Properties

Label 10.32.a.c.1.1
Level $10$
Weight $32$
Character 10.1
Self dual yes
Analytic conductor $60.877$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,32,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 32, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 32);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 32 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8771328190\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 478673959 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-21878.6\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32768.0 q^{2} +3.71657e6 q^{3} +1.07374e9 q^{4} -3.05176e10 q^{5} +1.21785e11 q^{6} +1.17220e13 q^{7} +3.51844e13 q^{8} -6.03860e14 q^{9} -1.00000e15 q^{10} -9.08641e15 q^{11} +3.99064e15 q^{12} +5.73754e16 q^{13} +3.84106e17 q^{14} -1.13421e17 q^{15} +1.15292e18 q^{16} -8.37569e18 q^{17} -1.97873e19 q^{18} +1.80959e17 q^{19} -3.27680e19 q^{20} +4.35656e19 q^{21} -2.97743e20 q^{22} +2.07716e18 q^{23} +1.30765e20 q^{24} +9.31323e20 q^{25} +1.88008e21 q^{26} -4.53992e21 q^{27} +1.25864e22 q^{28} -4.65382e22 q^{29} -3.71657e21 q^{30} -1.09204e23 q^{31} +3.77789e22 q^{32} -3.37703e22 q^{33} -2.74455e23 q^{34} -3.57726e23 q^{35} -6.48390e23 q^{36} +1.04317e24 q^{37} +5.92966e21 q^{38} +2.13240e23 q^{39} -1.07374e24 q^{40} -1.45317e25 q^{41} +1.42756e24 q^{42} -6.31370e24 q^{43} -9.75646e24 q^{44} +1.84284e25 q^{45} +6.80644e22 q^{46} +7.71035e25 q^{47} +4.28492e24 q^{48} -2.03707e25 q^{49} +3.05176e25 q^{50} -3.11289e25 q^{51} +6.16064e25 q^{52} +2.22654e25 q^{53} -1.48764e26 q^{54} +2.77295e26 q^{55} +4.12430e26 q^{56} +6.72547e23 q^{57} -1.52496e27 q^{58} -4.61858e27 q^{59} -1.21785e26 q^{60} -1.68836e27 q^{61} -3.57841e27 q^{62} -7.07844e27 q^{63} +1.23794e27 q^{64} -1.75096e27 q^{65} -1.10658e27 q^{66} -2.09314e28 q^{67} -8.99333e27 q^{68} +7.71992e24 q^{69} -1.17220e28 q^{70} -7.31996e28 q^{71} -2.12465e28 q^{72} -1.79728e28 q^{73} +3.41826e28 q^{74} +3.46133e27 q^{75} +1.94303e26 q^{76} -1.06511e29 q^{77} +6.98744e27 q^{78} -3.55437e29 q^{79} -3.51844e28 q^{80} +3.56116e29 q^{81} -4.76175e29 q^{82} -1.38740e29 q^{83} +4.67782e28 q^{84} +2.55606e29 q^{85} -2.06887e29 q^{86} -1.72963e29 q^{87} -3.19700e29 q^{88} -2.03177e30 q^{89} +6.03860e29 q^{90} +6.72553e29 q^{91} +2.23033e27 q^{92} -4.05866e29 q^{93} +2.52653e30 q^{94} -5.52243e27 q^{95} +1.40408e29 q^{96} +8.65389e30 q^{97} -6.67507e29 q^{98} +5.48692e30 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 65536 q^{2} + 38938356 q^{3} + 2147483648 q^{4} - 61035156250 q^{5} + 1275932049408 q^{6} - 12036181345412 q^{7} + 70368744177664 q^{8} + 19040152114674 q^{9} - 20\!\cdots\!00 q^{10} - 39\!\cdots\!76 q^{11}+ \cdots + 86\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32768.0 0.707107
\(3\) 3.71657e6 0.149542 0.0747710 0.997201i \(-0.476177\pi\)
0.0747710 + 0.997201i \(0.476177\pi\)
\(4\) 1.07374e9 0.500000
\(5\) −3.05176e10 −0.447214
\(6\) 1.21785e11 0.105742
\(7\) 1.17220e13 0.933214 0.466607 0.884465i \(-0.345476\pi\)
0.466607 + 0.884465i \(0.345476\pi\)
\(8\) 3.51844e13 0.353553
\(9\) −6.03860e14 −0.977637
\(10\) −1.00000e15 −0.316228
\(11\) −9.08641e15 −0.655852 −0.327926 0.944703i \(-0.606350\pi\)
−0.327926 + 0.944703i \(0.606350\pi\)
\(12\) 3.99064e15 0.0747710
\(13\) 5.73754e16 0.310888 0.155444 0.987845i \(-0.450319\pi\)
0.155444 + 0.987845i \(0.450319\pi\)
\(14\) 3.84106e17 0.659882
\(15\) −1.13421e17 −0.0668772
\(16\) 1.15292e18 0.250000
\(17\) −8.37569e18 −0.709680 −0.354840 0.934927i \(-0.615465\pi\)
−0.354840 + 0.934927i \(0.615465\pi\)
\(18\) −1.97873e19 −0.691294
\(19\) 1.80959e17 0.00273463 0.00136732 0.999999i \(-0.499565\pi\)
0.00136732 + 0.999999i \(0.499565\pi\)
\(20\) −3.27680e19 −0.223607
\(21\) 4.35656e19 0.139555
\(22\) −2.97743e20 −0.463757
\(23\) 2.07716e18 0.00162438 0.000812192 1.00000i \(-0.499741\pi\)
0.000812192 1.00000i \(0.499741\pi\)
\(24\) 1.30765e20 0.0528711
\(25\) 9.31323e20 0.200000
\(26\) 1.88008e21 0.219831
\(27\) −4.53992e21 −0.295740
\(28\) 1.25864e22 0.466607
\(29\) −4.65382e22 −1.00148 −0.500738 0.865599i \(-0.666938\pi\)
−0.500738 + 0.865599i \(0.666938\pi\)
\(30\) −3.71657e21 −0.0472893
\(31\) −1.09204e23 −0.835860 −0.417930 0.908479i \(-0.637244\pi\)
−0.417930 + 0.908479i \(0.637244\pi\)
\(32\) 3.77789e22 0.176777
\(33\) −3.37703e22 −0.0980773
\(34\) −2.74455e23 −0.501819
\(35\) −3.57726e23 −0.417346
\(36\) −6.48390e23 −0.488819
\(37\) 1.04317e24 0.514314 0.257157 0.966370i \(-0.417214\pi\)
0.257157 + 0.966370i \(0.417214\pi\)
\(38\) 5.92966e21 0.00193368
\(39\) 2.13240e23 0.0464908
\(40\) −1.07374e24 −0.158114
\(41\) −1.45317e25 −1.45938 −0.729688 0.683781i \(-0.760334\pi\)
−0.729688 + 0.683781i \(0.760334\pi\)
\(42\) 1.42756e24 0.0986800
\(43\) −6.31370e24 −0.303056 −0.151528 0.988453i \(-0.548419\pi\)
−0.151528 + 0.988453i \(0.548419\pi\)
\(44\) −9.75646e24 −0.327926
\(45\) 1.84284e25 0.437213
\(46\) 6.80644e22 0.00114861
\(47\) 7.71035e25 0.932303 0.466152 0.884705i \(-0.345640\pi\)
0.466152 + 0.884705i \(0.345640\pi\)
\(48\) 4.28492e24 0.0373855
\(49\) −2.03707e25 −0.129112
\(50\) 3.05176e25 0.141421
\(51\) −3.11289e25 −0.106127
\(52\) 6.16064e25 0.155444
\(53\) 2.22654e25 0.0418171 0.0209085 0.999781i \(-0.493344\pi\)
0.0209085 + 0.999781i \(0.493344\pi\)
\(54\) −1.48764e26 −0.209120
\(55\) 2.77295e26 0.293306
\(56\) 4.12430e26 0.329941
\(57\) 6.72547e23 0.000408943 0
\(58\) −1.52496e27 −0.708151
\(59\) −4.61858e27 −1.64552 −0.822758 0.568391i \(-0.807566\pi\)
−0.822758 + 0.568391i \(0.807566\pi\)
\(60\) −1.21785e26 −0.0334386
\(61\) −1.68836e27 −0.358799 −0.179400 0.983776i \(-0.557415\pi\)
−0.179400 + 0.983776i \(0.557415\pi\)
\(62\) −3.57841e27 −0.591042
\(63\) −7.07844e27 −0.912344
\(64\) 1.23794e27 0.125000
\(65\) −1.75096e27 −0.139033
\(66\) −1.10658e27 −0.0693512
\(67\) −2.09314e28 −1.03906 −0.519528 0.854454i \(-0.673892\pi\)
−0.519528 + 0.854454i \(0.673892\pi\)
\(68\) −8.99333e27 −0.354840
\(69\) 7.71992e24 0.000242914 0
\(70\) −1.17220e28 −0.295108
\(71\) −7.31996e28 −1.47912 −0.739561 0.673089i \(-0.764967\pi\)
−0.739561 + 0.673089i \(0.764967\pi\)
\(72\) −2.12465e28 −0.345647
\(73\) −1.79728e28 −0.236108 −0.118054 0.993007i \(-0.537666\pi\)
−0.118054 + 0.993007i \(0.537666\pi\)
\(74\) 3.41826e28 0.363675
\(75\) 3.46133e27 0.0299084
\(76\) 1.94303e26 0.00136732
\(77\) −1.06511e29 −0.612050
\(78\) 6.98744e27 0.0328739
\(79\) −3.55437e29 −1.37260 −0.686298 0.727320i \(-0.740766\pi\)
−0.686298 + 0.727320i \(0.740766\pi\)
\(80\) −3.51844e28 −0.111803
\(81\) 3.56116e29 0.933412
\(82\) −4.76175e29 −1.03193
\(83\) −1.38740e29 −0.249167 −0.124584 0.992209i \(-0.539759\pi\)
−0.124584 + 0.992209i \(0.539759\pi\)
\(84\) 4.67782e28 0.0697773
\(85\) 2.55606e29 0.317378
\(86\) −2.06887e29 −0.214293
\(87\) −1.72963e29 −0.149763
\(88\) −3.19700e29 −0.231879
\(89\) −2.03177e30 −1.23689 −0.618443 0.785829i \(-0.712236\pi\)
−0.618443 + 0.785829i \(0.712236\pi\)
\(90\) 6.03860e29 0.309156
\(91\) 6.72553e29 0.290125
\(92\) 2.23033e27 0.000812192 0
\(93\) −4.05866e29 −0.124996
\(94\) 2.52653e30 0.659238
\(95\) −5.52243e27 −0.00122297
\(96\) 1.40408e29 0.0264355
\(97\) 8.65389e30 1.38755 0.693777 0.720190i \(-0.255946\pi\)
0.693777 + 0.720190i \(0.255946\pi\)
\(98\) −6.67507e29 −0.0912960
\(99\) 5.48692e30 0.641185
\(100\) 1.00000e30 0.100000
\(101\) 1.49248e31 1.27916 0.639582 0.768723i \(-0.279107\pi\)
0.639582 + 0.768723i \(0.279107\pi\)
\(102\) −1.02003e30 −0.0750430
\(103\) 2.46096e31 1.55643 0.778213 0.628001i \(-0.216127\pi\)
0.778213 + 0.628001i \(0.216127\pi\)
\(104\) 2.01872e30 0.109915
\(105\) −1.32952e30 −0.0624107
\(106\) 7.29591e29 0.0295692
\(107\) −2.46056e31 −0.862154 −0.431077 0.902315i \(-0.641866\pi\)
−0.431077 + 0.902315i \(0.641866\pi\)
\(108\) −4.87470e30 −0.147870
\(109\) 1.88855e31 0.496614 0.248307 0.968681i \(-0.420126\pi\)
0.248307 + 0.968681i \(0.420126\pi\)
\(110\) 9.08641e30 0.207398
\(111\) 3.87702e30 0.0769116
\(112\) 1.35145e31 0.233303
\(113\) 4.97639e31 0.748511 0.374256 0.927326i \(-0.377898\pi\)
0.374256 + 0.927326i \(0.377898\pi\)
\(114\) 2.20380e28 0.000289166 0
\(115\) −6.33899e28 −0.000726446 0
\(116\) −4.99700e31 −0.500738
\(117\) −3.46467e31 −0.303935
\(118\) −1.51342e32 −1.16356
\(119\) −9.81796e31 −0.662283
\(120\) −3.99064e30 −0.0236447
\(121\) −1.09381e32 −0.569859
\(122\) −5.53240e31 −0.253709
\(123\) −5.40082e31 −0.218238
\(124\) −1.17257e32 −0.417930
\(125\) −2.84217e31 −0.0894427
\(126\) −2.31946e32 −0.645125
\(127\) 4.88140e32 1.20112 0.600560 0.799580i \(-0.294944\pi\)
0.600560 + 0.799580i \(0.294944\pi\)
\(128\) 4.05648e31 0.0883883
\(129\) −2.34653e31 −0.0453196
\(130\) −5.73754e31 −0.0983114
\(131\) −2.85150e32 −0.433879 −0.216939 0.976185i \(-0.569607\pi\)
−0.216939 + 0.976185i \(0.569607\pi\)
\(132\) −3.62606e31 −0.0490387
\(133\) 2.12120e30 0.00255200
\(134\) −6.85880e32 −0.734723
\(135\) 1.38547e32 0.132259
\(136\) −2.94693e32 −0.250910
\(137\) 1.07566e33 0.817533 0.408766 0.912639i \(-0.365959\pi\)
0.408766 + 0.912639i \(0.365959\pi\)
\(138\) 2.52966e29 0.000171766 0
\(139\) 6.52567e32 0.396183 0.198091 0.980184i \(-0.436526\pi\)
0.198091 + 0.980184i \(0.436526\pi\)
\(140\) −3.84106e32 −0.208673
\(141\) 2.86561e32 0.139418
\(142\) −2.39860e33 −1.04590
\(143\) −5.21336e32 −0.203896
\(144\) −6.96204e32 −0.244409
\(145\) 1.42023e33 0.447874
\(146\) −5.88931e32 −0.166953
\(147\) −7.57092e31 −0.0193077
\(148\) 1.12010e33 0.257157
\(149\) 3.57355e33 0.739116 0.369558 0.929208i \(-0.379509\pi\)
0.369558 + 0.929208i \(0.379509\pi\)
\(150\) 1.13421e32 0.0211484
\(151\) 8.68304e33 1.46059 0.730297 0.683130i \(-0.239382\pi\)
0.730297 + 0.683130i \(0.239382\pi\)
\(152\) 6.36693e30 0.000966839 0
\(153\) 5.05775e33 0.693809
\(154\) −3.49014e33 −0.432784
\(155\) 3.33265e33 0.373808
\(156\) 2.28964e32 0.0232454
\(157\) 1.84314e34 1.69478 0.847390 0.530971i \(-0.178173\pi\)
0.847390 + 0.530971i \(0.178173\pi\)
\(158\) −1.16470e34 −0.970573
\(159\) 8.27508e31 0.00625341
\(160\) −1.15292e33 −0.0790569
\(161\) 2.43484e31 0.00151590
\(162\) 1.16692e34 0.660022
\(163\) 5.68871e33 0.292487 0.146243 0.989249i \(-0.453282\pi\)
0.146243 + 0.989249i \(0.453282\pi\)
\(164\) −1.56033e34 −0.729688
\(165\) 1.03059e33 0.0438615
\(166\) −4.54623e33 −0.176188
\(167\) 1.09643e34 0.387148 0.193574 0.981086i \(-0.437992\pi\)
0.193574 + 0.981086i \(0.437992\pi\)
\(168\) 1.53283e33 0.0493400
\(169\) −3.07680e34 −0.903349
\(170\) 8.37569e33 0.224420
\(171\) −1.09274e32 −0.00267348
\(172\) −6.77928e33 −0.151528
\(173\) −6.16674e34 −1.25991 −0.629957 0.776630i \(-0.716927\pi\)
−0.629957 + 0.776630i \(0.716927\pi\)
\(174\) −5.66764e33 −0.105898
\(175\) 1.09169e34 0.186643
\(176\) −1.04759e34 −0.163963
\(177\) −1.71653e34 −0.246074
\(178\) −6.65771e34 −0.874611
\(179\) −9.62475e34 −1.15922 −0.579612 0.814892i \(-0.696796\pi\)
−0.579612 + 0.814892i \(0.696796\pi\)
\(180\) 1.97873e34 0.218606
\(181\) −5.33071e34 −0.540465 −0.270232 0.962795i \(-0.587101\pi\)
−0.270232 + 0.962795i \(0.587101\pi\)
\(182\) 2.20382e34 0.205149
\(183\) −6.27489e33 −0.0536555
\(184\) 7.30836e31 0.000574306 0
\(185\) −3.18350e34 −0.230008
\(186\) −1.32994e34 −0.0883856
\(187\) 7.61049e34 0.465444
\(188\) 8.27892e34 0.466152
\(189\) −5.32168e34 −0.275988
\(190\) −1.80959e32 −0.000864767 0
\(191\) −9.73174e34 −0.428720 −0.214360 0.976755i \(-0.568766\pi\)
−0.214360 + 0.976755i \(0.568766\pi\)
\(192\) 4.60089e33 0.0186927
\(193\) 6.07031e34 0.227548 0.113774 0.993507i \(-0.463706\pi\)
0.113774 + 0.993507i \(0.463706\pi\)
\(194\) 2.83571e35 0.981148
\(195\) −6.50756e33 −0.0207913
\(196\) −2.18729e34 −0.0645561
\(197\) 6.58198e35 1.79527 0.897635 0.440740i \(-0.145284\pi\)
0.897635 + 0.440740i \(0.145284\pi\)
\(198\) 1.79795e35 0.453386
\(199\) −2.79576e35 −0.652044 −0.326022 0.945362i \(-0.605708\pi\)
−0.326022 + 0.945362i \(0.605708\pi\)
\(200\) 3.27680e34 0.0707107
\(201\) −7.77930e34 −0.155382
\(202\) 4.89055e35 0.904506
\(203\) −5.45520e35 −0.934592
\(204\) −3.34244e34 −0.0530634
\(205\) 4.43473e35 0.652652
\(206\) 8.06409e35 1.10056
\(207\) −1.25431e33 −0.00158806
\(208\) 6.61493e34 0.0777220
\(209\) −1.64427e33 −0.00179351
\(210\) −4.35656e34 −0.0441311
\(211\) −2.54302e35 −0.239316 −0.119658 0.992815i \(-0.538180\pi\)
−0.119658 + 0.992815i \(0.538180\pi\)
\(212\) 2.39073e34 0.0209085
\(213\) −2.72052e35 −0.221191
\(214\) −8.06276e35 −0.609635
\(215\) 1.92679e35 0.135531
\(216\) −1.59734e35 −0.104560
\(217\) −1.28009e36 −0.780036
\(218\) 6.18841e35 0.351159
\(219\) −6.67971e34 −0.0353080
\(220\) 2.97743e35 0.146653
\(221\) −4.80558e35 −0.220631
\(222\) 1.27042e35 0.0543847
\(223\) 1.46316e36 0.584205 0.292103 0.956387i \(-0.405645\pi\)
0.292103 + 0.956387i \(0.405645\pi\)
\(224\) 4.42844e35 0.164970
\(225\) −5.62389e35 −0.195527
\(226\) 1.63066e36 0.529277
\(227\) −2.78290e36 −0.843521 −0.421761 0.906707i \(-0.638588\pi\)
−0.421761 + 0.906707i \(0.638588\pi\)
\(228\) 7.22142e32 0.000204471 0
\(229\) 7.15525e35 0.189311 0.0946553 0.995510i \(-0.469825\pi\)
0.0946553 + 0.995510i \(0.469825\pi\)
\(230\) −2.07716e33 −0.000513675 0
\(231\) −3.95854e35 −0.0915271
\(232\) −1.63742e36 −0.354075
\(233\) −4.54393e36 −0.919210 −0.459605 0.888123i \(-0.652009\pi\)
−0.459605 + 0.888123i \(0.652009\pi\)
\(234\) −1.13530e36 −0.214915
\(235\) −2.35301e36 −0.416939
\(236\) −4.95916e36 −0.822758
\(237\) −1.32101e36 −0.205261
\(238\) −3.21715e36 −0.468305
\(239\) 9.33307e36 1.27308 0.636542 0.771242i \(-0.280364\pi\)
0.636542 + 0.771242i \(0.280364\pi\)
\(240\) −1.30765e35 −0.0167193
\(241\) 1.03054e36 0.123538 0.0617688 0.998090i \(-0.480326\pi\)
0.0617688 + 0.998090i \(0.480326\pi\)
\(242\) −3.58418e36 −0.402951
\(243\) 4.12772e36 0.435324
\(244\) −1.81286e36 −0.179400
\(245\) 6.21665e35 0.0577407
\(246\) −1.76974e36 −0.154317
\(247\) 1.03826e34 0.000850164 0
\(248\) −3.84229e36 −0.295521
\(249\) −5.15636e35 −0.0372609
\(250\) −9.31323e35 −0.0632456
\(251\) −1.16237e36 −0.0741993 −0.0370997 0.999312i \(-0.511812\pi\)
−0.0370997 + 0.999312i \(0.511812\pi\)
\(252\) −7.60041e36 −0.456172
\(253\) −1.88739e34 −0.00106535
\(254\) 1.59954e37 0.849320
\(255\) 9.49977e35 0.0474614
\(256\) 1.32923e36 0.0625000
\(257\) 2.28659e37 1.01210 0.506051 0.862503i \(-0.331105\pi\)
0.506051 + 0.862503i \(0.331105\pi\)
\(258\) −7.68911e35 −0.0320458
\(259\) 1.22280e37 0.479965
\(260\) −1.88008e36 −0.0695166
\(261\) 2.81026e37 0.979081
\(262\) −9.34379e36 −0.306798
\(263\) 4.29199e37 1.32845 0.664223 0.747534i \(-0.268762\pi\)
0.664223 + 0.747534i \(0.268762\pi\)
\(264\) −1.18819e36 −0.0346756
\(265\) −6.79485e35 −0.0187012
\(266\) 6.95073e34 0.00180454
\(267\) −7.55123e36 −0.184967
\(268\) −2.24749e37 −0.519528
\(269\) 6.41753e37 1.40026 0.700128 0.714017i \(-0.253126\pi\)
0.700128 + 0.714017i \(0.253126\pi\)
\(270\) 4.53992e36 0.0935211
\(271\) −2.22956e37 −0.433706 −0.216853 0.976204i \(-0.569579\pi\)
−0.216853 + 0.976204i \(0.569579\pi\)
\(272\) −9.65651e36 −0.177420
\(273\) 2.49959e36 0.0433858
\(274\) 3.52471e37 0.578083
\(275\) −8.46238e36 −0.131170
\(276\) 8.28920e33 0.000121457 0
\(277\) −3.40565e37 −0.471806 −0.235903 0.971777i \(-0.575805\pi\)
−0.235903 + 0.971777i \(0.575805\pi\)
\(278\) 2.13833e37 0.280144
\(279\) 6.59442e37 0.817168
\(280\) −1.25864e37 −0.147554
\(281\) −8.61655e37 −0.955841 −0.477921 0.878403i \(-0.658609\pi\)
−0.477921 + 0.878403i \(0.658609\pi\)
\(282\) 9.39002e36 0.0985838
\(283\) −1.43491e38 −1.42605 −0.713024 0.701140i \(-0.752675\pi\)
−0.713024 + 0.701140i \(0.752675\pi\)
\(284\) −7.85975e37 −0.739561
\(285\) −2.05245e34 −0.000182885 0
\(286\) −1.70831e37 −0.144176
\(287\) −1.70340e38 −1.36191
\(288\) −2.28132e37 −0.172823
\(289\) −6.91367e37 −0.496355
\(290\) 4.65382e37 0.316695
\(291\) 3.21628e37 0.207497
\(292\) −1.92981e37 −0.118054
\(293\) −2.93343e38 −1.70188 −0.850939 0.525265i \(-0.823966\pi\)
−0.850939 + 0.525265i \(0.823966\pi\)
\(294\) −2.48084e36 −0.0136526
\(295\) 1.40948e38 0.735898
\(296\) 3.67033e37 0.181838
\(297\) 4.12516e37 0.193961
\(298\) 1.17098e38 0.522634
\(299\) 1.19178e35 0.000505001 0
\(300\) 3.71657e36 0.0149542
\(301\) −7.40090e37 −0.282816
\(302\) 2.84526e38 1.03280
\(303\) 5.54690e37 0.191289
\(304\) 2.08631e35 0.000683658 0
\(305\) 5.15245e37 0.160460
\(306\) 1.65732e38 0.490597
\(307\) −6.04330e37 −0.170071 −0.0850354 0.996378i \(-0.527100\pi\)
−0.0850354 + 0.996378i \(0.527100\pi\)
\(308\) −1.14365e38 −0.306025
\(309\) 9.14635e37 0.232751
\(310\) 1.09204e38 0.264322
\(311\) −4.60547e38 −1.06044 −0.530222 0.847859i \(-0.677891\pi\)
−0.530222 + 0.847859i \(0.677891\pi\)
\(312\) 7.50271e36 0.0164370
\(313\) −5.36117e38 −1.11769 −0.558846 0.829271i \(-0.688756\pi\)
−0.558846 + 0.829271i \(0.688756\pi\)
\(314\) 6.03959e38 1.19839
\(315\) 2.16017e38 0.408013
\(316\) −3.81648e38 −0.686298
\(317\) 1.12095e39 1.91941 0.959706 0.281006i \(-0.0906680\pi\)
0.959706 + 0.281006i \(0.0906680\pi\)
\(318\) 2.71158e36 0.00442183
\(319\) 4.22865e38 0.656820
\(320\) −3.77789e37 −0.0559017
\(321\) −9.14484e37 −0.128928
\(322\) 7.97849e35 0.00107190
\(323\) −1.51566e36 −0.00194071
\(324\) 3.82376e38 0.466706
\(325\) 5.34350e37 0.0621776
\(326\) 1.86408e38 0.206819
\(327\) 7.01895e37 0.0742646
\(328\) −5.11289e38 −0.515967
\(329\) 9.03805e38 0.870038
\(330\) 3.37703e37 0.0310148
\(331\) −4.31573e38 −0.378199 −0.189100 0.981958i \(-0.560557\pi\)
−0.189100 + 0.981958i \(0.560557\pi\)
\(332\) −1.48971e38 −0.124584
\(333\) −6.29930e38 −0.502813
\(334\) 3.59279e38 0.273755
\(335\) 6.38775e38 0.464680
\(336\) 5.02277e37 0.0348887
\(337\) −1.22680e39 −0.813783 −0.406891 0.913477i \(-0.633387\pi\)
−0.406891 + 0.913477i \(0.633387\pi\)
\(338\) −1.00821e39 −0.638764
\(339\) 1.84951e38 0.111934
\(340\) 2.74455e38 0.158689
\(341\) 9.92275e38 0.548200
\(342\) −3.58069e36 −0.00189044
\(343\) −2.08822e39 −1.05370
\(344\) −2.22143e38 −0.107146
\(345\) −2.35593e35 −0.000108634 0
\(346\) −2.02072e39 −0.890894
\(347\) 1.29889e39 0.547601 0.273800 0.961787i \(-0.411719\pi\)
0.273800 + 0.961787i \(0.411719\pi\)
\(348\) −1.85717e38 −0.0748814
\(349\) 3.22255e39 1.24281 0.621407 0.783488i \(-0.286561\pi\)
0.621407 + 0.783488i \(0.286561\pi\)
\(350\) 3.57726e38 0.131976
\(351\) −2.60480e38 −0.0919419
\(352\) −3.43275e38 −0.115939
\(353\) −3.92482e39 −1.26856 −0.634281 0.773103i \(-0.718704\pi\)
−0.634281 + 0.773103i \(0.718704\pi\)
\(354\) −5.62472e38 −0.174001
\(355\) 2.23387e39 0.661484
\(356\) −2.18160e39 −0.618443
\(357\) −3.64892e38 −0.0990391
\(358\) −3.15384e39 −0.819695
\(359\) 4.96900e39 1.23682 0.618408 0.785857i \(-0.287778\pi\)
0.618408 + 0.785857i \(0.287778\pi\)
\(360\) 6.48390e38 0.154578
\(361\) −4.37883e39 −0.999993
\(362\) −1.74677e39 −0.382166
\(363\) −4.06521e38 −0.0852178
\(364\) 7.22148e38 0.145062
\(365\) 5.48485e38 0.105591
\(366\) −2.05616e38 −0.0379402
\(367\) −9.54762e39 −1.68877 −0.844387 0.535734i \(-0.820035\pi\)
−0.844387 + 0.535734i \(0.820035\pi\)
\(368\) 2.39480e36 0.000406096 0
\(369\) 8.77513e39 1.42674
\(370\) −1.04317e39 −0.162640
\(371\) 2.60994e38 0.0390243
\(372\) −4.35795e38 −0.0624981
\(373\) −3.75612e39 −0.516716 −0.258358 0.966049i \(-0.583181\pi\)
−0.258358 + 0.966049i \(0.583181\pi\)
\(374\) 2.49381e39 0.329119
\(375\) −1.05631e38 −0.0133754
\(376\) 2.71284e39 0.329619
\(377\) −2.67015e39 −0.311347
\(378\) −1.74381e39 −0.195153
\(379\) 1.24620e40 1.33869 0.669345 0.742951i \(-0.266575\pi\)
0.669345 + 0.742951i \(0.266575\pi\)
\(380\) −5.92966e36 −0.000611483 0
\(381\) 1.81421e39 0.179618
\(382\) −3.18890e39 −0.303150
\(383\) −5.87670e39 −0.536479 −0.268240 0.963352i \(-0.586442\pi\)
−0.268240 + 0.963352i \(0.586442\pi\)
\(384\) 1.50762e38 0.0132178
\(385\) 3.25045e39 0.273717
\(386\) 1.98912e39 0.160901
\(387\) 3.81259e39 0.296279
\(388\) 9.29205e39 0.693777
\(389\) 2.52388e40 1.81072 0.905358 0.424650i \(-0.139603\pi\)
0.905358 + 0.424650i \(0.139603\pi\)
\(390\) −2.13240e38 −0.0147017
\(391\) −1.73976e37 −0.00115279
\(392\) −7.16731e38 −0.0456480
\(393\) −1.05978e39 −0.0648831
\(394\) 2.15678e40 1.26945
\(395\) 1.08471e40 0.613844
\(396\) 5.89154e39 0.320592
\(397\) 2.80809e39 0.146946 0.0734731 0.997297i \(-0.476592\pi\)
0.0734731 + 0.997297i \(0.476592\pi\)
\(398\) −9.16114e39 −0.461065
\(399\) 7.88358e36 0.000381631 0
\(400\) 1.07374e39 0.0500000
\(401\) −3.30620e40 −1.48113 −0.740563 0.671987i \(-0.765441\pi\)
−0.740563 + 0.671987i \(0.765441\pi\)
\(402\) −2.54912e39 −0.109872
\(403\) −6.26564e39 −0.259859
\(404\) 1.60253e40 0.639582
\(405\) −1.08678e40 −0.417434
\(406\) −1.78756e40 −0.660856
\(407\) −9.47867e39 −0.337314
\(408\) −1.09525e39 −0.0375215
\(409\) −6.42045e39 −0.211765 −0.105883 0.994379i \(-0.533767\pi\)
−0.105883 + 0.994379i \(0.533767\pi\)
\(410\) 1.45317e40 0.461495
\(411\) 3.99776e39 0.122256
\(412\) 2.64244e40 0.778213
\(413\) −5.41389e40 −1.53562
\(414\) −4.11014e37 −0.00112293
\(415\) 4.23400e39 0.111431
\(416\) 2.16758e39 0.0549577
\(417\) 2.42531e39 0.0592460
\(418\) −5.38793e37 −0.00126821
\(419\) −3.15528e40 −0.715682 −0.357841 0.933783i \(-0.616487\pi\)
−0.357841 + 0.933783i \(0.616487\pi\)
\(420\) −1.42756e39 −0.0312054
\(421\) −7.71785e40 −1.62601 −0.813007 0.582255i \(-0.802171\pi\)
−0.813007 + 0.582255i \(0.802171\pi\)
\(422\) −8.33298e39 −0.169222
\(423\) −4.65597e40 −0.911454
\(424\) 7.83393e38 0.0147846
\(425\) −7.80047e39 −0.141936
\(426\) −8.91459e39 −0.156406
\(427\) −1.97909e40 −0.334836
\(428\) −2.64200e40 −0.431077
\(429\) −1.93758e39 −0.0304911
\(430\) 6.31370e39 0.0958347
\(431\) 9.22561e40 1.35082 0.675410 0.737442i \(-0.263967\pi\)
0.675410 + 0.737442i \(0.263967\pi\)
\(432\) −5.23417e39 −0.0739350
\(433\) 6.53246e40 0.890255 0.445128 0.895467i \(-0.353158\pi\)
0.445128 + 0.895467i \(0.353158\pi\)
\(434\) −4.19460e40 −0.551569
\(435\) 5.27840e39 0.0669760
\(436\) 2.02782e40 0.248307
\(437\) 3.75881e35 4.44209e−6 0
\(438\) −2.18881e39 −0.0249666
\(439\) 8.52177e40 0.938274 0.469137 0.883125i \(-0.344565\pi\)
0.469137 + 0.883125i \(0.344565\pi\)
\(440\) 9.75646e39 0.103699
\(441\) 1.23011e40 0.126225
\(442\) −1.57469e40 −0.156009
\(443\) −4.89158e40 −0.467942 −0.233971 0.972244i \(-0.575172\pi\)
−0.233971 + 0.972244i \(0.575172\pi\)
\(444\) 4.16292e39 0.0384558
\(445\) 6.20048e40 0.553153
\(446\) 4.79447e40 0.413096
\(447\) 1.32814e40 0.110529
\(448\) 1.45111e40 0.116652
\(449\) −8.10411e40 −0.629343 −0.314671 0.949201i \(-0.601894\pi\)
−0.314671 + 0.949201i \(0.601894\pi\)
\(450\) −1.84284e40 −0.138259
\(451\) 1.32041e41 0.957133
\(452\) 5.34336e40 0.374256
\(453\) 3.22712e40 0.218420
\(454\) −9.11899e40 −0.596460
\(455\) −2.05247e40 −0.129748
\(456\) 2.36631e37 0.000144583 0
\(457\) 2.68355e41 1.58492 0.792462 0.609921i \(-0.208799\pi\)
0.792462 + 0.609921i \(0.208799\pi\)
\(458\) 2.34463e40 0.133863
\(459\) 3.80250e40 0.209880
\(460\) −6.80644e37 −0.000363223 0
\(461\) −1.16938e41 −0.603381 −0.301690 0.953406i \(-0.597551\pi\)
−0.301690 + 0.953406i \(0.597551\pi\)
\(462\) −1.29714e40 −0.0647195
\(463\) 2.03109e41 0.979993 0.489997 0.871724i \(-0.336998\pi\)
0.489997 + 0.871724i \(0.336998\pi\)
\(464\) −5.36549e40 −0.250369
\(465\) 1.23860e40 0.0559000
\(466\) −1.48895e41 −0.649980
\(467\) 2.49286e41 1.05265 0.526327 0.850282i \(-0.323569\pi\)
0.526327 + 0.850282i \(0.323569\pi\)
\(468\) −3.72016e40 −0.151968
\(469\) −2.45357e41 −0.969661
\(470\) −7.71035e40 −0.294820
\(471\) 6.85015e40 0.253441
\(472\) −1.62502e41 −0.581778
\(473\) 5.73688e40 0.198760
\(474\) −4.32868e40 −0.145141
\(475\) 1.68531e38 0.000546927 0
\(476\) −1.05420e41 −0.331141
\(477\) −1.34452e40 −0.0408819
\(478\) 3.05826e41 0.900206
\(479\) −2.95683e41 −0.842608 −0.421304 0.906920i \(-0.638427\pi\)
−0.421304 + 0.906920i \(0.638427\pi\)
\(480\) −4.28492e39 −0.0118223
\(481\) 5.98523e40 0.159894
\(482\) 3.37686e40 0.0873543
\(483\) 9.04926e37 0.000226690 0
\(484\) −1.17447e41 −0.284929
\(485\) −2.64096e41 −0.620533
\(486\) 1.35257e41 0.307821
\(487\) −2.29047e41 −0.504924 −0.252462 0.967607i \(-0.581240\pi\)
−0.252462 + 0.967607i \(0.581240\pi\)
\(488\) −5.94037e40 −0.126855
\(489\) 2.11425e40 0.0437390
\(490\) 2.03707e40 0.0408288
\(491\) 4.43398e41 0.861055 0.430528 0.902577i \(-0.358328\pi\)
0.430528 + 0.902577i \(0.358328\pi\)
\(492\) −5.79908e40 −0.109119
\(493\) 3.89790e41 0.710727
\(494\) 3.40217e38 0.000601157 0
\(495\) −1.67448e41 −0.286747
\(496\) −1.25904e41 −0.208965
\(497\) −8.58044e41 −1.38034
\(498\) −1.68964e40 −0.0263475
\(499\) −9.05766e40 −0.136917 −0.0684585 0.997654i \(-0.521808\pi\)
−0.0684585 + 0.997654i \(0.521808\pi\)
\(500\) −3.05176e40 −0.0447214
\(501\) 4.07497e40 0.0578949
\(502\) −3.80884e40 −0.0524669
\(503\) 5.15192e41 0.688122 0.344061 0.938947i \(-0.388197\pi\)
0.344061 + 0.938947i \(0.388197\pi\)
\(504\) −2.49050e41 −0.322562
\(505\) −4.55468e41 −0.572060
\(506\) −6.18461e38 −0.000753319 0
\(507\) −1.14352e41 −0.135089
\(508\) 5.24136e41 0.600560
\(509\) −1.43567e42 −1.59562 −0.797810 0.602909i \(-0.794008\pi\)
−0.797810 + 0.602909i \(0.794008\pi\)
\(510\) 3.11289e40 0.0335603
\(511\) −2.10676e41 −0.220339
\(512\) 4.35561e40 0.0441942
\(513\) −8.21539e38 −0.000808740 0
\(514\) 7.49269e41 0.715665
\(515\) −7.51027e41 −0.696055
\(516\) −2.51957e40 −0.0226598
\(517\) −7.00594e41 −0.611453
\(518\) 4.00688e41 0.339387
\(519\) −2.29191e41 −0.188410
\(520\) −6.16064e40 −0.0491557
\(521\) −1.70351e40 −0.0131935 −0.00659676 0.999978i \(-0.502100\pi\)
−0.00659676 + 0.999978i \(0.502100\pi\)
\(522\) 9.20866e41 0.692315
\(523\) 2.39267e42 1.74625 0.873124 0.487497i \(-0.162090\pi\)
0.873124 + 0.487497i \(0.162090\pi\)
\(524\) −3.06177e41 −0.216939
\(525\) 4.05736e40 0.0279109
\(526\) 1.40640e42 0.939354
\(527\) 9.14661e41 0.593193
\(528\) −3.89345e40 −0.0245193
\(529\) −1.63517e42 −0.999997
\(530\) −2.22654e40 −0.0132237
\(531\) 2.78898e42 1.60872
\(532\) 2.27762e39 0.00127600
\(533\) −8.33762e41 −0.453702
\(534\) −2.47439e41 −0.130791
\(535\) 7.50903e41 0.385567
\(536\) −7.36458e41 −0.367362
\(537\) −3.57711e41 −0.173353
\(538\) 2.10290e42 0.990131
\(539\) 1.85097e41 0.0846784
\(540\) 1.48764e41 0.0661294
\(541\) 1.16929e42 0.505084 0.252542 0.967586i \(-0.418733\pi\)
0.252542 + 0.967586i \(0.418733\pi\)
\(542\) −7.30583e41 −0.306677
\(543\) −1.98120e41 −0.0808222
\(544\) −3.16425e41 −0.125455
\(545\) −5.76341e41 −0.222092
\(546\) 8.19066e40 0.0306784
\(547\) 2.63927e42 0.960903 0.480451 0.877021i \(-0.340473\pi\)
0.480451 + 0.877021i \(0.340473\pi\)
\(548\) 1.15498e42 0.408766
\(549\) 1.01953e42 0.350775
\(550\) −2.77295e41 −0.0927514
\(551\) −8.42151e39 −0.00273867
\(552\) 2.71620e38 8.58829e−5 0
\(553\) −4.16643e42 −1.28093
\(554\) −1.11596e42 −0.333617
\(555\) −1.18317e41 −0.0343959
\(556\) 7.00688e41 0.198091
\(557\) −1.64861e42 −0.453276 −0.226638 0.973979i \(-0.572773\pi\)
−0.226638 + 0.973979i \(0.572773\pi\)
\(558\) 2.16086e42 0.577825
\(559\) −3.62251e41 −0.0942164
\(560\) −4.12430e41 −0.104336
\(561\) 2.82849e41 0.0696035
\(562\) −2.82347e42 −0.675882
\(563\) 1.07869e42 0.251199 0.125599 0.992081i \(-0.459915\pi\)
0.125599 + 0.992081i \(0.459915\pi\)
\(564\) 3.07692e41 0.0697092
\(565\) −1.51867e42 −0.334744
\(566\) −4.70190e42 −1.00837
\(567\) 4.17438e42 0.871073
\(568\) −2.57548e42 −0.522949
\(569\) −3.05975e42 −0.604569 −0.302285 0.953218i \(-0.597749\pi\)
−0.302285 + 0.953218i \(0.597749\pi\)
\(570\) −6.72547e38 −0.000129319 0
\(571\) −5.12850e42 −0.959689 −0.479845 0.877353i \(-0.659307\pi\)
−0.479845 + 0.877353i \(0.659307\pi\)
\(572\) −5.59780e41 −0.101948
\(573\) −3.61687e41 −0.0641116
\(574\) −5.58171e42 −0.963015
\(575\) 1.93451e39 0.000324877 0
\(576\) −7.47543e41 −0.122205
\(577\) 2.43929e42 0.388185 0.194092 0.980983i \(-0.437824\pi\)
0.194092 + 0.980983i \(0.437824\pi\)
\(578\) −2.26547e42 −0.350976
\(579\) 2.25608e41 0.0340280
\(580\) 1.52496e42 0.223937
\(581\) −1.62630e42 −0.232526
\(582\) 1.05391e42 0.146723
\(583\) −2.02312e41 −0.0274258
\(584\) −6.32360e41 −0.0834767
\(585\) 1.05733e42 0.135924
\(586\) −9.61228e42 −1.20341
\(587\) 2.87287e42 0.350289 0.175144 0.984543i \(-0.443961\pi\)
0.175144 + 0.984543i \(0.443961\pi\)
\(588\) −8.12922e40 −0.00965384
\(589\) −1.97615e40 −0.00228577
\(590\) 4.61858e42 0.520358
\(591\) 2.44624e42 0.268468
\(592\) 1.20269e42 0.128579
\(593\) −1.36765e43 −1.42438 −0.712191 0.701986i \(-0.752297\pi\)
−0.712191 + 0.701986i \(0.752297\pi\)
\(594\) 1.35173e42 0.137151
\(595\) 2.99620e42 0.296182
\(596\) 3.83707e42 0.369558
\(597\) −1.03906e42 −0.0975079
\(598\) 3.90522e39 0.000357090 0
\(599\) 1.51714e43 1.35179 0.675896 0.736997i \(-0.263757\pi\)
0.675896 + 0.736997i \(0.263757\pi\)
\(600\) 1.21785e41 0.0105742
\(601\) 1.27660e43 1.08019 0.540097 0.841603i \(-0.318388\pi\)
0.540097 + 0.841603i \(0.318388\pi\)
\(602\) −2.42513e42 −0.199981
\(603\) 1.26396e43 1.01582
\(604\) 9.32335e42 0.730297
\(605\) 3.33803e42 0.254849
\(606\) 1.81761e42 0.135262
\(607\) 2.34350e43 1.69997 0.849985 0.526807i \(-0.176611\pi\)
0.849985 + 0.526807i \(0.176611\pi\)
\(608\) 6.83644e39 0.000483420 0
\(609\) −2.02746e42 −0.139761
\(610\) 1.68836e42 0.113462
\(611\) 4.42384e42 0.289842
\(612\) 5.43072e42 0.346905
\(613\) −2.26166e43 −1.40861 −0.704304 0.709899i \(-0.748741\pi\)
−0.704304 + 0.709899i \(0.748741\pi\)
\(614\) −1.98027e42 −0.120258
\(615\) 1.64820e42 0.0975989
\(616\) −3.74751e42 −0.216392
\(617\) −2.88548e43 −1.62479 −0.812396 0.583107i \(-0.801837\pi\)
−0.812396 + 0.583107i \(0.801837\pi\)
\(618\) 2.99708e42 0.164580
\(619\) 2.76080e43 1.47853 0.739265 0.673415i \(-0.235173\pi\)
0.739265 + 0.673415i \(0.235173\pi\)
\(620\) 3.57841e42 0.186904
\(621\) −9.43014e39 −0.000480395 0
\(622\) −1.50912e43 −0.749847
\(623\) −2.38164e43 −1.15428
\(624\) 2.45849e41 0.0116227
\(625\) 8.67362e41 0.0400000
\(626\) −1.75675e43 −0.790328
\(627\) −6.11104e39 −0.000268206 0
\(628\) 1.97905e43 0.847390
\(629\) −8.73727e42 −0.364998
\(630\) 7.07844e42 0.288509
\(631\) 1.61493e43 0.642241 0.321120 0.947038i \(-0.395941\pi\)
0.321120 + 0.947038i \(0.395941\pi\)
\(632\) −1.25058e43 −0.485286
\(633\) −9.45133e41 −0.0357878
\(634\) 3.67313e43 1.35723
\(635\) −1.48968e43 −0.537157
\(636\) 8.88530e40 0.00312671
\(637\) −1.16878e42 −0.0401394
\(638\) 1.38564e43 0.464442
\(639\) 4.42023e43 1.44605
\(640\) −1.23794e42 −0.0395285
\(641\) −5.20265e43 −1.62153 −0.810765 0.585371i \(-0.800949\pi\)
−0.810765 + 0.585371i \(0.800949\pi\)
\(642\) −2.99658e42 −0.0911661
\(643\) −6.52863e43 −1.93889 −0.969443 0.245318i \(-0.921108\pi\)
−0.969443 + 0.245318i \(0.921108\pi\)
\(644\) 2.61439e40 0.000757948 0
\(645\) 7.16104e41 0.0202675
\(646\) −4.96650e40 −0.00137229
\(647\) −3.65399e43 −0.985714 −0.492857 0.870110i \(-0.664047\pi\)
−0.492857 + 0.870110i \(0.664047\pi\)
\(648\) 1.25297e43 0.330011
\(649\) 4.19663e43 1.07921
\(650\) 1.75096e42 0.0439662
\(651\) −4.75755e42 −0.116648
\(652\) 6.10821e42 0.146243
\(653\) −6.96769e43 −1.62905 −0.814525 0.580128i \(-0.803003\pi\)
−0.814525 + 0.580128i \(0.803003\pi\)
\(654\) 2.29997e42 0.0525130
\(655\) 8.70209e42 0.194036
\(656\) −1.67539e43 −0.364844
\(657\) 1.08530e43 0.230828
\(658\) 2.96159e43 0.615210
\(659\) −2.01525e43 −0.408888 −0.204444 0.978878i \(-0.565539\pi\)
−0.204444 + 0.978878i \(0.565539\pi\)
\(660\) 1.10658e42 0.0219308
\(661\) 2.46780e43 0.477735 0.238868 0.971052i \(-0.423224\pi\)
0.238868 + 0.971052i \(0.423224\pi\)
\(662\) −1.41418e43 −0.267427
\(663\) −1.78603e42 −0.0329936
\(664\) −4.88147e42 −0.0880939
\(665\) −6.47338e40 −0.00114129
\(666\) −2.06415e43 −0.355542
\(667\) −9.66673e40 −0.00162678
\(668\) 1.17729e43 0.193574
\(669\) 5.43793e42 0.0873632
\(670\) 2.09314e43 0.328578
\(671\) 1.53411e43 0.235319
\(672\) 1.64586e42 0.0246700
\(673\) −3.35922e43 −0.492046 −0.246023 0.969264i \(-0.579124\pi\)
−0.246023 + 0.969264i \(0.579124\pi\)
\(674\) −4.01996e43 −0.575431
\(675\) −4.22813e42 −0.0591480
\(676\) −3.30369e43 −0.451674
\(677\) −2.53983e43 −0.339375 −0.169687 0.985498i \(-0.554276\pi\)
−0.169687 + 0.985498i \(0.554276\pi\)
\(678\) 6.06048e42 0.0791492
\(679\) 1.01441e44 1.29488
\(680\) 8.99333e42 0.112210
\(681\) −1.03428e43 −0.126142
\(682\) 3.25149e43 0.387636
\(683\) −3.53141e43 −0.411554 −0.205777 0.978599i \(-0.565972\pi\)
−0.205777 + 0.978599i \(0.565972\pi\)
\(684\) −1.17332e41 −0.00133674
\(685\) −3.28265e43 −0.365612
\(686\) −6.84269e43 −0.745080
\(687\) 2.65930e42 0.0283099
\(688\) −7.27920e42 −0.0757639
\(689\) 1.27748e42 0.0130004
\(690\) −7.71992e39 −7.68160e−5 0
\(691\) 1.98378e44 1.93011 0.965057 0.262039i \(-0.0843948\pi\)
0.965057 + 0.262039i \(0.0843948\pi\)
\(692\) −6.62148e43 −0.629957
\(693\) 6.43176e43 0.598363
\(694\) 4.25619e43 0.387212
\(695\) −1.99148e43 −0.177178
\(696\) −6.08558e42 −0.0529492
\(697\) 1.21713e44 1.03569
\(698\) 1.05597e44 0.878802
\(699\) −1.68878e43 −0.137460
\(700\) 1.17220e43 0.0933214
\(701\) −8.09544e43 −0.630393 −0.315196 0.949026i \(-0.602070\pi\)
−0.315196 + 0.949026i \(0.602070\pi\)
\(702\) −8.53540e42 −0.0650127
\(703\) 1.88771e41 0.00140646
\(704\) −1.12484e43 −0.0819814
\(705\) −8.74514e42 −0.0623498
\(706\) −1.28608e44 −0.897009
\(707\) 1.74948e44 1.19373
\(708\) −1.84311e43 −0.123037
\(709\) 4.65712e43 0.304159 0.152080 0.988368i \(-0.451403\pi\)
0.152080 + 0.988368i \(0.451403\pi\)
\(710\) 7.31996e43 0.467740
\(711\) 2.14634e44 1.34190
\(712\) −7.14866e43 −0.437305
\(713\) −2.26835e41 −0.00135776
\(714\) −1.19568e43 −0.0700312
\(715\) 1.59099e43 0.0911852
\(716\) −1.03345e44 −0.579612
\(717\) 3.46870e43 0.190380
\(718\) 1.62824e44 0.874561
\(719\) −2.54329e44 −1.33690 −0.668448 0.743759i \(-0.733041\pi\)
−0.668448 + 0.743759i \(0.733041\pi\)
\(720\) 2.12465e43 0.109303
\(721\) 2.88474e44 1.45248
\(722\) −1.43486e44 −0.707101
\(723\) 3.83006e42 0.0184741
\(724\) −5.72381e43 −0.270232
\(725\) −4.33421e43 −0.200295
\(726\) −1.33209e43 −0.0602581
\(727\) 7.55040e42 0.0334338 0.0167169 0.999860i \(-0.494679\pi\)
0.0167169 + 0.999860i \(0.494679\pi\)
\(728\) 2.36633e43 0.102575
\(729\) −2.04622e44 −0.868312
\(730\) 1.79728e43 0.0746639
\(731\) 5.28816e43 0.215073
\(732\) −6.73762e42 −0.0268278
\(733\) −9.66566e43 −0.376808 −0.188404 0.982092i \(-0.560331\pi\)
−0.188404 + 0.982092i \(0.560331\pi\)
\(734\) −3.12857e44 −1.19414
\(735\) 2.31046e42 0.00863466
\(736\) 7.84729e40 0.000287153 0
\(737\) 1.90191e44 0.681466
\(738\) 2.87543e44 1.00886
\(739\) −4.93183e44 −1.69441 −0.847207 0.531263i \(-0.821718\pi\)
−0.847207 + 0.531263i \(0.821718\pi\)
\(740\) −3.41826e43 −0.115004
\(741\) 3.85876e40 0.000127135 0
\(742\) 8.55225e42 0.0275943
\(743\) −5.37148e44 −1.69734 −0.848668 0.528927i \(-0.822595\pi\)
−0.848668 + 0.528927i \(0.822595\pi\)
\(744\) −1.42801e43 −0.0441928
\(745\) −1.09056e44 −0.330543
\(746\) −1.23080e44 −0.365373
\(747\) 8.37795e43 0.243595
\(748\) 8.17170e43 0.232722
\(749\) −2.88426e44 −0.804574
\(750\) −3.46133e42 −0.00945787
\(751\) −2.98383e44 −0.798647 −0.399323 0.916810i \(-0.630755\pi\)
−0.399323 + 0.916810i \(0.630755\pi\)
\(752\) 8.88943e43 0.233076
\(753\) −4.32002e42 −0.0110959
\(754\) −8.74954e43 −0.220155
\(755\) −2.64985e44 −0.653197
\(756\) −5.71411e43 −0.137994
\(757\) 2.45658e44 0.581226 0.290613 0.956841i \(-0.406141\pi\)
0.290613 + 0.956841i \(0.406141\pi\)
\(758\) 4.08355e44 0.946597
\(759\) −7.01463e40 −0.000159315 0
\(760\) −1.94303e41 −0.000432384 0
\(761\) 2.66898e44 0.581947 0.290974 0.956731i \(-0.406021\pi\)
0.290974 + 0.956731i \(0.406021\pi\)
\(762\) 5.94479e43 0.127009
\(763\) 2.21376e44 0.463447
\(764\) −1.04494e44 −0.214360
\(765\) −1.54350e44 −0.310281
\(766\) −1.92568e44 −0.379348
\(767\) −2.64993e44 −0.511571
\(768\) 4.94017e42 0.00934637
\(769\) 5.03004e44 0.932638 0.466319 0.884617i \(-0.345580\pi\)
0.466319 + 0.884617i \(0.345580\pi\)
\(770\) 1.06511e44 0.193547
\(771\) 8.49827e43 0.151352
\(772\) 6.51795e43 0.113774
\(773\) 2.30815e44 0.394895 0.197448 0.980313i \(-0.436735\pi\)
0.197448 + 0.980313i \(0.436735\pi\)
\(774\) 1.24931e44 0.209501
\(775\) −1.01704e44 −0.167172
\(776\) 3.04482e44 0.490574
\(777\) 4.54463e43 0.0717750
\(778\) 8.27026e44 1.28037
\(779\) −2.62964e42 −0.00399086
\(780\) −6.98744e42 −0.0103957
\(781\) 6.65121e44 0.970085
\(782\) −5.70086e41 −0.000815147 0
\(783\) 2.11280e44 0.296177
\(784\) −2.34858e43 −0.0322780
\(785\) −5.62481e44 −0.757928
\(786\) −3.47269e43 −0.0458793
\(787\) −7.09018e44 −0.918436 −0.459218 0.888324i \(-0.651870\pi\)
−0.459218 + 0.888324i \(0.651870\pi\)
\(788\) 7.06734e44 0.897635
\(789\) 1.59515e44 0.198659
\(790\) 3.55437e44 0.434053
\(791\) 5.83331e44 0.698521
\(792\) 1.93054e44 0.226693
\(793\) −9.68700e43 −0.111546
\(794\) 9.20155e43 0.103907
\(795\) −2.52536e42 −0.00279661
\(796\) −3.00192e44 −0.326022
\(797\) 5.10873e44 0.544138 0.272069 0.962278i \(-0.412292\pi\)
0.272069 + 0.962278i \(0.412292\pi\)
\(798\) 2.58329e41 0.000269854 0
\(799\) −6.45795e44 −0.661637
\(800\) 3.51844e43 0.0353553
\(801\) 1.22691e45 1.20923
\(802\) −1.08338e45 −1.04731
\(803\) 1.63308e44 0.154852
\(804\) −8.35296e43 −0.0776912
\(805\) −7.43055e41 −0.000677930 0
\(806\) −2.05312e44 −0.183748
\(807\) 2.38512e44 0.209397
\(808\) 5.25119e44 0.452253
\(809\) −4.75268e44 −0.401547 −0.200774 0.979638i \(-0.564346\pi\)
−0.200774 + 0.979638i \(0.564346\pi\)
\(810\) −3.56116e44 −0.295171
\(811\) −1.22424e45 −0.995507 −0.497753 0.867319i \(-0.665842\pi\)
−0.497753 + 0.867319i \(0.665842\pi\)
\(812\) −5.85747e44 −0.467296
\(813\) −8.28633e43 −0.0648573
\(814\) −3.10597e44 −0.238517
\(815\) −1.73606e44 −0.130804
\(816\) −3.58891e43 −0.0265317
\(817\) −1.14252e42 −0.000828747 0
\(818\) −2.10385e44 −0.149741
\(819\) −4.06128e44 −0.283637
\(820\) 4.76175e44 0.326326
\(821\) 1.17121e45 0.787621 0.393811 0.919192i \(-0.371157\pi\)
0.393811 + 0.919192i \(0.371157\pi\)
\(822\) 1.30999e44 0.0864477
\(823\) −2.18225e45 −1.41321 −0.706606 0.707608i \(-0.749774\pi\)
−0.706606 + 0.707608i \(0.749774\pi\)
\(824\) 8.65875e44 0.550279
\(825\) −3.14510e43 −0.0196155
\(826\) −1.77402e45 −1.08585
\(827\) −5.38658e44 −0.323577 −0.161788 0.986825i \(-0.551726\pi\)
−0.161788 + 0.986825i \(0.551726\pi\)
\(828\) −1.34681e42 −0.000794029 0
\(829\) 9.22833e44 0.533983 0.266992 0.963699i \(-0.413970\pi\)
0.266992 + 0.963699i \(0.413970\pi\)
\(830\) 1.38740e44 0.0787935
\(831\) −1.26573e44 −0.0705548
\(832\) 7.10273e43 0.0388610
\(833\) 1.70619e44 0.0916282
\(834\) 7.94726e43 0.0418932
\(835\) −3.34605e44 −0.173138
\(836\) −1.76552e42 −0.000896757 0
\(837\) 4.95779e44 0.247197
\(838\) −1.03392e45 −0.506063
\(839\) 9.63372e44 0.462896 0.231448 0.972847i \(-0.425654\pi\)
0.231448 + 0.972847i \(0.425654\pi\)
\(840\) −4.67782e43 −0.0220655
\(841\) 6.38218e42 0.00295550
\(842\) −2.52899e45 −1.14976
\(843\) −3.20241e44 −0.142938
\(844\) −2.73055e44 −0.119658
\(845\) 9.38965e44 0.403990
\(846\) −1.52567e45 −0.644496
\(847\) −1.28216e45 −0.531800
\(848\) 2.56702e43 0.0104543
\(849\) −5.33294e44 −0.213254
\(850\) −2.55606e44 −0.100364
\(851\) 2.16683e42 0.000835444 0
\(852\) −2.92113e44 −0.110595
\(853\) 1.08243e45 0.402431 0.201215 0.979547i \(-0.435511\pi\)
0.201215 + 0.979547i \(0.435511\pi\)
\(854\) −6.48507e44 −0.236765
\(855\) 3.33478e42 0.00119562
\(856\) −8.65732e44 −0.304818
\(857\) 2.89543e45 1.00118 0.500588 0.865686i \(-0.333117\pi\)
0.500588 + 0.865686i \(0.333117\pi\)
\(858\) −6.34907e43 −0.0215604
\(859\) 4.47852e45 1.49362 0.746811 0.665037i \(-0.231584\pi\)
0.746811 + 0.665037i \(0.231584\pi\)
\(860\) 2.06887e44 0.0677653
\(861\) −6.33082e44 −0.203663
\(862\) 3.02305e45 0.955174
\(863\) −2.09655e44 −0.0650637 −0.0325318 0.999471i \(-0.510357\pi\)
−0.0325318 + 0.999471i \(0.510357\pi\)
\(864\) −1.71513e44 −0.0522799
\(865\) 1.88194e45 0.563451
\(866\) 2.14056e45 0.629506
\(867\) −2.56952e44 −0.0742259
\(868\) −1.37449e45 −0.390018
\(869\) 3.22965e45 0.900220
\(870\) 1.72963e44 0.0473592
\(871\) −1.20095e45 −0.323030
\(872\) 6.64476e44 0.175579
\(873\) −5.22574e45 −1.35652
\(874\) 1.23169e40 3.14103e−6 0
\(875\) −3.33159e44 −0.0834692
\(876\) −7.17228e43 −0.0176540
\(877\) −2.72532e45 −0.659058 −0.329529 0.944145i \(-0.606890\pi\)
−0.329529 + 0.944145i \(0.606890\pi\)
\(878\) 2.79241e45 0.663460
\(879\) −1.09023e45 −0.254502
\(880\) 3.19700e44 0.0733264
\(881\) 9.19216e44 0.207153 0.103576 0.994621i \(-0.466971\pi\)
0.103576 + 0.994621i \(0.466971\pi\)
\(882\) 4.03081e44 0.0892544
\(883\) −7.82916e45 −1.70343 −0.851715 0.524006i \(-0.824437\pi\)
−0.851715 + 0.524006i \(0.824437\pi\)
\(884\) −5.15996e44 −0.110315
\(885\) 5.23843e44 0.110048
\(886\) −1.60287e45 −0.330885
\(887\) 6.91786e45 1.40332 0.701658 0.712514i \(-0.252443\pi\)
0.701658 + 0.712514i \(0.252443\pi\)
\(888\) 1.36411e44 0.0271924
\(889\) 5.72196e45 1.12090
\(890\) 2.03177e45 0.391138
\(891\) −3.23581e45 −0.612180
\(892\) 1.57105e45 0.292103
\(893\) 1.39526e43 0.00254951
\(894\) 4.35204e44 0.0781558
\(895\) 2.93724e45 0.518421
\(896\) 4.75500e44 0.0824852
\(897\) 4.42933e41 7.55188e−5 0
\(898\) −2.65555e45 −0.445012
\(899\) 5.08217e45 0.837094
\(900\) −6.03860e44 −0.0977637
\(901\) −1.86488e44 −0.0296767
\(902\) 4.32672e45 0.676796
\(903\) −2.75060e44 −0.0422928
\(904\) 1.75091e45 0.264639
\(905\) 1.62680e45 0.241703
\(906\) 1.05746e45 0.154446
\(907\) 6.85626e45 0.984406 0.492203 0.870481i \(-0.336192\pi\)
0.492203 + 0.870481i \(0.336192\pi\)
\(908\) −2.98811e45 −0.421761
\(909\) −9.01248e45 −1.25056
\(910\) −6.72553e44 −0.0917455
\(911\) −5.37359e45 −0.720659 −0.360329 0.932825i \(-0.617336\pi\)
−0.360329 + 0.932825i \(0.617336\pi\)
\(912\) 7.75394e41 0.000102236 0
\(913\) 1.26065e45 0.163417
\(914\) 8.79346e45 1.12071
\(915\) 1.91495e44 0.0239955
\(916\) 7.68289e44 0.0946553
\(917\) −3.34252e45 −0.404901
\(918\) 1.24600e45 0.148408
\(919\) −6.16031e45 −0.721460 −0.360730 0.932670i \(-0.617472\pi\)
−0.360730 + 0.932670i \(0.617472\pi\)
\(920\) −2.23033e42 −0.000256838 0
\(921\) −2.24604e44 −0.0254327
\(922\) −3.83182e45 −0.426654
\(923\) −4.19985e45 −0.459841
\(924\) −4.25045e44 −0.0457636
\(925\) 9.71528e44 0.102863
\(926\) 6.65547e45 0.692960
\(927\) −1.48608e46 −1.52162
\(928\) −1.75816e45 −0.177038
\(929\) 2.88812e45 0.286004 0.143002 0.989722i \(-0.454324\pi\)
0.143002 + 0.989722i \(0.454324\pi\)
\(930\) 4.05866e44 0.0395273
\(931\) −3.68626e42 −0.000353074 0
\(932\) −4.87901e45 −0.459605
\(933\) −1.71166e45 −0.158581
\(934\) 8.16859e45 0.744339
\(935\) −2.32254e45 −0.208153
\(936\) −1.21902e45 −0.107457
\(937\) −1.88038e46 −1.63035 −0.815176 0.579214i \(-0.803360\pi\)
−0.815176 + 0.579214i \(0.803360\pi\)
\(938\) −8.03987e45 −0.685654
\(939\) −1.99252e45 −0.167142
\(940\) −2.52653e45 −0.208469
\(941\) −1.34822e46 −1.09426 −0.547131 0.837047i \(-0.684280\pi\)
−0.547131 + 0.837047i \(0.684280\pi\)
\(942\) 2.24466e45 0.179210
\(943\) −3.01847e43 −0.00237058
\(944\) −5.32486e45 −0.411379
\(945\) 1.62405e45 0.123426
\(946\) 1.87986e45 0.140544
\(947\) −6.95396e45 −0.511455 −0.255728 0.966749i \(-0.582315\pi\)
−0.255728 + 0.966749i \(0.582315\pi\)
\(948\) −1.41842e45 −0.102630
\(949\) −1.03119e45 −0.0734031
\(950\) 5.52243e42 0.000386736 0
\(951\) 4.16610e45 0.287033
\(952\) −3.45439e45 −0.234152
\(953\) 2.10814e46 1.40592 0.702959 0.711231i \(-0.251862\pi\)
0.702959 + 0.711231i \(0.251862\pi\)
\(954\) −4.40571e44 −0.0289079
\(955\) 2.96989e45 0.191729
\(956\) 1.00213e46 0.636542
\(957\) 1.57161e45 0.0982222
\(958\) −9.68893e45 −0.595814
\(959\) 1.26088e46 0.762933
\(960\) −1.40408e44 −0.00835965
\(961\) −5.14359e45 −0.301338
\(962\) 1.96124e45 0.113062
\(963\) 1.48583e46 0.842874
\(964\) 1.10653e45 0.0617688
\(965\) −1.85251e45 −0.101762
\(966\) 2.96526e42 0.000160294 0
\(967\) 1.29856e46 0.690798 0.345399 0.938456i \(-0.387744\pi\)
0.345399 + 0.938456i \(0.387744\pi\)
\(968\) −3.84849e45 −0.201475
\(969\) −5.63304e42 −0.000290218 0
\(970\) −8.65389e45 −0.438783
\(971\) −2.83985e45 −0.141709 −0.0708545 0.997487i \(-0.522573\pi\)
−0.0708545 + 0.997487i \(0.522573\pi\)
\(972\) 4.43210e45 0.217662
\(973\) 7.64937e45 0.369723
\(974\) −7.50541e45 −0.357035
\(975\) 1.98595e44 0.00929816
\(976\) −1.94654e45 −0.0896998
\(977\) 2.71188e46 1.23000 0.614999 0.788528i \(-0.289156\pi\)
0.614999 + 0.788528i \(0.289156\pi\)
\(978\) 6.92798e44 0.0309282
\(979\) 1.84615e46 0.811214
\(980\) 6.67507e44 0.0288703
\(981\) −1.14042e46 −0.485508
\(982\) 1.45293e46 0.608858
\(983\) 3.99445e46 1.64770 0.823850 0.566808i \(-0.191822\pi\)
0.823850 + 0.566808i \(0.191822\pi\)
\(984\) −1.90024e45 −0.0771587
\(985\) −2.00866e46 −0.802869
\(986\) 1.27726e46 0.502560
\(987\) 3.35906e45 0.130107
\(988\) 1.11482e43 0.000425082 0
\(989\) −1.31146e43 −0.000492279 0
\(990\) −5.48692e45 −0.202760
\(991\) 4.15190e46 1.51045 0.755223 0.655468i \(-0.227528\pi\)
0.755223 + 0.655468i \(0.227528\pi\)
\(992\) −4.12562e45 −0.147761
\(993\) −1.60397e45 −0.0565566
\(994\) −2.81164e46 −0.976046
\(995\) 8.53197e45 0.291603
\(996\) −5.53660e44 −0.0186305
\(997\) −2.30150e46 −0.762493 −0.381247 0.924473i \(-0.624505\pi\)
−0.381247 + 0.924473i \(0.624505\pi\)
\(998\) −2.96801e45 −0.0968150
\(999\) −4.73591e45 −0.152103
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.32.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.32.a.c.1.1 2 1.1 even 1 trivial