Properties

Label 10.32.a.b
Level $10$
Weight $32$
Character orbit 10.a
Self dual yes
Analytic conductor $60.877$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,32,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 32, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 32);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 32 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8771328190\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{337159}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 337159 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 240\sqrt{337159}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 32768 q^{2} + (27 \beta + 14512122) q^{3} + 1073741824 q^{4} - 30517578125 q^{5} + ( - 884736 \beta - 475533213696) q^{6} + ( - 116265709 \beta + 6397579052606) q^{7} - 35184372088832 q^{8} + (783654588 \beta - 392914270067463) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 32768 q^{2} + (27 \beta + 14512122) q^{3} + 1073741824 q^{4} - 30517578125 q^{5} + ( - 884736 \beta - 475533213696) q^{6} + ( - 116265709 \beta + 6397579052606) q^{7} - 35184372088832 q^{8} + (783654588 \beta - 392914270067463) q^{9} + 10\!\cdots\!00 q^{10}+ \cdots + (69\!\cdots\!70 \beta - 26\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 65536 q^{2} + 29024244 q^{3} + 2147483648 q^{4} - 61035156250 q^{5} - 951066427392 q^{6} + 12795158105212 q^{7} - 70368744177664 q^{8} - 785828540134926 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 65536 q^{2} + 29024244 q^{3} + 2147483648 q^{4} - 61035156250 q^{5} - 951066427392 q^{6} + 12795158105212 q^{7} - 70368744177664 q^{8} - 785828540134926 q^{9} + 20\!\cdots\!00 q^{10}+ \cdots - 52\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−580.654
580.654
−32768.0 1.07495e7 1.07374e9 −3.05176e10 −3.52239e11 2.26000e13 −3.51844e13 −5.02122e14 1.00000e15
1.2 −32768.0 1.82748e7 1.07374e9 −3.05176e10 −5.98827e11 −9.80486e12 −3.51844e13 −2.83707e14 1.00000e15
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.32.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.32.a.b 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 29024244T_{3} + 196444243669284 \) acting on \(S_{32}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 32768)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots + 196444243669284 \) Copy content Toggle raw display
$5$ \( (T + 30517578125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 22\!\cdots\!64 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 61\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 75\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 62\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 33\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 34\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 65\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 35\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 57\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 45\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 12\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 45\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 68\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 24\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 23\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 85\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 41\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 20\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 36\!\cdots\!96 \) Copy content Toggle raw display
show more
show less