Properties

Label 10.32.a
Level $10$
Weight $32$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $4$
Sturm bound $48$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 32 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{32}(\Gamma_0(10))\).

Total New Old
Modular forms 49 9 40
Cusp forms 45 9 36
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(5\)
Minus space\(-\)\(4\)

Trace form

\( 9 q + 32768 q^{2} + 62917228 q^{3} + 9663676416 q^{4} + 30517578125 q^{5} + 546512961536 q^{6} + 40452679234344 q^{7} + 35184372088832 q^{8} + 773625920806333 q^{9} + 10\!\cdots\!00 q^{10} - 33\!\cdots\!92 q^{11}+ \cdots - 34\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{32}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.32.a.a 10.a 1.a $2$ $60.877$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.32.a.a \(-65536\) \(-5904756\) \(61035156250\) \(18\!\cdots\!12\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{15}q^{2}+(-2952378-\beta )q^{3}+2^{30}q^{4}+\cdots\)
10.32.a.b 10.a 1.a $2$ $60.877$ \(\Q(\sqrt{337159}) \) None 10.32.a.b \(-65536\) \(29024244\) \(-61035156250\) \(12\!\cdots\!12\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{15}q^{2}+(14512122+3^{3}\beta )q^{3}+\cdots\)
10.32.a.c 10.a 1.a $2$ $60.877$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.32.a.c \(65536\) \(38938356\) \(-61035156250\) \(-12\!\cdots\!12\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{15}q^{2}+(19469178+\beta )q^{3}+2^{30}q^{4}+\cdots\)
10.32.a.d 10.a 1.a $3$ $60.877$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 10.32.a.d \(98304\) \(859384\) \(91552734375\) \(21\!\cdots\!32\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{15}q^{2}+(286461-\beta _{1})q^{3}+2^{30}q^{4}+\cdots\)

Decomposition of \(S_{32}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{32}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{32}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{32}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{32}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)