Properties

Label 10.32
Level 10
Weight 32
Dimension 25
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 192
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 32 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(192\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{32}(\Gamma_1(10))\).

Total New Old
Modular forms 97 25 72
Cusp forms 89 25 64
Eisenstein series 8 0 8

Trace form

\( 25 q + 32768 q^{2} + 62917228 q^{3} - 7516192768 q^{4} - 45002762995 q^{5} + 568547737600 q^{6} + 40452679234344 q^{7} + 35184372088832 q^{8} - 39\!\cdots\!59 q^{9} - 210191519416320 q^{10} - 34\!\cdots\!00 q^{11}+ \cdots - 23\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{32}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.32.a \(\chi_{10}(1, \cdot)\) 10.32.a.a 2 1
10.32.a.b 2
10.32.a.c 2
10.32.a.d 3
10.32.b \(\chi_{10}(9, \cdot)\) 10.32.b.a 16 1

Decomposition of \(S_{32}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{32}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{32}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{32}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{32}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{32}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)