(112\) −2.73913e31 −0.472861
\(113\) 6.41034e31 0.964195 0.482098 0.876118i \(-0.339875\pi\)
0.482098 + 0.876118i \(0.339875\pi\)
\(114\) −1.05330e32 −1.38206
\(115\) 5.09429e31 0.583804
\(116\) −5.15446e31 −0.516516
\(117\) −3.21180e31 −0.281753
\(118\) 1.37735e32 1.05895
\(119\) −1.96833e32 −1.32776
\(120\) −3.78191e31 −0.224079
\(121\) −1.65953e32 −0.864592
\(122\) −3.01499e32 −1.38264
\(123\) 1.57771e32 0.637527
\(124\) −2.07797e31 −0.0740635
\(125\) −2.84217e31 −0.0894427
\(126\) −4.84933e32 −1.34877
\(127\) −5.60613e31 −0.137945 −0.0689724 0.997619i \(-0.521972\pi\)
−0.0689724 + 0.997619i \(0.521972\pi\)
\(128\) 4.05648e31 0.0883883
\(129\) 5.94785e32 1.14873
\(130\) 5.15620e31 0.0883503
\(131\) −1.33520e32 −0.203161 −0.101580 0.994827i \(-0.532390\pi\)
−0.101580 + 0.994827i \(0.532390\pi\)
\(132\) 1.92805e32 0.260749
\(133\) 2.16821e33 2.60856
\(134\) −2.47372e32 −0.264988
\(135\) −5.61868e30 −0.00536365
\(136\) 2.91498e32 0.248189
\(137\) −1.94615e33 −1.47913 −0.739566 0.673084i \(-0.764969\pi\)
−0.739566 + 0.673084i \(0.764969\pi\)
\(138\) −1.92661e33 −1.30818
\(139\) −2.95518e33 −1.79413 −0.897066 0.441896i \(-0.854306\pi\)
−0.897066 + 0.441896i \(0.854306\pi\)
\(140\) 7.78507e32 0.422939
\(141\) −2.34976e33 −1.14322
\(142\) 7.38504e32 0.322020
\(143\) −2.62868e32 −0.102809
\(144\) 7.18156e32 0.252116
\(145\) 1.46498e33 0.461986
\(146\) −4.17463e33 −1.18345
\(147\) 1.43238e34 3.65292
\(148\) −3.45347e33 −0.792864
\(149\) 3.80120e33 0.786200 0.393100 0.919496i \(-0.371403\pi\)
0.393100 + 0.919496i \(0.371403\pi\)
\(150\) 1.07488e33 0.200423
\(151\) 1.03876e34 1.74733 0.873664 0.486530i \(-0.161738\pi\)
0.873664 + 0.486530i \(0.161738\pi\)
\(152\) −3.21099e33 −0.487600
\(153\) 5.16066e33 0.707926
\(154\) −3.96891e33 −0.492152
\(155\) 5.90596e32 0.0662444
\(156\) −1.95003e33 −0.197975
\(157\) 2.74241e33 0.252167 0.126083 0.992020i \(-0.459759\pi\)
0.126083 + 0.992020i \(0.459759\pi\)
\(158\) −2.02799e33 −0.168998
\(159\) 4.59931e33 0.347566
\(160\) −1.15292e33 −0.0790569
\(161\) 3.96594e34 2.46913
\(162\) −1.23950e34 −0.701072
\(163\) −2.69586e34 −1.38608 −0.693042 0.720897i \(-0.743730\pi\)
−0.693042 + 0.720897i \(0.743730\pi\)
\(164\) 4.80968e33 0.224925
\(165\) −5.47986e33 −0.233221
\(166\) 3.11224e34 1.20614
\(167\) −4.10368e33 −0.144900 −0.0724499 0.997372i \(-0.523082\pi\)
−0.0724499 + 0.997372i \(0.523082\pi\)
\(168\) −2.94424e34 −0.947720
\(169\) −3.14013e34 −0.921942
\(170\) −8.28488e33 −0.221987
\(171\) −5.68471e34 −1.39081
\(172\) 1.81321e34 0.405282
\(173\) −2.91818e34 −0.596207 −0.298104 0.954534i \(-0.596354\pi\)
−0.298104 + 0.954534i \(0.596354\pi\)
\(174\) −5.54044e34 −1.03522
\(175\) −2.21265e34 −0.378288
\(176\) 5.87771e33 0.0919944
\(177\) 1.48049e35 2.12237
\(178\) 8.08216e34 1.06174
\(179\) −5.46911e34 −0.658710 −0.329355 0.944206i \(-0.606831\pi\)
−0.329355 + 0.944206i \(0.606831\pi\)
\(180\) −2.04112e34 −0.225499
\(181\) −2.13974e34 −0.216942 −0.108471 0.994100i \(-0.534595\pi\)
−0.108471 + 0.994100i \(0.534595\pi\)
\(182\) 4.01414e34 0.373668
\(183\) −3.24076e35 −2.77112
\(184\) −5.87331e34 −0.461537
\(185\) 9.81534e34 0.709159
\(186\) −2.23358e34 −0.148440
\(187\) 4.22371e34 0.258315
\(188\) −7.16330e34 −0.403335
\(189\) −4.37418e33 −0.0226850
\(190\) 9.12619e34 0.436123
\(191\) −2.65145e35 −1.16806 −0.584032 0.811731i \(-0.698526\pi\)
−0.584032 + 0.811731i \(0.698526\pi\)
\(192\) 4.36025e34 0.177150
\(193\) 4.63721e34 0.173827 0.0869137 0.996216i \(-0.472300\pi\)
0.0869137 + 0.996216i \(0.472300\pi\)
\(194\) −1.67624e35 −0.579976
\(195\) 5.54232e34 0.177074
\(196\) 4.36663e35 1.28878
\(197\) 4.99825e35 1.36330 0.681650 0.731679i \(-0.261263\pi\)
0.681650 + 0.731679i \(0.261263\pi\)
\(198\) 1.04058e35 0.262402
\(199\) 4.32129e35 1.00784 0.503918 0.863751i \(-0.331891\pi\)
0.503918 + 0.863751i \(0.331891\pi\)
\(200\) 3.27680e34 0.0707107
\(201\) −2.65896e35 −0.531096
\(202\) 8.42919e34 0.155898
\(203\) 1.14050e36 1.95392
\(204\) 3.13327e35 0.497428
\(205\) −1.36699e35 −0.201179
\(206\) 1.46429e35 0.199841
\(207\) −1.03981e36 −1.31647
\(208\) −5.94470e34 −0.0698471
\(209\) −4.65262e35 −0.507493
\(210\) 8.36805e35 0.847666
\(211\) −1.53179e36 −1.44152 −0.720762 0.693183i \(-0.756208\pi\)
−0.720762 + 0.693183i \(0.756208\pi\)
\(212\) 1.40211e35 0.122624
\(213\) 7.93806e35 0.645402
\(214\) 1.25847e36 0.951542
\(215\) −5.15345e35 −0.362495
\(216\) 6.47789e33 0.00424034
\(217\) 4.59783e35 0.280174
\(218\) 2.03811e36 1.15652
\(219\) −4.48724e36 −2.37189
\(220\) −1.67054e35 −0.0822823
\(221\) −4.27185e35 −0.196126
\(222\) −3.71207e36 −1.58908
\(223\) −3.72672e35 −0.148799 −0.0743996 0.997229i \(-0.523704\pi\)
−0.0743996 + 0.997229i \(0.523704\pi\)
\(224\) −8.97558e35 −0.334363
\(225\) 5.80121e35 0.201693
\(226\) 2.10054e36 0.681789
\(227\) 4.30873e36 1.30602 0.653009 0.757350i \(-0.273507\pi\)
0.653009 + 0.757350i \(0.273507\pi\)
\(228\) −3.45144e36 −0.977261
\(229\) 3.47204e36 0.918617 0.459308 0.888277i \(-0.348097\pi\)
0.459308 + 0.888277i \(0.348097\pi\)
\(230\) 1.66930e36 0.412811
\(231\) −4.26611e36 −0.986385
\(232\) −1.68901e36 −0.365232
\(233\) 2.19164e36 0.443357 0.221678 0.975120i \(-0.428847\pi\)
0.221678 + 0.975120i \(0.428847\pi\)
\(234\) −1.05244e36 −0.199229
\(235\) 2.03593e36 0.360754
\(236\) 4.51331e36 0.748789
\(237\) −2.17985e36 −0.338709
\(238\) −6.44984e36 −0.938871
\(239\) 5.30459e36 0.723577 0.361788 0.932260i \(-0.382166\pi\)
0.361788 + 0.932260i \(0.382166\pi\)
\(240\) −1.23926e36 −0.158448
\(241\) −5.01813e36 −0.601559 −0.300779 0.953694i \(-0.597247\pi\)
−0.300779 + 0.953694i \(0.597247\pi\)
\(242\) −5.43794e36 −0.611359
\(243\) −1.34369e37 −1.41710
\(244\) −9.87952e36 −0.977672
\(245\) −1.24107e37 −1.15272
\(246\) 5.16985e36 0.450800
\(247\) 4.70565e36 0.385316
\(248\) −6.80911e35 −0.0523708
\(249\) 3.34529e37 2.41738
\(250\) −9.31323e35 −0.0632456
\(251\) 1.63154e37 1.04149 0.520746 0.853711i \(-0.325654\pi\)
0.520746 + 0.853711i \(0.325654\pi\)
\(252\) −1.58903e37 −0.953725
\(253\) −8.51023e36 −0.480367
\(254\) −1.83702e36 −0.0975417
\(255\) −8.90528e36 −0.444913
\(256\) 1.32923e36 0.0625000
\(257\) −8.95801e36 −0.396505 −0.198252 0.980151i \(-0.563527\pi\)
−0.198252 + 0.980151i \(0.563527\pi\)
\(258\) 1.94899e37 0.812277
\(259\) 7.64131e37 2.99931
\(260\) 1.68959e36 0.0624731
\(261\) −2.99021e37 −1.04177
\(262\) −4.37517e36 −0.143656
\(263\) 7.96914e36 0.246659 0.123330 0.992366i \(-0.460643\pi\)
0.123330 + 0.992366i \(0.460643\pi\)
\(264\) 6.31785e36 0.184378
\(265\) −3.98503e36 −0.109678
\(266\) 7.10480e37 1.84453
\(267\) 8.68738e37 2.12797
\(268\) −8.10589e36 −0.187375
\(269\) −4.48887e37 −0.979438 −0.489719 0.871880i \(-0.662901\pi\)
−0.489719 + 0.871880i \(0.662901\pi\)
\(270\) −1.84113e35 −0.00379267
\(271\) 2.62953e37 0.511510 0.255755 0.966742i \(-0.417676\pi\)
0.255755 + 0.966742i \(0.417676\pi\)
\(272\) 9.55182e36 0.175496
\(273\) 4.31474e37 0.748916
\(274\) −6.37713e37 −1.04590
\(275\) 4.74797e36 0.0735955
\(276\) −6.31313e37 −0.925025
\(277\) −5.64561e37 −0.782121 −0.391061 0.920365i \(-0.627892\pi\)
−0.391061 + 0.920365i \(0.627892\pi\)
\(278\) −9.68353e37 −1.26864
\(279\) −1.20548e37 −0.149381
\(280\) 2.55101e37 0.299063
\(281\) −4.23820e37 −0.470147 −0.235073 0.971978i \(-0.575533\pi\)
−0.235073 + 0.971978i \(0.575533\pi\)
\(282\) −7.69971e37 −0.808375
\(283\) −9.68555e37 −0.962575 −0.481288 0.876563i \(-0.659831\pi\)
−0.481288 + 0.876563i \(0.659831\pi\)
\(284\) 2.41993e37 0.227703
\(285\) 9.80959e37 0.874089
\(286\) −8.61367e36 −0.0726967
\(287\) −1.06422e38 −0.850864
\(288\) 2.35325e37 0.178273
\(289\) −7.06497e37 −0.507217
\(290\) 4.80046e37 0.326674
\(291\) −1.80176e38 −1.16240
\(292\) −1.36794e38 −0.836823
\(293\) −1.59243e37 −0.0923875 −0.0461938 0.998932i \(-0.514709\pi\)
−0.0461938 + 0.998932i \(0.514709\pi\)
\(294\) 4.69362e38 2.58300
\(295\) −1.28276e38 −0.669737
\(296\) −1.13163e38 −0.560639
\(297\) 9.38625e35 0.00441334
\(298\) 1.24558e38 0.555927
\(299\) 8.60723e37 0.364720
\(300\) 3.52218e37 0.141720
\(301\) −4.01200e38 −1.53313
\(302\) 3.40382e38 1.23555
\(303\) 9.06040e37 0.312454
\(304\) −1.05218e38 −0.344785
\(305\) 2.80793e38 0.874457
\(306\) 1.69104e38 0.500579
\(307\) −2.31161e38 −0.650534 −0.325267 0.945622i \(-0.605454\pi\)
−0.325267 + 0.945622i \(0.605454\pi\)
\(308\) −1.30053e38 −0.348004
\(309\) 1.57394e38 0.400527
\(310\) 1.93527e37 0.0468419
\(311\) −1.66317e38 −0.382958 −0.191479 0.981497i \(-0.561328\pi\)
−0.191479 + 0.981497i \(0.561328\pi\)
\(312\) −6.38986e37 −0.139989
\(313\) −3.64676e38 −0.760273 −0.380137 0.924930i \(-0.624123\pi\)
−0.380137 + 0.924930i \(0.624123\pi\)
\(314\) 8.98633e37 0.178309
\(315\) 4.51629e38 0.853037
\(316\) −6.64531e37 −0.119499
\(317\) −4.36541e38 −0.747491 −0.373746 0.927531i \(-0.621927\pi\)
−0.373746 + 0.927531i \(0.621927\pi\)
\(318\) 1.50710e38 0.245767
\(319\) −2.44732e38 −0.380133
\(320\) −3.77789e37 −0.0559017
\(321\) 1.35270e39 1.90711
\(322\) 1.29956e39 1.74594
\(323\) −7.56094e38 −0.968136
\(324\) −4.06158e38 −0.495733
\(325\) −4.80209e37 −0.0558777
\(326\) −8.83379e38 −0.980109
\(327\) 2.19073e39 2.31793
\(328\) 1.57604e38 0.159046
\(329\) 1.58499e39 1.52577
\(330\) −1.79564e38 −0.164912
\(331\) 6.98680e37 0.0612272 0.0306136 0.999531i \(-0.490254\pi\)
0.0306136 + 0.999531i \(0.490254\pi\)
\(332\) 1.01982e39 0.852870
\(333\) −2.00343e39 −1.59915
\(334\) −1.34469e38 −0.102460
\(335\) 2.30383e38 0.167593
\(336\) −9.64770e38 −0.670139
\(337\) −1.85035e38 −0.122741 −0.0613706 0.998115i \(-0.519547\pi\)
−0.0613706 + 0.998115i \(0.519547\pi\)
\(338\) −1.02896e39 −0.651912
\(339\) 2.25783e39 1.36646
\(340\) −2.71479e38 −0.156969
\(341\) −9.86617e37 −0.0545074
\(342\) −1.86276e39 −0.983453
\(343\) −5.91339e39 −2.98385
\(344\) 5.94153e38 0.286578
\(345\) 1.79430e39 0.827368
\(346\) −9.56228e38 −0.421582
\(347\) −1.68391e39 −0.709922 −0.354961 0.934881i \(-0.615506\pi\)
−0.354961 + 0.934881i \(0.615506\pi\)
\(348\) −1.81549e39 −0.732008
\(349\) 1.83783e39 0.708778 0.354389 0.935098i \(-0.384689\pi\)
0.354389 + 0.935098i \(0.384689\pi\)
\(350\) −7.25041e38 −0.267490
\(351\) −9.49323e36 −0.00335084
\(352\) 1.92601e38 0.0650499
\(353\) 3.12661e39 1.01057 0.505283 0.862953i \(-0.331388\pi\)
0.505283 + 0.862953i \(0.331388\pi\)
\(354\) 4.85128e39 1.50074
\(355\) −6.87785e38 −0.203664
\(356\) 2.64836e39 0.750763
\(357\) −6.93283e39 −1.88171
\(358\) −1.79212e39 −0.465778
\(359\) 3.96997e39 0.988151 0.494076 0.869419i \(-0.335507\pi\)
0.494076 + 0.869419i \(0.335507\pi\)
\(360\) −6.68834e38 −0.159452
\(361\) 3.94986e39 0.902029
\(362\) −7.01151e38 −0.153401
\(363\) −5.84515e39 −1.22530
\(364\) 1.31535e39 0.264223
\(365\) 3.88793e39 0.748477
\(366\) −1.06193e40 −1.95948
\(367\) −2.60990e39 −0.461637 −0.230818 0.972997i \(-0.574140\pi\)
−0.230818 + 0.972997i \(0.574140\pi\)
\(368\) −1.92457e39 −0.326356
\(369\) 2.79020e39 0.453656
\(370\) 3.21629e39 0.501451
\(371\) −3.10238e39 −0.463873
\(372\) −7.31900e38 −0.104963
\(373\) −3.77343e38 −0.0519098 −0.0259549 0.999663i \(-0.508263\pi\)
−0.0259549 + 0.999663i \(0.508263\pi\)
\(374\) 1.38403e39 0.182656
\(375\) −1.00106e39 −0.126758
\(376\) −2.34727e39 −0.285201
\(377\) 2.47522e39 0.288617
\(378\) −1.43333e38 −0.0160407
\(379\) 9.19970e39 0.988248 0.494124 0.869391i \(-0.335489\pi\)
0.494124 + 0.869391i \(0.335489\pi\)
\(380\) 2.99047e39 0.308385
\(381\) −1.97458e39 −0.195496
\(382\) −8.68828e39 −0.825946
\(383\) 1.73092e40 1.58014 0.790070 0.613016i \(-0.210044\pi\)
0.790070 + 0.613016i \(0.210044\pi\)
\(384\) 1.42877e39 0.125264
\(385\) 3.69633e39 0.311264
\(386\) 1.51952e39 0.122915
\(387\) 1.05188e40 0.817424
\(388\) −5.49271e39 −0.410105
\(389\) −9.46483e39 −0.679038 −0.339519 0.940599i \(-0.610264\pi\)
−0.339519 + 0.940599i \(0.610264\pi\)
\(390\) 1.81611e39 0.125210
\(391\) −1.38299e40 −0.916389
\(392\) 1.43086e40 0.911303
\(393\) −4.70280e39 −0.287920
\(394\) 1.63783e40 0.963998
\(395\) 1.88871e39 0.106883
\(396\) 3.40978e39 0.185546
\(397\) −1.45820e40 −0.763068 −0.381534 0.924355i \(-0.624604\pi\)
−0.381534 + 0.924355i \(0.624604\pi\)
\(398\) 1.41600e40 0.712648
\(399\) 7.63684e40 3.69686
\(400\) 1.07374e39 0.0500000
\(401\) −2.92790e40 −1.31165 −0.655825 0.754913i \(-0.727679\pi\)
−0.655825 + 0.754913i \(0.727679\pi\)
\(402\) −8.71288e39 −0.375542
\(403\) 9.97862e38 0.0413849
\(404\) 2.76208e39 0.110236
\(405\) 1.15437e40 0.443397
\(406\) 3.73719e40 1.38163
\(407\) −1.63970e40 −0.583512
\(408\) 1.02671e40 0.351734
\(409\) 1.90045e40 0.626823 0.313411 0.949617i \(-0.398528\pi\)
0.313411 + 0.949617i \(0.398528\pi\)
\(410\) −4.47937e39 −0.142255
\(411\) −6.85468e40 −2.09623
\(412\) 4.79818e39 0.141309
\(413\) −9.98638e40 −2.83258
\(414\) −3.40723e40 −0.930886
\(415\) −2.89850e40 −0.762830
\(416\) −1.94796e39 −0.0493893
\(417\) −1.04087e41 −2.54265
\(418\) −1.52457e40 −0.358852
\(419\) −1.26582e40 −0.287114 −0.143557 0.989642i \(-0.545854\pi\)
−0.143557 + 0.989642i \(0.545854\pi\)
\(420\) 2.74204e40 0.599391
\(421\) 4.33168e40 0.912608 0.456304 0.889824i \(-0.349173\pi\)
0.456304 + 0.889824i \(0.349173\pi\)
\(422\) −5.01938e40 −1.01931
\(423\) −4.15558e40 −0.813497
\(424\) 4.59443e39 0.0867083
\(425\) 7.71590e39 0.140397
\(426\) 2.60114e40 0.456368
\(427\) 2.18599e41 3.69842
\(428\) 4.12374e40 0.672842
\(429\) −9.25869e39 −0.145701
\(430\) −1.68868e40 −0.256323
\(431\) −1.04557e41 −1.53093 −0.765466 0.643476i \(-0.777492\pi\)
−0.765466 + 0.643476i \(0.777492\pi\)
\(432\) 2.12268e38 0.00299837
\(433\) −1.44324e41 −1.96687 −0.983434 0.181267i \(-0.941980\pi\)
−0.983434 + 0.181267i \(0.941980\pi\)
\(434\) 1.50662e40 0.198113
\(435\) 5.15994e40 0.654728
\(436\) 6.67849e40 0.817782
\(437\) 1.52343e41 1.80036
\(438\) −1.47038e41 −1.67718
\(439\) −7.72220e40 −0.850239 −0.425120 0.905137i \(-0.639768\pi\)
−0.425120 + 0.905137i \(0.639768\pi\)
\(440\) −5.47404e39 −0.0581824
\(441\) 2.53318e41 2.59937
\(442\) −1.39980e40 −0.138682
\(443\) 1.19317e41 1.14142 0.570710 0.821152i \(-0.306668\pi\)
0.570710 + 0.821152i \(0.306668\pi\)
\(444\) −1.21637e41 −1.12365
\(445\) −7.52710e40 −0.671502
\(446\) −1.22117e40 −0.105217
\(447\) 1.33885e41 1.11420
\(448\) −2.94112e40 −0.236430
\(449\) −1.19683e41 −0.929425 −0.464713 0.885462i \(-0.653842\pi\)
−0.464713 + 0.885462i \(0.653842\pi\)
\(450\) 1.90094e40 0.142618
\(451\) 2.28362e40 0.165534
\(452\) 6.88305e40 0.482098
\(453\) 3.65871e41 2.47632
\(454\) 1.41189e41 0.923494
\(455\) −3.73846e40 −0.236329
\(456\) −1.13097e41 −0.691028
\(457\) −1.81806e41 −1.07376 −0.536879 0.843659i \(-0.680397\pi\)
−0.536879 + 0.843659i \(0.680397\pi\)
\(458\) 1.13772e41 0.649560
\(459\) 1.52535e39 0.00841925
\(460\) 5.46995e40 0.291902
\(461\) −1.75242e40 −0.0904218 −0.0452109 0.998977i \(-0.514396\pi\)
−0.0452109 + 0.998977i \(0.514396\pi\)
\(462\) −1.39792e41 −0.697479
\(463\) −2.40699e41 −1.16137 −0.580683 0.814130i \(-0.697214\pi\)
−0.580683 + 0.814130i \(0.697214\pi\)
\(464\) −5.53455e40 −0.258258
\(465\) 2.08018e40 0.0938817
\(466\) 7.18158e40 0.313500
\(467\) −2.61745e41 −1.10527 −0.552633 0.833425i \(-0.686377\pi\)
−0.552633 + 0.833425i \(0.686377\pi\)
\(468\) −3.44865e40 −0.140876
\(469\) 1.79355e41 0.708817
\(470\) 6.67134e40 0.255092
\(471\) 9.65926e40 0.357372
\(472\) 1.47892e41 0.529474
\(473\) 8.60907e40 0.298269
\(474\) −7.14293e40 −0.239504
\(475\) −8.49942e40 −0.275828
\(476\) −2.11348e41 −0.663882
\(477\) 8.13393e40 0.247324
\(478\) 1.73821e41 0.511646
\(479\) −4.66543e40 −0.132951 −0.0664755 0.997788i \(-0.521175\pi\)
−0.0664755 + 0.997788i \(0.521175\pi\)
\(480\) −4.06080e40 −0.112040
\(481\) 1.65839e41 0.443034
\(482\) −1.64434e41 −0.425366
\(483\) 1.39687e42 3.49926
\(484\) −1.78191e41 −0.432296
\(485\) 1.56112e41 0.366809
\(486\) −4.40299e41 −1.00204
\(487\) 3.74739e41 0.826095 0.413048 0.910709i \(-0.364464\pi\)
0.413048 + 0.910709i \(0.364464\pi\)
\(488\) −3.23732e41 −0.691319
\(489\) −9.49530e41 −1.96436
\(490\) −4.06675e41 −0.815094
\(491\) −8.31693e41 −1.61510 −0.807551 0.589798i \(-0.799207\pi\)
−0.807551 + 0.589798i \(0.799207\pi\)
\(492\) 1.69406e41 0.318764
\(493\) −3.97712e41 −0.725174
\(494\) 1.54195e41 0.272459
\(495\) −9.69119e40 −0.165957
\(496\) −2.23121e40 −0.0370317
\(497\) −5.35446e41 −0.861373
\(498\) 1.09619e42 1.70934
\(499\) −1.58814e41 −0.240066 −0.120033 0.992770i \(-0.538300\pi\)
−0.120033 + 0.992770i \(0.538300\pi\)
\(500\) −3.05176e40 −0.0447214
\(501\) −1.44539e41 −0.205352
\(502\) 5.34624e41 0.736446
\(503\) −3.58584e41 −0.478947 −0.239474 0.970903i \(-0.576975\pi\)
−0.239474 + 0.970903i \(0.576975\pi\)
\(504\) −5.20692e41 −0.674385
\(505\) −7.85030e40 −0.0985983
\(506\) −2.78863e41 −0.339671
\(507\) −1.10601e42 −1.30658
\(508\) −6.01953e40 −0.0689724
\(509\) −1.16627e42 −1.29621 −0.648105 0.761551i \(-0.724438\pi\)
−0.648105 + 0.761551i \(0.724438\pi\)
\(510\) −2.91808e41 −0.314601
\(511\) 3.02678e42 3.16560
\(512\) 4.35561e40 0.0441942
\(513\) −1.68025e40 −0.0165407
\(514\) −2.93536e41 −0.280371
\(515\) −1.36373e41 −0.126391
\(516\) 6.38645e41 0.574367
\(517\) −3.40111e41 −0.296837
\(518\) 2.50391e42 2.12083
\(519\) −1.02783e42 −0.844946
\(520\) 5.53643e40 0.0441752
\(521\) 3.39352e41 0.262824 0.131412 0.991328i \(-0.458049\pi\)
0.131412 + 0.991328i \(0.458049\pi\)
\(522\) −9.79832e41 −0.736646
\(523\) 4.37668e41 0.319425 0.159712 0.987164i \(-0.448943\pi\)
0.159712 + 0.987164i \(0.448943\pi\)
\(524\) −1.43366e41 −0.101580
\(525\) −7.79335e41 −0.536111
\(526\) 2.61133e41 0.174414
\(527\) −1.60334e41 −0.103983
\(528\) 2.07023e41 0.130375
\(529\) 1.15138e42 0.704133
\(530\) −1.30582e41 −0.0775543
\(531\) 2.61827e42 1.51025
\(532\) 2.32810e42 1.30428
\(533\) −2.30965e41 −0.125683
\(534\) 2.84668e42 1.50470
\(535\) −1.17204e42 −0.601808
\(536\) −2.65614e41 −0.132494
\(537\) −1.92632e42 −0.933526
\(538\) −1.47091e42 −0.692567
\(539\) 2.07327e42 0.948482
\(540\) −6.03301e39 −0.00268183
\(541\) −1.79457e42 −0.775178 −0.387589 0.921832i \(-0.626692\pi\)
−0.387589 + 0.921832i \(0.626692\pi\)
\(542\) 8.61645e41 0.361692
\(543\) −7.53655e41 −0.307451
\(544\) 3.12994e41 0.124095
\(545\) −1.89814e42 −0.731447
\(546\) 1.41385e42 0.529564
\(547\) 3.43685e42 1.25129 0.625644 0.780109i \(-0.284836\pi\)
0.625644 + 0.780109i \(0.284836\pi\)
\(548\) −2.08966e42 −0.739566
\(549\) −5.73132e42 −1.97189
\(550\) 1.55582e41 0.0520399
\(551\) 4.38099e42 1.42470
\(552\) −2.06868e42 −0.654092
\(553\) 1.47037e42 0.452052
\(554\) −1.84995e42 −0.553043
\(555\) 3.45714e42 1.00502
\(556\) −3.17310e42 −0.897066
\(557\) 2.77020e42 0.761651 0.380826 0.924647i \(-0.375640\pi\)
0.380826 + 0.924647i \(0.375640\pi\)
\(558\) −3.95011e41 −0.105628
\(559\) −8.70720e41 −0.226462
\(560\) 8.35916e41 0.211470
\(561\) 1.48767e42 0.366085
\(562\) −1.38877e42 −0.332444
\(563\) 2.56483e42 0.597280 0.298640 0.954366i \(-0.403467\pi\)
0.298640 + 0.954366i \(0.403467\pi\)
\(564\) −2.52304e42 −0.571608
\(565\) −1.95628e42 −0.431201
\(566\) −3.17376e42 −0.680643
\(567\) 8.98686e42 1.87530
\(568\) 7.92962e41 0.161010
\(569\) −2.92109e42 −0.577171 −0.288586 0.957454i \(-0.593185\pi\)
−0.288586 + 0.957454i \(0.593185\pi\)
\(570\) 3.21441e42 0.618074
\(571\) −4.60895e42 −0.862467 −0.431234 0.902240i \(-0.641922\pi\)
−0.431234 + 0.902240i \(0.641922\pi\)
\(572\) −2.82253e41 −0.0514043
\(573\) −9.33889e42 −1.65538
\(574\) −3.48722e42 −0.601652
\(575\) −1.55465e42 −0.261085
\(576\) 7.71114e41 0.126058
\(577\) −5.10320e41 −0.0812114 −0.0406057 0.999175i \(-0.512929\pi\)
−0.0406057 + 0.999175i \(0.512929\pi\)
\(578\) −2.31505e42 −0.358656
\(579\) 1.63331e42 0.246349
\(580\) 1.57301e42 0.230993
\(581\) −2.25650e43 −3.22631
\(582\) −5.90402e42 −0.821943
\(583\) 6.65717e41 0.0902459
\(584\) −4.48247e42 −0.591723
\(585\) 9.80164e41 0.126004
\(586\) −5.21809e41 −0.0653278
\(587\) −1.10624e43 −1.34884 −0.674420 0.738348i \(-0.735606\pi\)
−0.674420 + 0.738348i \(0.735606\pi\)
\(588\) 1.53801e43 1.82646
\(589\) 1.76616e42 0.204288
\(590\) −4.20335e42 −0.473576
\(591\) 1.76047e43 1.93207
\(592\) −3.70813e42 −0.396432
\(593\) 1.06708e43 1.11134 0.555671 0.831402i \(-0.312461\pi\)
0.555671 + 0.831402i \(0.312461\pi\)
\(594\) 3.07569e40 0.00312070
\(595\) 6.00688e42 0.593794
\(596\) 4.08150e42 0.393100
\(597\) 1.52203e43 1.42831
\(598\) 2.82042e42 0.257896
\(599\) 8.59039e42 0.765415 0.382708 0.923869i \(-0.374992\pi\)
0.382708 + 0.923869i \(0.374992\pi\)
\(600\) 1.15415e42 0.100211
\(601\) −1.50868e43 −1.27656 −0.638281 0.769804i \(-0.720354\pi\)
−0.638281 + 0.769804i \(0.720354\pi\)
\(602\) −1.31465e43 −1.08409
\(603\) −4.70240e42 −0.377921
\(604\) 1.11536e43 0.873664
\(605\) 5.06448e42 0.386657
\(606\) 2.96891e42 0.220939
\(607\) 5.07222e42 0.367937 0.183969 0.982932i \(-0.441106\pi\)
0.183969 + 0.982932i \(0.441106\pi\)
\(608\) −3.44778e42 −0.243800
\(609\) 4.01705e43 2.76910
\(610\) 9.20102e42 0.618334
\(611\) 3.43988e42 0.225374
\(612\) 5.54121e42 0.353963
\(613\) −1.13341e43 −0.705912 −0.352956 0.935640i \(-0.614823\pi\)
−0.352956 + 0.935640i \(0.614823\pi\)
\(614\) −7.57469e42 −0.459997
\(615\) −4.81480e42 −0.285111
\(616\) −4.26158e42 −0.246076
\(617\) 1.98300e43 1.11661 0.558307 0.829634i \(-0.311451\pi\)
0.558307 + 0.829634i \(0.311451\pi\)
\(618\) 5.15749e42 0.283215
\(619\) 2.55689e43 1.36933 0.684664 0.728859i \(-0.259949\pi\)
0.684664 + 0.728859i \(0.259949\pi\)
\(620\) 6.34148e41 0.0331222
\(621\) −3.07339e41 −0.0156566
\(622\) −5.44988e42 −0.270792
\(623\) −5.85990e43 −2.84005
\(624\) −2.09383e42 −0.0989874
\(625\) 8.67362e41 0.0400000
\(626\) −1.19497e43 −0.537594
\(627\) −1.63874e43 −0.719220
\(628\) 2.94464e42 0.126083
\(629\) −2.66466e43 −1.11316
\(630\) 1.47990e43 0.603188
\(631\) 2.34791e43 0.933740 0.466870 0.884326i \(-0.345382\pi\)
0.466870 + 0.884326i \(0.345382\pi\)
\(632\) −2.17753e42 −0.0844988
\(633\) −5.39524e43 −2.04293
\(634\) −1.43046e43 −0.528556
\(635\) 1.71085e42 0.0616908
\(636\) 4.93848e42 0.173783
\(637\) −2.09690e43 −0.720138
\(638\) −8.01938e42 −0.268794
\(639\) 1.40385e43 0.459260
\(640\) −1.23794e42 −0.0395285
\(641\) 1.33799e43 0.417018 0.208509 0.978020i \(-0.433139\pi\)
0.208509 + 0.978020i \(0.433139\pi\)
\(642\) 4.43254e43 1.34853
\(643\) 3.87420e43 1.15057 0.575283 0.817954i \(-0.304892\pi\)
0.575283 + 0.817954i \(0.304892\pi\)
\(644\) 4.25839e43 1.23457
\(645\) −1.81514e43 −0.513729
\(646\) −2.47757e43 −0.684576
\(647\) −1.64899e43 −0.444837 −0.222418 0.974951i \(-0.571395\pi\)
−0.222418 + 0.974951i \(0.571395\pi\)
\(648\) −1.33090e43 −0.350536
\(649\) 2.14291e43 0.551075
\(650\) −1.57355e42 −0.0395115
\(651\) 1.61944e43 0.397063
\(652\) −2.89466e43 −0.693042
\(653\) −7.92927e43 −1.85387 −0.926935 0.375223i \(-0.877566\pi\)
−0.926935 + 0.375223i \(0.877566\pi\)
\(654\) 7.17860e43 1.63902
\(655\) 4.07470e42 0.0908563
\(656\) 5.16436e42 0.112462
\(657\) −7.93573e43 −1.68781
\(658\) 5.19369e43 1.07888
\(659\) −1.58692e43 −0.321981 −0.160990 0.986956i \(-0.551469\pi\)
−0.160990 + 0.986956i \(0.551469\pi\)
\(660\) −5.88395e42 −0.116611
\(661\) 2.02729e43 0.392458 0.196229 0.980558i \(-0.437130\pi\)
0.196229 + 0.980558i \(0.437130\pi\)
\(662\) 2.28943e42 0.0432941
\(663\) −1.50462e43 −0.277951
\(664\) 3.34174e43 0.603070
\(665\) −6.61686e43 −1.16659
\(666\) −6.56484e43 −1.13077
\(667\) 8.01339e43 1.34855
\(668\) −4.40629e42 −0.0724499
\(669\) −1.31262e43 −0.210879
\(670\) 7.54919e42 0.118506
\(671\) −4.69077e43 −0.719523
\(672\) −3.16136e43 −0.473860
\(673\) 1.34181e43 0.196543 0.0982715 0.995160i \(-0.468669\pi\)
0.0982715 + 0.995160i \(0.468669\pi\)
\(674\) −6.06322e42 −0.0867911
\(675\) 1.71468e41 0.00239870
\(676\) −3.37169e43 −0.460971
\(677\) −8.12065e43 −1.08509 −0.542546 0.840026i \(-0.682539\pi\)
−0.542546 + 0.840026i \(0.682539\pi\)
\(678\) 7.39847e43 0.966233
\(679\) 1.21534e44 1.55138
\(680\) −8.89582e42 −0.110994
\(681\) 1.51761e44 1.85089
\(682\) −3.23295e42 −0.0385426
\(683\) −1.40956e44 −1.64271 −0.821356 0.570417i \(-0.806782\pi\)
−0.821356 + 0.570417i \(0.806782\pi\)
\(684\) −6.10391e43 −0.695406
\(685\) 5.93917e43 0.661488
\(686\) −1.93770e44 −2.10990
\(687\) 1.22291e44 1.30187
\(688\) 1.94692e43 0.202641
\(689\) −6.73305e42 −0.0685195
\(690\) 5.87956e43 0.585037
\(691\) −3.41473e43 −0.332236 −0.166118 0.986106i \(-0.553123\pi\)
−0.166118 + 0.986106i \(0.553123\pi\)
\(692\) −3.13337e43 −0.298104
\(693\) −7.54466e43 −0.701899
\(694\) −5.51782e43 −0.501991
\(695\) 9.01849e43 0.802361
\(696\) −5.94900e43 −0.517608
\(697\) 3.71110e43 0.315788
\(698\) 6.02219e43 0.501182
\(699\) 7.71936e43 0.628326
\(700\) −2.37582e43 −0.189144
\(701\) 2.42594e44 1.88908 0.944541 0.328392i \(-0.106507\pi\)
0.944541 + 0.328392i \(0.106507\pi\)
\(702\) −3.11074e41 −0.00236940
\(703\) 2.93525e44 2.18694
\(704\) 6.31114e42 0.0459972
\(705\) 7.17091e43 0.511262
\(706\) 1.02453e44 0.714579
\(707\) −6.11151e43 −0.417011
\(708\) 1.58967e44 1.06119
\(709\) −1.05104e44 −0.686437 −0.343219 0.939256i \(-0.611517\pi\)
−0.343219 + 0.939256i \(0.611517\pi\)
\(710\) −2.25373e43 −0.144012
\(711\) −3.85509e43 −0.241021
\(712\) 8.67816e43 0.530869
\(713\) 3.23053e43 0.193369
\(714\) −2.27175e44 −1.33057
\(715\) 8.02210e42 0.0459774
\(716\) −5.87241e43 −0.329355
\(717\) 1.86837e44 1.02545
\(718\) 1.30088e44 0.698729
\(719\) −1.64232e44 −0.863296 −0.431648 0.902042i \(-0.642068\pi\)
−0.431648 + 0.902042i \(0.642068\pi\)
\(720\) −2.19164e43 −0.112750
\(721\) −1.06167e44 −0.534556
\(722\) 1.29429e44 0.637831
\(723\) −1.76748e44 −0.852530
\(724\) −2.29753e43 −0.108471
\(725\) −4.47078e43 −0.206606
\(726\) −1.91534e44 −0.866420
\(727\) −3.51233e43 −0.155529 −0.0777646 0.996972i \(-0.524778\pi\)
−0.0777646 + 0.996972i \(0.524778\pi\)
\(728\) 4.31015e43 0.186834
\(729\) −2.39627e44 −1.01685
\(730\) 1.27400e44 0.529253
\(731\) 1.39905e44 0.569004
\(732\) −3.47974e44 −1.38556
\(733\) −2.34300e44 −0.913398 −0.456699 0.889621i \(-0.650968\pi\)
−0.456699 + 0.889621i \(0.650968\pi\)
\(734\) −8.55213e43 −0.326426
\(735\) −4.37128e44 −1.63363
\(736\) −6.30642e43 −0.230769
\(737\) −3.84865e43 −0.137899
\(738\) 9.14293e43 0.320783
\(739\) 2.51620e44 0.864483 0.432241 0.901758i \(-0.357723\pi\)
0.432241 + 0.901758i \(0.357723\pi\)
\(740\) 1.05391e44 0.354579
\(741\) 1.65741e44 0.546070
\(742\) −1.01659e44 −0.328008
\(743\) −9.07298e42 −0.0286697 −0.0143348 0.999897i \(-0.504563\pi\)
−0.0143348 + 0.999897i \(0.504563\pi\)
\(744\) −2.39829e43 −0.0742200
\(745\) −1.16003e44 −0.351599
\(746\) −1.23648e43 −0.0367058
\(747\) 5.91619e44 1.72017
\(748\) 4.53518e43 0.129157
\(749\) −9.12440e44 −2.54528
\(750\) −3.28028e43 −0.0896318
\(751\) 2.57663e44 0.689657 0.344829 0.938666i \(-0.387937\pi\)
0.344829 + 0.938666i \(0.387937\pi\)
\(752\) −7.69153e43 −0.201668
\(753\) 5.74659e44 1.47601
\(754\) 8.11079e43 0.204083
\(755\) −3.17006e44 −0.781429
\(756\) −4.69674e42 −0.0113425
\(757\) −3.81353e44 −0.902280 −0.451140 0.892453i \(-0.648982\pi\)
−0.451140 + 0.892453i \(0.648982\pi\)
\(758\) 3.01456e44 0.698797
\(759\) −2.99745e44 −0.680777
\(760\) 9.79917e43 0.218061
\(761\) 8.14860e44 1.77673 0.888364 0.459140i \(-0.151842\pi\)
0.888364 + 0.459140i \(0.151842\pi\)
\(762\) −6.47030e43 −0.138236
\(763\) −1.47772e45 −3.09358
\(764\) −2.84697e44 −0.584032
\(765\) −1.57491e44 −0.316594
\(766\) 5.67188e44 1.11733
\(767\) −2.16733e44 −0.418406
\(768\) 4.68178e43 0.0885752
\(769\) 3.27666e44 0.607538 0.303769 0.952746i \(-0.401755\pi\)
0.303769 + 0.952746i \(0.401755\pi\)
\(770\) 1.21121e44 0.220097
\(771\) −3.15517e44 −0.561927
\(772\) 4.97917e43 0.0869137
\(773\) 4.92317e44 0.842291 0.421146 0.906993i \(-0.361628\pi\)
0.421146 + 0.906993i \(0.361628\pi\)
\(774\) 3.44681e44 0.578006
\(775\) −1.80236e43 −0.0296254
\(776\) −1.79985e44 −0.289988
\(777\) 2.69141e45 4.25063
\(778\) −3.10144e44 −0.480152
\(779\) −4.08795e44 −0.620405
\(780\) 5.95102e43 0.0885371
\(781\) 1.14898e44 0.167579
\(782\) −4.53179e44 −0.647985
\(783\) −8.83826e42 −0.0123897
\(784\) 4.68864e44 0.644388
\(785\) −8.36918e43 −0.112772
\(786\) −1.54101e44 −0.203590
\(787\) 4.15132e44 0.537747 0.268874 0.963175i \(-0.413349\pi\)
0.268874 + 0.963175i \(0.413349\pi\)
\(788\) 5.36683e44 0.681650
\(789\) 2.80687e44 0.349566
\(790\) 6.18893e43 0.0755780
\(791\) −1.52298e45 −1.82372
\(792\) 1.11732e44 0.131201
\(793\) 4.74423e44 0.546300
\(794\) −4.77822e44 −0.539570
\(795\) −1.40360e44 −0.155436
\(796\) 4.63994e44 0.503918
\(797\) −1.44562e45 −1.53975 −0.769875 0.638195i \(-0.779681\pi\)
−0.769875 + 0.638195i \(0.779681\pi\)
\(798\) 2.50244e45 2.61408
\(799\) −5.52713e44 −0.566271
\(800\) 3.51844e43 0.0353553
\(801\) 1.53637e45 1.51423
\(802\) −9.59413e44 −0.927477
\(803\) −6.49495e44 −0.615864
\(804\) −2.85504e44 −0.265548
\(805\) −1.21031e45 −1.10423
\(806\) 3.26979e43 0.0292636
\(807\) −1.58106e45 −1.38806
\(808\) 9.05077e43 0.0779488
\(809\) 1.84718e45 1.56066 0.780328 0.625370i \(-0.215052\pi\)
0.780328 + 0.625370i \(0.215052\pi\)
\(810\) 3.78264e44 0.313529
\(811\) 1.57093e45 1.27742 0.638710 0.769448i \(-0.279468\pi\)
0.638710 + 0.769448i \(0.279468\pi\)
\(812\) 1.22460e45 0.976961
\(813\) 9.26168e44 0.724913
\(814\) −5.37296e44 −0.412606
\(815\) 8.22711e44 0.619875
\(816\) 3.36432e44 0.248714
\(817\) −1.54112e45 −1.11788
\(818\) 6.22739e44 0.443231
\(819\) 7.63065e44 0.532919
\(820\) −1.46780e44 −0.100589
\(821\) −9.20960e44 −0.619329 −0.309665 0.950846i \(-0.600217\pi\)
−0.309665 + 0.950846i \(0.600217\pi\)
\(822\) −2.24614e45 −1.48226
\(823\) −7.13280e44 −0.461916 −0.230958 0.972964i \(-0.574186\pi\)
−0.230958 + 0.972964i \(0.574186\pi\)
\(824\) 1.57227e44 0.0999206
\(825\) 1.67232e44 0.104300
\(826\) −3.27234e45 −2.00294
\(827\) −2.24717e45 −1.34989 −0.674947 0.737866i \(-0.735834\pi\)
−0.674947 + 0.737866i \(0.735834\pi\)
\(828\) −1.11648e45 −0.658236
\(829\) −5.23977e44 −0.303191 −0.151596 0.988443i \(-0.548441\pi\)
−0.151596 + 0.988443i \(0.548441\pi\)
\(830\) −9.49780e44 −0.539402
\(831\) −1.98848e45 −1.10842
\(832\) −6.38307e43 −0.0349235
\(833\) 3.36925e45 1.80940
\(834\) −3.41071e45 −1.79792
\(835\) 1.25234e44 0.0648012
\(836\) −4.99571e44 −0.253746
\(837\) −3.56307e42 −0.00177656
\(838\) −4.14783e44 −0.203020
\(839\) 2.09806e45 1.00811 0.504054 0.863672i \(-0.331841\pi\)
0.504054 + 0.863672i \(0.331841\pi\)
\(840\) 8.98512e44 0.423833
\(841\) 1.45018e44 0.0671559
\(842\) 1.41941e45 0.645311
\(843\) −1.49277e45 −0.666293
\(844\) −1.64475e45 −0.720762
\(845\) 9.58292e44 0.412305
\(846\) −1.36170e45 −0.575229
\(847\) 3.94273e45 1.63533
\(848\) 1.50550e44 0.0613120
\(849\) −3.41142e45 −1.36416
\(850\) 2.52835e44 0.0992757
\(851\) 5.36894e45 2.07005
\(852\) 8.52342e44 0.322701
\(853\) −5.28030e45 −1.96313 −0.981563 0.191136i \(-0.938783\pi\)
−0.981563 + 0.191136i \(0.938783\pi\)
\(854\) 7.16306e45 2.61518
\(855\) 1.73484e45 0.621990
\(856\) 1.35127e45 0.475771
\(857\) 5.06528e45 1.75146 0.875731 0.482800i \(-0.160380\pi\)
0.875731 + 0.482800i \(0.160380\pi\)
\(858\) −3.03389e44 −0.103026
\(859\) 3.71198e45 1.23797 0.618986 0.785402i \(-0.287544\pi\)
0.618986 + 0.785402i \(0.287544\pi\)
\(860\) −5.53348e44 −0.181248
\(861\) −3.74836e45 −1.20585
\(862\) −3.42613e45 −1.08253
\(863\) −3.40937e45 −1.05805 −0.529025 0.848606i \(-0.677442\pi\)
−0.529025 + 0.848606i \(0.677442\pi\)
\(864\) 6.95558e42 0.00212017
\(865\) 8.90557e44 0.266632
\(866\) −4.72920e45 −1.39079
\(867\) −2.48841e45 −0.718829
\(868\) 4.93689e44 0.140087
\(869\) −3.15517e44 −0.0879461
\(870\) 1.69081e45 0.462963
\(871\) 3.89252e44 0.104701
\(872\) 2.18841e45 0.578259
\(873\) −3.18644e45 −0.827151
\(874\) 4.99198e45 1.27305
\(875\) 6.75247e44 0.169176
\(876\) −4.81814e45 −1.18595
\(877\) 4.36010e45 1.05439 0.527197 0.849743i \(-0.323243\pi\)
0.527197 + 0.849743i \(0.323243\pi\)
\(878\) −2.53041e45 −0.601210
\(879\) −5.60884e44 −0.130932
\(880\) −1.79373e44 −0.0411412
\(881\) 6.44703e45 1.45289 0.726446 0.687223i \(-0.241171\pi\)
0.726446 + 0.687223i \(0.241171\pi\)
\(882\) 8.30072e45 1.83803
\(883\) −1.83499e45 −0.399249 −0.199624 0.979873i \(-0.563972\pi\)
−0.199624 + 0.979873i \(0.563972\pi\)
\(884\) −4.58687e44 −0.0980632
\(885\) −4.51811e45 −0.949153
\(886\) 3.90979e45 0.807106
\(887\) −8.08118e45 −1.63930 −0.819650 0.572864i \(-0.805832\pi\)
−0.819650 + 0.572864i \(0.805832\pi\)
\(888\) −3.98581e45 −0.794540
\(889\) 1.33191e45 0.260915
\(890\) −2.46648e45 −0.474824
\(891\) −1.92843e45 −0.364837
\(892\) −4.00153e44 −0.0743996
\(893\) 6.08839e45 1.11251
\(894\) 4.38714e45 0.787862
\(895\) 1.66904e45 0.294584
\(896\) −9.63745e44 −0.167181
\(897\) 3.03162e45 0.516882
\(898\) −3.92178e45 −0.657203
\(899\) 9.29016e44 0.153020
\(900\) 6.22901e44 0.100846
\(901\) 1.08185e45 0.172161
\(902\) 7.48298e44 0.117051
\(903\) −1.41310e46 −2.17276
\(904\) 2.25544e45 0.340894
\(905\) 6.52997e44 0.0970194
\(906\) 1.19889e46 1.75102
\(907\) −5.44637e45 −0.781978 −0.390989 0.920395i \(-0.627867\pi\)
−0.390989 + 0.920395i \(0.627867\pi\)
\(908\) 4.62647e45 0.653009
\(909\) 1.60234e45 0.222338
\(910\) −1.22502e45 −0.167110
\(911\) 9.56226e45 1.28241 0.641203 0.767371i \(-0.278435\pi\)
0.641203 + 0.767371i \(0.278435\pi\)
\(912\) −3.70596e45 −0.488630
\(913\) 4.84207e45 0.627674
\(914\) −5.95741e45 −0.759262
\(915\) 9.89002e45 1.23928
\(916\) 3.72807e45 0.459308
\(917\) 3.17218e45 0.384267
\(918\) 4.99827e43 0.00595331
\(919\) 1.59837e46 1.87191 0.935957 0.352114i \(-0.114537\pi\)
0.935957 + 0.352114i \(0.114537\pi\)
\(920\) 1.79239e45 0.206406
\(921\) −8.14191e45 −0.921939
\(922\) −5.74232e44 −0.0639379
\(923\) −1.16207e45 −0.127235
\(924\) −4.58070e45 −0.493192
\(925\) −2.99540e45 −0.317146
\(926\) −7.88723e45 −0.821210
\(927\) 2.78353e45 0.285010
\(928\) −1.81356e45 −0.182616
\(929\) −1.13067e46 −1.11968 −0.559839 0.828602i \(-0.689137\pi\)
−0.559839 + 0.828602i \(0.689137\pi\)
\(930\) 6.81635e44 0.0663844
\(931\) −3.71139e46 −3.55481
\(932\) 2.35326e45 0.221678
\(933\) −5.85799e45 −0.542729
\(934\) −8.57685e45 −0.781540
\(935\) −1.28897e45 −0.115522
\(936\) −1.13005e45 −0.0996146
\(937\) −1.36916e46 −1.18711 −0.593553 0.804795i \(-0.702275\pi\)
−0.593553 + 0.804795i \(0.702275\pi\)
\(938\) 5.87710e45 0.501209
\(939\) −1.28445e46 −1.07746
\(940\) 2.18606e45 0.180377
\(941\) 1.87173e45 0.151916 0.0759580 0.997111i \(-0.475799\pi\)
0.0759580 + 0.997111i \(0.475799\pi\)
\(942\) 3.16515e45 0.252700
\(943\) −7.47739e45 −0.587244
\(944\) 4.84613e45 0.374394
\(945\) 1.33489e44 0.0101450
\(946\) 2.82102e45 0.210908
\(947\) −6.24171e45 −0.459070 −0.229535 0.973300i \(-0.573721\pi\)
−0.229535 + 0.973300i \(0.573721\pi\)
\(948\) −2.34060e45 −0.169355
\(949\) 6.56898e45 0.467597
\(950\) −2.78509e45 −0.195040
\(951\) −1.53757e46 −1.05935
\(952\) −6.92546e45 −0.469436
\(953\) 9.73682e45 0.649348 0.324674 0.945826i \(-0.394745\pi\)
0.324674 + 0.945826i \(0.394745\pi\)
\(954\) 2.66533e45 0.174884
\(955\) 8.09159e45 0.522374
\(956\) 5.69576e45 0.361788
\(957\) −8.61990e45 −0.538725
\(958\) −1.52877e45 −0.0940105
\(959\) 4.62369e46 2.79769
\(960\) −1.33064e45 −0.0792240
\(961\) −1.66946e46 −0.978058
\(962\) 5.43420e45 0.313272
\(963\) 2.39227e46 1.35707
\(964\) −5.38818e45 −0.300779
\(965\) −1.41516e45 −0.0777380
\(966\) 4.57728e46 2.47435
\(967\) 4.32433e45 0.230043 0.115021 0.993363i \(-0.463306\pi\)
0.115021 + 0.993363i \(0.463306\pi\)
\(968\) −5.83895e45 −0.305680
\(969\) −2.66310e46 −1.37205
\(970\) 5.11548e45 0.259373
\(971\) 9.24316e44 0.0461235 0.0230618 0.999734i \(-0.492659\pi\)
0.0230618 + 0.999734i \(0.492659\pi\)
\(972\) −1.44277e46 −0.708550
\(973\) 7.02096e46 3.39350
\(974\) 1.22795e46 0.584138
\(975\) −1.69138e45 −0.0791899
\(976\) −1.06081e46 −0.488836
\(977\) −1.36225e46 −0.617862 −0.308931 0.951084i \(-0.599971\pi\)
−0.308931 + 0.951084i \(0.599971\pi\)
\(978\) −3.11142e46 −1.38901
\(979\) 1.25744e46 0.552528
\(980\) −1.33259e46 −0.576359
\(981\) 3.87434e46 1.64941
\(982\) −2.72529e46 −1.14205
\(983\) 2.98873e46 1.23284 0.616421 0.787417i \(-0.288582\pi\)
0.616421 + 0.787417i \(0.288582\pi\)
\(984\) 5.55108e45 0.225400
\(985\) −1.52534e46 −0.609686
\(986\) −1.30322e46 −0.512775
\(987\) 5.58261e46 2.16233
\(988\) 5.05265e45 0.192658
\(989\) −2.81891e46 −1.05813
\(990\) −3.17561e45 −0.117350
\(991\) −1.29513e46 −0.471164 −0.235582 0.971854i \(-0.575700\pi\)
−0.235582 + 0.971854i \(0.575700\pi\)
\(992\) −7.31122e44 −0.0261854
\(993\) 2.46087e45 0.0867713
\(994\) −1.75455e46 −0.609083
\(995\) −1.31875e46 −0.450718
\(996\) 3.59198e46 1.20869
\(997\) 3.73350e45 0.123692 0.0618460 0.998086i \(-0.480301\pi\)
0.0618460 + 0.998086i \(0.480301\pi\)
\(998\) −5.20402e45 −0.169752
\(999\) −5.92160e44 −0.0190184
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.32.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.32.a.c.1.2 2 1.1 even 1 trivial