Properties

Label 10.30.a.a.1.1
Level $10$
Weight $30$
Character 10.1
Self dual yes
Analytic conductor $53.278$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,30,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 30, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 30);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 30 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2780423830\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2788867122 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(52810.2\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16384.0 q^{2} -1.13281e7 q^{3} +2.68435e8 q^{4} +6.10352e9 q^{5} -1.85600e11 q^{6} -1.13928e12 q^{7} +4.39805e12 q^{8} +5.96960e13 q^{9} +1.00000e14 q^{10} +8.82435e14 q^{11} -3.04087e15 q^{12} -4.32539e15 q^{13} -1.86659e16 q^{14} -6.91414e16 q^{15} +7.20576e16 q^{16} +3.39413e17 q^{17} +9.78060e17 q^{18} +2.08701e18 q^{19} +1.63840e18 q^{20} +1.29059e19 q^{21} +1.44578e19 q^{22} +3.66538e19 q^{23} -4.98216e19 q^{24} +3.72529e19 q^{25} -7.08672e19 q^{26} +1.01209e20 q^{27} -3.05822e20 q^{28} -2.44890e21 q^{29} -1.13281e21 q^{30} -6.72385e21 q^{31} +1.18059e21 q^{32} -9.99633e21 q^{33} +5.56094e21 q^{34} -6.95359e21 q^{35} +1.60245e22 q^{36} +2.27705e22 q^{37} +3.41935e22 q^{38} +4.89986e22 q^{39} +2.68435e22 q^{40} -2.16421e23 q^{41} +2.11450e23 q^{42} -7.28120e23 q^{43} +2.36877e23 q^{44} +3.64356e23 q^{45} +6.00537e23 q^{46} -1.17763e22 q^{47} -8.16277e23 q^{48} -1.92196e24 q^{49} +6.10352e23 q^{50} -3.84491e24 q^{51} -1.16109e24 q^{52} -4.78965e24 q^{53} +1.65821e24 q^{54} +5.38595e24 q^{55} -5.01059e24 q^{56} -2.36419e25 q^{57} -4.01228e25 q^{58} +1.10270e25 q^{59} -1.85600e25 q^{60} -1.50517e26 q^{61} -1.10164e26 q^{62} -6.80103e25 q^{63} +1.93428e25 q^{64} -2.64001e25 q^{65} -1.63780e26 q^{66} +1.06338e26 q^{67} +9.11104e25 q^{68} -4.15219e26 q^{69} -1.13928e26 q^{70} +9.12798e23 q^{71} +2.62546e26 q^{72} +3.38899e26 q^{73} +3.73071e26 q^{74} -4.22006e26 q^{75} +5.60227e26 q^{76} -1.00534e27 q^{77} +8.02793e26 q^{78} -5.65480e27 q^{79} +4.39805e26 q^{80} -5.24347e27 q^{81} -3.54585e27 q^{82} +5.57801e27 q^{83} +3.46439e27 q^{84} +2.07161e27 q^{85} -1.19295e28 q^{86} +2.77415e28 q^{87} +3.88099e27 q^{88} +3.24606e28 q^{89} +5.96960e27 q^{90} +4.92782e27 q^{91} +9.83919e27 q^{92} +7.61686e28 q^{93} -1.92944e26 q^{94} +1.27381e28 q^{95} -1.33739e28 q^{96} -8.84369e28 q^{97} -3.14893e28 q^{98} +5.26778e28 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32768 q^{2} - 3644748 q^{3} + 536870912 q^{4} + 12207031250 q^{5} - 59715551232 q^{6} - 2619992530316 q^{7} + 8796093022208 q^{8} + 50099928783786 q^{9} + 200000000000000 q^{10} - 609601386608016 q^{11}+ \cdots + 66\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16384.0 0.707107
\(3\) −1.13281e7 −1.36741 −0.683707 0.729757i \(-0.739633\pi\)
−0.683707 + 0.729757i \(0.739633\pi\)
\(4\) 2.68435e8 0.500000
\(5\) 6.10352e9 0.447214
\(6\) −1.85600e11 −0.966907
\(7\) −1.13928e12 −0.634903 −0.317452 0.948274i \(-0.602827\pi\)
−0.317452 + 0.948274i \(0.602827\pi\)
\(8\) 4.39805e12 0.353553
\(9\) 5.96960e13 0.869819
\(10\) 1.00000e14 0.316228
\(11\) 8.82435e14 0.700630 0.350315 0.936632i \(-0.386075\pi\)
0.350315 + 0.936632i \(0.386075\pi\)
\(12\) −3.04087e15 −0.683707
\(13\) −4.32539e15 −0.304682 −0.152341 0.988328i \(-0.548681\pi\)
−0.152341 + 0.988328i \(0.548681\pi\)
\(14\) −1.86659e16 −0.448944
\(15\) −6.91414e16 −0.611526
\(16\) 7.20576e16 0.250000
\(17\) 3.39413e17 0.488899 0.244449 0.969662i \(-0.421393\pi\)
0.244449 + 0.969662i \(0.421393\pi\)
\(18\) 9.78060e17 0.615055
\(19\) 2.08701e18 0.599235 0.299617 0.954059i \(-0.403141\pi\)
0.299617 + 0.954059i \(0.403141\pi\)
\(20\) 1.63840e18 0.223607
\(21\) 1.29059e19 0.868175
\(22\) 1.44578e19 0.495420
\(23\) 3.66538e19 0.659274 0.329637 0.944108i \(-0.393074\pi\)
0.329637 + 0.944108i \(0.393074\pi\)
\(24\) −4.98216e19 −0.483454
\(25\) 3.72529e19 0.200000
\(26\) −7.08672e19 −0.215443
\(27\) 1.01209e20 0.178011
\(28\) −3.05822e20 −0.317452
\(29\) −2.44890e21 −1.52827 −0.764135 0.645056i \(-0.776834\pi\)
−0.764135 + 0.645056i \(0.776834\pi\)
\(30\) −1.13281e21 −0.432414
\(31\) −6.72385e21 −1.59541 −0.797707 0.603046i \(-0.793954\pi\)
−0.797707 + 0.603046i \(0.793954\pi\)
\(32\) 1.18059e21 0.176777
\(33\) −9.99633e21 −0.958051
\(34\) 5.56094e21 0.345704
\(35\) −6.95359e21 −0.283937
\(36\) 1.60245e22 0.434910
\(37\) 2.27705e22 0.415381 0.207691 0.978195i \(-0.433405\pi\)
0.207691 + 0.978195i \(0.433405\pi\)
\(38\) 3.41935e22 0.423723
\(39\) 4.89986e22 0.416626
\(40\) 2.68435e22 0.158114
\(41\) −2.16421e23 −0.891116 −0.445558 0.895253i \(-0.646995\pi\)
−0.445558 + 0.895253i \(0.646995\pi\)
\(42\) 2.11450e23 0.613892
\(43\) −7.28120e23 −1.50283 −0.751416 0.659829i \(-0.770629\pi\)
−0.751416 + 0.659829i \(0.770629\pi\)
\(44\) 2.36877e23 0.350315
\(45\) 3.64356e23 0.388995
\(46\) 6.00537e23 0.466177
\(47\) −1.17763e22 −0.00669255 −0.00334627 0.999994i \(-0.501065\pi\)
−0.00334627 + 0.999994i \(0.501065\pi\)
\(48\) −8.16277e23 −0.341853
\(49\) −1.92196e24 −0.596898
\(50\) 6.10352e23 0.141421
\(51\) −3.84491e24 −0.668527
\(52\) −1.16109e24 −0.152341
\(53\) −4.78965e24 −0.476765 −0.238382 0.971171i \(-0.576617\pi\)
−0.238382 + 0.971171i \(0.576617\pi\)
\(54\) 1.65821e24 0.125873
\(55\) 5.38595e24 0.313331
\(56\) −5.01059e24 −0.224472
\(57\) −2.36419e25 −0.819402
\(58\) −4.01228e25 −1.08065
\(59\) 1.10270e25 0.231794 0.115897 0.993261i \(-0.463026\pi\)
0.115897 + 0.993261i \(0.463026\pi\)
\(60\) −1.85600e25 −0.305763
\(61\) −1.50517e26 −1.95121 −0.975603 0.219544i \(-0.929543\pi\)
−0.975603 + 0.219544i \(0.929543\pi\)
\(62\) −1.10164e26 −1.12813
\(63\) −6.80103e25 −0.552251
\(64\) 1.93428e25 0.125000
\(65\) −2.64001e25 −0.136258
\(66\) −1.63780e26 −0.677444
\(67\) 1.06338e26 0.353674 0.176837 0.984240i \(-0.443413\pi\)
0.176837 + 0.984240i \(0.443413\pi\)
\(68\) 9.11104e25 0.244449
\(69\) −4.15219e26 −0.901500
\(70\) −1.13928e26 −0.200774
\(71\) 9.12798e23 0.00130957 0.000654785 1.00000i \(-0.499792\pi\)
0.000654785 1.00000i \(0.499792\pi\)
\(72\) 2.62546e26 0.307528
\(73\) 3.38899e26 0.325004 0.162502 0.986708i \(-0.448044\pi\)
0.162502 + 0.986708i \(0.448044\pi\)
\(74\) 3.73071e26 0.293719
\(75\) −4.22006e26 −0.273483
\(76\) 5.60227e26 0.299617
\(77\) −1.00534e27 −0.444832
\(78\) 8.02793e26 0.294599
\(79\) −5.65480e27 −1.72514 −0.862570 0.505938i \(-0.831146\pi\)
−0.862570 + 0.505938i \(0.831146\pi\)
\(80\) 4.39805e26 0.111803
\(81\) −5.24347e27 −1.11323
\(82\) −3.54585e27 −0.630114
\(83\) 5.57801e27 0.831470 0.415735 0.909486i \(-0.363524\pi\)
0.415735 + 0.909486i \(0.363524\pi\)
\(84\) 3.46439e27 0.434087
\(85\) 2.07161e27 0.218642
\(86\) −1.19295e28 −1.06266
\(87\) 2.77415e28 2.08978
\(88\) 3.88099e27 0.247710
\(89\) 3.24606e28 1.75874 0.879370 0.476139i \(-0.157964\pi\)
0.879370 + 0.476139i \(0.157964\pi\)
\(90\) 5.96960e27 0.275061
\(91\) 4.92782e27 0.193444
\(92\) 9.83919e27 0.329637
\(93\) 7.61686e28 2.18159
\(94\) −1.92944e26 −0.00473235
\(95\) 1.27381e28 0.267986
\(96\) −1.33739e28 −0.241727
\(97\) −8.84369e28 −1.37544 −0.687722 0.725974i \(-0.741389\pi\)
−0.687722 + 0.725974i \(0.741389\pi\)
\(98\) −3.14893e28 −0.422071
\(99\) 5.26778e28 0.609421
\(100\) 1.00000e28 0.100000
\(101\) −1.11329e29 −0.963714 −0.481857 0.876250i \(-0.660038\pi\)
−0.481857 + 0.876250i \(0.660038\pi\)
\(102\) −6.29950e28 −0.472720
\(103\) 2.11516e29 1.37786 0.688928 0.724830i \(-0.258082\pi\)
0.688928 + 0.724830i \(0.258082\pi\)
\(104\) −1.90233e28 −0.107721
\(105\) 7.87711e28 0.388260
\(106\) −7.84737e28 −0.337123
\(107\) −3.06975e29 −1.15090 −0.575450 0.817837i \(-0.695173\pi\)
−0.575450 + 0.817837i \(0.695173\pi\)
\(108\) 2.71682e28 0.0890054
\(109\) −3.95931e29 −1.13484 −0.567420 0.823428i \(-0.692059\pi\)
−0.567420 + 0.823428i \(0.692059\pi\)
\(110\) 8.82435e28 0.221559
\(111\) −2.57947e29 −0.567998
\(112\) −8.20935e28 −0.158726
\(113\) 6.07867e29 1.03317 0.516584 0.856237i \(-0.327203\pi\)
0.516584 + 0.856237i \(0.327203\pi\)
\(114\) −3.87349e29 −0.579404
\(115\) 2.23717e29 0.294836
\(116\) −6.57372e29 −0.764135
\(117\) −2.58209e29 −0.265018
\(118\) 1.80666e29 0.163903
\(119\) −3.86685e29 −0.310403
\(120\) −3.04087e29 −0.216207
\(121\) −8.07618e29 −0.509118
\(122\) −2.46607e30 −1.37971
\(123\) 2.45165e30 1.21852
\(124\) −1.80492e30 −0.797707
\(125\) 2.27374e29 0.0894427
\(126\) −1.11428e30 −0.390500
\(127\) 1.94592e30 0.608094 0.304047 0.952657i \(-0.401662\pi\)
0.304047 + 0.952657i \(0.401662\pi\)
\(128\) 3.16913e29 0.0883883
\(129\) 8.24823e30 2.05499
\(130\) −4.32539e29 −0.0963489
\(131\) 5.97259e30 1.19050 0.595249 0.803541i \(-0.297053\pi\)
0.595249 + 0.803541i \(0.297053\pi\)
\(132\) −2.68337e30 −0.479025
\(133\) −2.37768e30 −0.380456
\(134\) 1.74224e30 0.250085
\(135\) 6.17733e29 0.0796088
\(136\) 1.49275e30 0.172852
\(137\) −2.32228e30 −0.241806 −0.120903 0.992664i \(-0.538579\pi\)
−0.120903 + 0.992664i \(0.538579\pi\)
\(138\) −6.80295e30 −0.637457
\(139\) 1.58029e31 1.33359 0.666795 0.745241i \(-0.267666\pi\)
0.666795 + 0.745241i \(0.267666\pi\)
\(140\) −1.86659e30 −0.141969
\(141\) 1.33404e29 0.00915148
\(142\) 1.49553e28 0.000926006 0
\(143\) −3.81688e30 −0.213469
\(144\) 4.30155e30 0.217455
\(145\) −1.49469e31 −0.683463
\(146\) 5.55252e30 0.229813
\(147\) 2.17722e31 0.816206
\(148\) 6.11240e30 0.207691
\(149\) 7.30661e30 0.225172 0.112586 0.993642i \(-0.464087\pi\)
0.112586 + 0.993642i \(0.464087\pi\)
\(150\) −6.91414e30 −0.193381
\(151\) 4.13377e31 1.04998 0.524990 0.851109i \(-0.324069\pi\)
0.524990 + 0.851109i \(0.324069\pi\)
\(152\) 9.17876e30 0.211861
\(153\) 2.02616e31 0.425254
\(154\) −1.64714e31 −0.314544
\(155\) −4.10391e31 −0.713491
\(156\) 1.31530e31 0.208313
\(157\) −4.72325e31 −0.681861 −0.340931 0.940088i \(-0.610742\pi\)
−0.340931 + 0.940088i \(0.610742\pi\)
\(158\) −9.26482e31 −1.21986
\(159\) 5.42578e31 0.651934
\(160\) 7.20576e30 0.0790569
\(161\) −4.17589e31 −0.418575
\(162\) −8.59091e31 −0.787175
\(163\) −7.30208e31 −0.611965 −0.305982 0.952037i \(-0.598985\pi\)
−0.305982 + 0.952037i \(0.598985\pi\)
\(164\) −5.80952e31 −0.445558
\(165\) −6.10128e31 −0.428453
\(166\) 9.13901e31 0.587938
\(167\) −2.20886e32 −1.30251 −0.651253 0.758861i \(-0.725756\pi\)
−0.651253 + 0.758861i \(0.725756\pi\)
\(168\) 5.67606e31 0.306946
\(169\) −1.82829e32 −0.907169
\(170\) 3.39413e31 0.154603
\(171\) 1.24586e32 0.521226
\(172\) −1.95453e32 −0.751416
\(173\) −3.35891e32 −1.18722 −0.593608 0.804754i \(-0.702297\pi\)
−0.593608 + 0.804754i \(0.702297\pi\)
\(174\) 4.54516e32 1.47770
\(175\) −4.24413e31 −0.126981
\(176\) 6.35861e31 0.175157
\(177\) −1.24915e32 −0.316959
\(178\) 5.31835e32 1.24362
\(179\) 6.57424e32 1.41735 0.708674 0.705536i \(-0.249294\pi\)
0.708674 + 0.705536i \(0.249294\pi\)
\(180\) 9.78060e31 0.194498
\(181\) −9.44787e32 −1.73378 −0.866891 0.498497i \(-0.833885\pi\)
−0.866891 + 0.498497i \(0.833885\pi\)
\(182\) 8.07373e31 0.136785
\(183\) 1.70508e33 2.66810
\(184\) 1.61205e32 0.233089
\(185\) 1.38980e32 0.185764
\(186\) 1.24795e33 1.54262
\(187\) 2.99510e32 0.342537
\(188\) −3.16119e30 −0.00334627
\(189\) −1.15305e32 −0.113020
\(190\) 2.08701e32 0.189495
\(191\) −1.69303e33 −1.42456 −0.712279 0.701896i \(-0.752337\pi\)
−0.712279 + 0.701896i \(0.752337\pi\)
\(192\) −2.19118e32 −0.170927
\(193\) −4.67493e32 −0.338216 −0.169108 0.985598i \(-0.554089\pi\)
−0.169108 + 0.985598i \(0.554089\pi\)
\(194\) −1.44895e33 −0.972586
\(195\) 2.99064e32 0.186321
\(196\) −5.15921e32 −0.298449
\(197\) 5.06239e32 0.272017 0.136008 0.990708i \(-0.456573\pi\)
0.136008 + 0.990708i \(0.456573\pi\)
\(198\) 8.63074e32 0.430926
\(199\) −1.00457e33 −0.466241 −0.233120 0.972448i \(-0.574894\pi\)
−0.233120 + 0.972448i \(0.574894\pi\)
\(200\) 1.63840e32 0.0707107
\(201\) −1.20461e33 −0.483619
\(202\) −1.82401e33 −0.681449
\(203\) 2.78997e33 0.970304
\(204\) −1.03211e33 −0.334263
\(205\) −1.32093e33 −0.398519
\(206\) 3.46548e33 0.974291
\(207\) 2.18809e33 0.573449
\(208\) −3.11677e32 −0.0761705
\(209\) 1.84165e33 0.419842
\(210\) 1.29059e33 0.274541
\(211\) −4.62096e33 −0.917564 −0.458782 0.888549i \(-0.651714\pi\)
−0.458782 + 0.888549i \(0.651714\pi\)
\(212\) −1.28571e33 −0.238382
\(213\) −1.03403e31 −0.00179072
\(214\) −5.02947e33 −0.813810
\(215\) −4.44409e33 −0.672087
\(216\) 4.45124e32 0.0629363
\(217\) 7.66032e33 1.01293
\(218\) −6.48693e33 −0.802454
\(219\) −3.83909e33 −0.444415
\(220\) 1.44578e33 0.156666
\(221\) −1.46809e33 −0.148959
\(222\) −4.22620e33 −0.401635
\(223\) −2.05052e34 −1.82576 −0.912880 0.408229i \(-0.866147\pi\)
−0.912880 + 0.408229i \(0.866147\pi\)
\(224\) −1.34502e33 −0.112236
\(225\) 2.22385e33 0.173964
\(226\) 9.95929e33 0.730560
\(227\) 1.49366e34 1.02773 0.513863 0.857872i \(-0.328214\pi\)
0.513863 + 0.857872i \(0.328214\pi\)
\(228\) −6.34632e33 −0.409701
\(229\) −3.97878e33 −0.241066 −0.120533 0.992709i \(-0.538460\pi\)
−0.120533 + 0.992709i \(0.538460\pi\)
\(230\) 3.66538e33 0.208481
\(231\) 1.13886e34 0.608269
\(232\) −1.07704e34 −0.540325
\(233\) 3.61387e33 0.170338 0.0851691 0.996367i \(-0.472857\pi\)
0.0851691 + 0.996367i \(0.472857\pi\)
\(234\) −4.23049e33 −0.187396
\(235\) −7.18771e31 −0.00299300
\(236\) 2.96003e33 0.115897
\(237\) 6.40582e34 2.35898
\(238\) −6.33545e33 −0.219488
\(239\) −2.66949e33 −0.0870281 −0.0435140 0.999053i \(-0.513855\pi\)
−0.0435140 + 0.999053i \(0.513855\pi\)
\(240\) −4.98216e33 −0.152881
\(241\) 6.10378e34 1.76340 0.881702 0.471808i \(-0.156398\pi\)
0.881702 + 0.471808i \(0.156398\pi\)
\(242\) −1.32320e34 −0.360001
\(243\) 5.24527e34 1.34424
\(244\) −4.04041e34 −0.975603
\(245\) −1.17307e34 −0.266941
\(246\) 4.01678e34 0.861627
\(247\) −9.02713e33 −0.182576
\(248\) −2.95718e34 −0.564064
\(249\) −6.31884e34 −1.13696
\(250\) 3.72529e33 0.0632456
\(251\) −4.09524e34 −0.656160 −0.328080 0.944650i \(-0.606402\pi\)
−0.328080 + 0.944650i \(0.606402\pi\)
\(252\) −1.82564e34 −0.276125
\(253\) 3.23446e34 0.461907
\(254\) 3.18819e34 0.429987
\(255\) −2.34675e34 −0.298974
\(256\) 5.19230e33 0.0625000
\(257\) 5.85244e34 0.665743 0.332871 0.942972i \(-0.391982\pi\)
0.332871 + 0.942972i \(0.391982\pi\)
\(258\) 1.35139e35 1.45310
\(259\) −2.59418e34 −0.263727
\(260\) −7.08672e33 −0.0681290
\(261\) −1.46190e35 −1.32932
\(262\) 9.78549e34 0.841809
\(263\) 1.14684e35 0.933565 0.466783 0.884372i \(-0.345413\pi\)
0.466783 + 0.884372i \(0.345413\pi\)
\(264\) −4.39643e34 −0.338722
\(265\) −2.92337e34 −0.213216
\(266\) −3.89559e34 −0.269023
\(267\) −3.67718e35 −2.40492
\(268\) 2.85448e34 0.176837
\(269\) −2.06966e32 −0.00121476 −0.000607382 1.00000i \(-0.500193\pi\)
−0.000607382 1.00000i \(0.500193\pi\)
\(270\) 1.01209e34 0.0562919
\(271\) −2.04880e35 −1.08005 −0.540027 0.841648i \(-0.681586\pi\)
−0.540027 + 0.841648i \(0.681586\pi\)
\(272\) 2.44573e34 0.122225
\(273\) −5.58229e34 −0.264517
\(274\) −3.80483e34 −0.170983
\(275\) 3.28733e34 0.140126
\(276\) −1.11460e35 −0.450750
\(277\) −3.48284e35 −1.33652 −0.668262 0.743926i \(-0.732961\pi\)
−0.668262 + 0.743926i \(0.732961\pi\)
\(278\) 2.58915e35 0.942991
\(279\) −4.01387e35 −1.38772
\(280\) −3.05822e34 −0.100387
\(281\) 2.68138e35 0.835828 0.417914 0.908487i \(-0.362761\pi\)
0.417914 + 0.908487i \(0.362761\pi\)
\(282\) 2.18569e33 0.00647107
\(283\) 4.14392e35 1.16549 0.582744 0.812656i \(-0.301979\pi\)
0.582744 + 0.812656i \(0.301979\pi\)
\(284\) 2.45027e32 0.000654785 0
\(285\) −1.44299e35 −0.366448
\(286\) −6.25357e34 −0.150946
\(287\) 2.46564e35 0.565773
\(288\) 7.04766e34 0.153764
\(289\) −3.66767e35 −0.760978
\(290\) −2.44890e35 −0.483282
\(291\) 1.00182e36 1.88080
\(292\) 9.09725e34 0.162502
\(293\) 6.48883e35 1.10303 0.551513 0.834166i \(-0.314051\pi\)
0.551513 + 0.834166i \(0.314051\pi\)
\(294\) 3.56715e35 0.577145
\(295\) 6.73034e34 0.103662
\(296\) 1.00146e35 0.146859
\(297\) 8.93107e34 0.124720
\(298\) 1.19711e35 0.159221
\(299\) −1.58542e35 −0.200869
\(300\) −1.13281e35 −0.136741
\(301\) 8.29530e35 0.954152
\(302\) 6.77277e35 0.742447
\(303\) 1.26115e36 1.31780
\(304\) 1.50385e35 0.149809
\(305\) −9.18683e35 −0.872606
\(306\) 3.31966e35 0.300700
\(307\) −8.38296e35 −0.724254 −0.362127 0.932129i \(-0.617949\pi\)
−0.362127 + 0.932129i \(0.617949\pi\)
\(308\) −2.69868e35 −0.222416
\(309\) −2.39608e36 −1.88410
\(310\) −6.72385e35 −0.504514
\(311\) 1.91308e36 1.36996 0.684978 0.728563i \(-0.259812\pi\)
0.684978 + 0.728563i \(0.259812\pi\)
\(312\) 2.15498e35 0.147300
\(313\) −1.02248e36 −0.667206 −0.333603 0.942714i \(-0.608265\pi\)
−0.333603 + 0.942714i \(0.608265\pi\)
\(314\) −7.73857e35 −0.482149
\(315\) −4.15102e35 −0.246974
\(316\) −1.51795e36 −0.862570
\(317\) −1.04526e36 −0.567371 −0.283685 0.958917i \(-0.591557\pi\)
−0.283685 + 0.958917i \(0.591557\pi\)
\(318\) 8.88960e35 0.460987
\(319\) −2.16100e36 −1.07075
\(320\) 1.18059e35 0.0559017
\(321\) 3.47745e36 1.57376
\(322\) −6.84177e35 −0.295977
\(323\) 7.08358e35 0.292965
\(324\) −1.40753e36 −0.556617
\(325\) −1.61133e35 −0.0609364
\(326\) −1.19637e36 −0.432725
\(327\) 4.48515e36 1.55180
\(328\) −9.51832e35 −0.315057
\(329\) 1.34165e34 0.00424912
\(330\) −9.99633e35 −0.302962
\(331\) 4.09787e35 0.118864 0.0594322 0.998232i \(-0.481071\pi\)
0.0594322 + 0.998232i \(0.481071\pi\)
\(332\) 1.49733e36 0.415735
\(333\) 1.35931e36 0.361306
\(334\) −3.61900e36 −0.921011
\(335\) 6.49035e35 0.158168
\(336\) 9.29965e35 0.217044
\(337\) 3.32405e36 0.743076 0.371538 0.928418i \(-0.378830\pi\)
0.371538 + 0.928418i \(0.378830\pi\)
\(338\) −2.99547e36 −0.641465
\(339\) −6.88599e36 −1.41277
\(340\) 5.56094e35 0.109321
\(341\) −5.93336e36 −1.11779
\(342\) 2.04122e36 0.368562
\(343\) 5.85800e36 1.01388
\(344\) −3.20230e36 −0.531331
\(345\) −2.53430e36 −0.403163
\(346\) −5.50324e36 −0.839489
\(347\) −3.68071e36 −0.538461 −0.269230 0.963076i \(-0.586769\pi\)
−0.269230 + 0.963076i \(0.586769\pi\)
\(348\) 7.44679e36 1.04489
\(349\) −4.54962e36 −0.612359 −0.306180 0.951974i \(-0.599051\pi\)
−0.306180 + 0.951974i \(0.599051\pi\)
\(350\) −6.95359e35 −0.0897889
\(351\) −4.37770e35 −0.0542367
\(352\) 1.04180e36 0.123855
\(353\) 1.41923e37 1.61927 0.809637 0.586931i \(-0.199664\pi\)
0.809637 + 0.586931i \(0.199664\pi\)
\(354\) −2.04661e36 −0.224124
\(355\) 5.57128e33 0.000585658 0
\(356\) 8.71358e36 0.879370
\(357\) 4.38042e36 0.424450
\(358\) 1.07712e37 1.00222
\(359\) −1.36928e37 −1.22355 −0.611777 0.791030i \(-0.709545\pi\)
−0.611777 + 0.791030i \(0.709545\pi\)
\(360\) 1.60245e36 0.137531
\(361\) −7.77422e36 −0.640918
\(362\) −1.54794e37 −1.22597
\(363\) 9.14880e36 0.696174
\(364\) 1.32280e36 0.0967218
\(365\) 2.06848e36 0.145346
\(366\) 2.79360e37 1.88663
\(367\) 8.92349e36 0.579265 0.289632 0.957138i \(-0.406467\pi\)
0.289632 + 0.957138i \(0.406467\pi\)
\(368\) 2.64119e36 0.164819
\(369\) −1.29195e37 −0.775110
\(370\) 2.27705e36 0.131355
\(371\) 5.45674e36 0.302699
\(372\) 2.04463e37 1.09079
\(373\) 2.37196e37 1.21711 0.608555 0.793512i \(-0.291749\pi\)
0.608555 + 0.793512i \(0.291749\pi\)
\(374\) 4.90717e36 0.242210
\(375\) −2.57572e36 −0.122305
\(376\) −5.17929e34 −0.00236617
\(377\) 1.05925e37 0.465637
\(378\) −1.88916e36 −0.0799169
\(379\) 3.61331e35 0.0147108 0.00735540 0.999973i \(-0.497659\pi\)
0.00735540 + 0.999973i \(0.497659\pi\)
\(380\) 3.41935e36 0.133993
\(381\) −2.20436e37 −0.831515
\(382\) −2.77386e37 −1.00731
\(383\) −3.65114e37 −1.27657 −0.638287 0.769799i \(-0.720357\pi\)
−0.638287 + 0.769799i \(0.720357\pi\)
\(384\) −3.59003e36 −0.120863
\(385\) −6.13609e36 −0.198935
\(386\) −7.65941e36 −0.239155
\(387\) −4.34659e37 −1.30719
\(388\) −2.37396e37 −0.687722
\(389\) 2.30956e37 0.644555 0.322277 0.946645i \(-0.395552\pi\)
0.322277 + 0.946645i \(0.395552\pi\)
\(390\) 4.89986e36 0.131749
\(391\) 1.24408e37 0.322318
\(392\) −8.45285e36 −0.211035
\(393\) −6.76582e37 −1.62790
\(394\) 8.29422e36 0.192345
\(395\) −3.45141e37 −0.771506
\(396\) 1.41406e37 0.304711
\(397\) 3.69992e37 0.768652 0.384326 0.923197i \(-0.374434\pi\)
0.384326 + 0.923197i \(0.374434\pi\)
\(398\) −1.64589e37 −0.329682
\(399\) 2.69346e37 0.520241
\(400\) 2.68435e36 0.0500000
\(401\) −2.16794e37 −0.389451 −0.194726 0.980858i \(-0.562382\pi\)
−0.194726 + 0.980858i \(0.562382\pi\)
\(402\) −1.97363e37 −0.341970
\(403\) 2.90833e37 0.486094
\(404\) −2.98846e37 −0.481857
\(405\) −3.20036e37 −0.497853
\(406\) 4.57109e37 0.686108
\(407\) 2.00934e37 0.291028
\(408\) −1.69101e37 −0.236360
\(409\) 2.52481e37 0.340597 0.170299 0.985392i \(-0.445527\pi\)
0.170299 + 0.985392i \(0.445527\pi\)
\(410\) −2.16421e37 −0.281796
\(411\) 2.63071e37 0.330649
\(412\) 5.67784e37 0.688928
\(413\) −1.25628e37 −0.147167
\(414\) 3.58497e37 0.405490
\(415\) 3.40455e37 0.371845
\(416\) −5.10652e36 −0.0538607
\(417\) −1.79017e38 −1.82357
\(418\) 3.01736e37 0.296873
\(419\) 1.65354e38 1.57149 0.785745 0.618551i \(-0.212280\pi\)
0.785745 + 0.618551i \(0.212280\pi\)
\(420\) 2.11450e37 0.194130
\(421\) −8.40843e37 −0.745803 −0.372902 0.927871i \(-0.621637\pi\)
−0.372902 + 0.927871i \(0.621637\pi\)
\(422\) −7.57098e37 −0.648816
\(423\) −7.03001e35 −0.00582131
\(424\) −2.10651e37 −0.168562
\(425\) 1.26441e37 0.0977797
\(426\) −1.69415e35 −0.00126623
\(427\) 1.71480e38 1.23883
\(428\) −8.24029e37 −0.575450
\(429\) 4.32380e37 0.291901
\(430\) −7.28120e37 −0.475237
\(431\) 1.80805e38 1.14101 0.570504 0.821295i \(-0.306748\pi\)
0.570504 + 0.821295i \(0.306748\pi\)
\(432\) 7.29291e36 0.0445027
\(433\) 1.16835e38 0.689441 0.344721 0.938705i \(-0.387974\pi\)
0.344721 + 0.938705i \(0.387974\pi\)
\(434\) 1.25507e38 0.716252
\(435\) 1.69320e38 0.934577
\(436\) −1.06282e38 −0.567420
\(437\) 7.64969e37 0.395060
\(438\) −6.28996e37 −0.314249
\(439\) 4.05073e38 1.95793 0.978965 0.204027i \(-0.0654032\pi\)
0.978965 + 0.204027i \(0.0654032\pi\)
\(440\) 2.36877e37 0.110779
\(441\) −1.14733e38 −0.519194
\(442\) −2.40532e37 −0.105330
\(443\) −1.35343e37 −0.0573562 −0.0286781 0.999589i \(-0.509130\pi\)
−0.0286781 + 0.999589i \(0.509130\pi\)
\(444\) −6.92420e37 −0.283999
\(445\) 1.98124e38 0.786532
\(446\) −3.35957e38 −1.29101
\(447\) −8.27702e37 −0.307904
\(448\) −2.20368e37 −0.0793629
\(449\) −3.02080e38 −1.05329 −0.526647 0.850084i \(-0.676551\pi\)
−0.526647 + 0.850084i \(0.676551\pi\)
\(450\) 3.64356e37 0.123011
\(451\) −1.90978e38 −0.624343
\(452\) 1.63173e38 0.516584
\(453\) −4.68279e38 −1.43576
\(454\) 2.44722e38 0.726712
\(455\) 3.00770e37 0.0865106
\(456\) −1.03978e38 −0.289702
\(457\) −4.78002e38 −1.29016 −0.645082 0.764114i \(-0.723177\pi\)
−0.645082 + 0.764114i \(0.723177\pi\)
\(458\) −6.51884e37 −0.170459
\(459\) 3.43518e37 0.0870292
\(460\) 6.00537e37 0.147418
\(461\) −5.31155e38 −1.26345 −0.631725 0.775193i \(-0.717653\pi\)
−0.631725 + 0.775193i \(0.717653\pi\)
\(462\) 1.86591e38 0.430111
\(463\) −7.96225e37 −0.177874 −0.0889368 0.996037i \(-0.528347\pi\)
−0.0889368 + 0.996037i \(0.528347\pi\)
\(464\) −1.76462e38 −0.382068
\(465\) 4.64896e38 0.975637
\(466\) 5.92097e37 0.120447
\(467\) −4.50964e38 −0.889297 −0.444649 0.895705i \(-0.646671\pi\)
−0.444649 + 0.895705i \(0.646671\pi\)
\(468\) −6.93124e37 −0.132509
\(469\) −1.21148e38 −0.224549
\(470\) −1.17763e36 −0.00211637
\(471\) 5.35056e38 0.932386
\(472\) 4.84972e37 0.0819517
\(473\) −6.42518e38 −1.05293
\(474\) 1.04953e39 1.66805
\(475\) 7.77471e37 0.119847
\(476\) −1.03800e38 −0.155202
\(477\) −2.85923e38 −0.414699
\(478\) −4.37370e37 −0.0615381
\(479\) −1.60452e38 −0.219018 −0.109509 0.993986i \(-0.534928\pi\)
−0.109509 + 0.993986i \(0.534928\pi\)
\(480\) −8.16277e37 −0.108104
\(481\) −9.84911e37 −0.126559
\(482\) 1.00004e39 1.24691
\(483\) 4.73050e38 0.572365
\(484\) −2.16793e38 −0.254559
\(485\) −5.39776e38 −0.615118
\(486\) 8.59385e38 0.950521
\(487\) 8.94545e38 0.960356 0.480178 0.877171i \(-0.340572\pi\)
0.480178 + 0.877171i \(0.340572\pi\)
\(488\) −6.61981e38 −0.689855
\(489\) 8.27189e38 0.836809
\(490\) −1.92196e38 −0.188756
\(491\) −1.55946e39 −1.48693 −0.743466 0.668773i \(-0.766820\pi\)
−0.743466 + 0.668773i \(0.766820\pi\)
\(492\) 6.58110e38 0.609262
\(493\) −8.31188e38 −0.747170
\(494\) −1.47900e38 −0.129101
\(495\) 3.21520e38 0.272542
\(496\) −4.84504e38 −0.398853
\(497\) −1.03993e36 −0.000831450 0
\(498\) −1.03528e39 −0.803955
\(499\) −3.63205e38 −0.273964 −0.136982 0.990574i \(-0.543740\pi\)
−0.136982 + 0.990574i \(0.543740\pi\)
\(500\) 6.10352e37 0.0447214
\(501\) 2.50223e39 1.78106
\(502\) −6.70964e38 −0.463975
\(503\) −8.22824e38 −0.552804 −0.276402 0.961042i \(-0.589142\pi\)
−0.276402 + 0.961042i \(0.589142\pi\)
\(504\) −2.99112e38 −0.195250
\(505\) −6.79498e38 −0.430986
\(506\) 5.29934e38 0.326618
\(507\) 2.07111e39 1.24047
\(508\) 5.22353e38 0.304047
\(509\) 6.71381e38 0.379805 0.189903 0.981803i \(-0.439183\pi\)
0.189903 + 0.981803i \(0.439183\pi\)
\(510\) −3.84491e38 −0.211407
\(511\) −3.86100e38 −0.206346
\(512\) 8.50706e37 0.0441942
\(513\) 2.11225e38 0.106670
\(514\) 9.58863e38 0.470751
\(515\) 1.29099e39 0.616196
\(516\) 2.21412e39 1.02750
\(517\) −1.03919e37 −0.00468900
\(518\) −4.25031e38 −0.186483
\(519\) 3.80502e39 1.62342
\(520\) −1.16109e38 −0.0481745
\(521\) −2.56512e39 −1.03505 −0.517524 0.855669i \(-0.673146\pi\)
−0.517524 + 0.855669i \(0.673146\pi\)
\(522\) −2.39517e39 −0.939971
\(523\) 2.72346e39 1.03955 0.519776 0.854302i \(-0.326015\pi\)
0.519776 + 0.854302i \(0.326015\pi\)
\(524\) 1.60325e39 0.595249
\(525\) 4.80781e38 0.173635
\(526\) 1.87898e39 0.660130
\(527\) −2.28216e39 −0.779996
\(528\) −7.20312e38 −0.239513
\(529\) −1.74755e39 −0.565358
\(530\) −4.78965e38 −0.150766
\(531\) 6.58267e38 0.201619
\(532\) −6.38253e38 −0.190228
\(533\) 9.36108e38 0.271507
\(534\) −6.02469e39 −1.70054
\(535\) −1.87362e39 −0.514698
\(536\) 4.67679e38 0.125043
\(537\) −7.44738e39 −1.93810
\(538\) −3.39094e36 −0.000858967 0
\(539\) −1.69600e39 −0.418205
\(540\) 1.65821e38 0.0398044
\(541\) −5.03350e39 −1.17628 −0.588139 0.808760i \(-0.700139\pi\)
−0.588139 + 0.808760i \(0.700139\pi\)
\(542\) −3.35676e39 −0.763714
\(543\) 1.07027e40 2.37080
\(544\) 4.00708e38 0.0864259
\(545\) −2.41657e39 −0.507516
\(546\) −9.14602e38 −0.187042
\(547\) 4.65567e39 0.927183 0.463592 0.886049i \(-0.346561\pi\)
0.463592 + 0.886049i \(0.346561\pi\)
\(548\) −6.23383e38 −0.120903
\(549\) −8.98527e39 −1.69720
\(550\) 5.38595e38 0.0990840
\(551\) −5.11088e39 −0.915793
\(552\) −1.82615e39 −0.318728
\(553\) 6.44238e39 1.09530
\(554\) −5.70628e39 −0.945065
\(555\) −1.57438e39 −0.254016
\(556\) 4.24206e39 0.666795
\(557\) −5.36564e38 −0.0821715 −0.0410858 0.999156i \(-0.513082\pi\)
−0.0410858 + 0.999156i \(0.513082\pi\)
\(558\) −6.57632e39 −0.981267
\(559\) 3.14940e39 0.457886
\(560\) −5.01059e38 −0.0709843
\(561\) −3.39288e39 −0.468390
\(562\) 4.39318e39 0.591020
\(563\) 1.40550e40 1.84272 0.921358 0.388714i \(-0.127081\pi\)
0.921358 + 0.388714i \(0.127081\pi\)
\(564\) 3.58103e37 0.00457574
\(565\) 3.71012e39 0.462047
\(566\) 6.78940e39 0.824125
\(567\) 5.97376e39 0.706795
\(568\) 4.01453e36 0.000463003 0
\(569\) −1.12025e40 −1.25947 −0.629733 0.776812i \(-0.716836\pi\)
−0.629733 + 0.776812i \(0.716836\pi\)
\(570\) −2.36419e39 −0.259118
\(571\) 1.12874e40 1.20606 0.603032 0.797717i \(-0.293959\pi\)
0.603032 + 0.797717i \(0.293959\pi\)
\(572\) −1.02458e39 −0.106735
\(573\) 1.91788e40 1.94796
\(574\) 4.03970e39 0.400062
\(575\) 1.36546e39 0.131855
\(576\) 1.15469e39 0.108727
\(577\) 2.40521e39 0.220853 0.110427 0.993884i \(-0.464778\pi\)
0.110427 + 0.993884i \(0.464778\pi\)
\(578\) −6.00912e39 −0.538093
\(579\) 5.29582e39 0.462481
\(580\) −4.01228e39 −0.341732
\(581\) −6.35489e39 −0.527903
\(582\) 1.64139e40 1.32993
\(583\) −4.22656e39 −0.334035
\(584\) 1.49049e39 0.114906
\(585\) −1.57598e39 −0.118520
\(586\) 1.06313e40 0.779958
\(587\) −7.82073e39 −0.559751 −0.279875 0.960036i \(-0.590293\pi\)
−0.279875 + 0.960036i \(0.590293\pi\)
\(588\) 5.84442e39 0.408103
\(589\) −1.40327e40 −0.956027
\(590\) 1.10270e39 0.0732998
\(591\) −5.73474e39 −0.371959
\(592\) 1.64078e39 0.103845
\(593\) −3.08087e40 −1.90274 −0.951371 0.308047i \(-0.900324\pi\)
−0.951371 + 0.308047i \(0.900324\pi\)
\(594\) 1.46327e39 0.0881901
\(595\) −2.36014e39 −0.138817
\(596\) 1.96135e39 0.112586
\(597\) 1.13799e40 0.637544
\(598\) −2.59756e39 −0.142036
\(599\) −2.16140e40 −1.15358 −0.576788 0.816894i \(-0.695694\pi\)
−0.576788 + 0.816894i \(0.695694\pi\)
\(600\) −1.85600e39 −0.0966907
\(601\) 4.10064e39 0.208532 0.104266 0.994549i \(-0.466751\pi\)
0.104266 + 0.994549i \(0.466751\pi\)
\(602\) 1.35910e40 0.674687
\(603\) 6.34795e39 0.307633
\(604\) 1.10965e40 0.524990
\(605\) −4.92931e39 −0.227684
\(606\) 2.06627e40 0.931822
\(607\) 1.19472e40 0.526052 0.263026 0.964789i \(-0.415279\pi\)
0.263026 + 0.964789i \(0.415279\pi\)
\(608\) 2.46390e39 0.105931
\(609\) −3.16052e40 −1.32681
\(610\) −1.50517e40 −0.617025
\(611\) 5.09373e37 0.00203910
\(612\) 5.43893e39 0.212627
\(613\) 2.77971e40 1.06126 0.530630 0.847603i \(-0.321955\pi\)
0.530630 + 0.847603i \(0.321955\pi\)
\(614\) −1.37346e40 −0.512125
\(615\) 1.49637e40 0.544941
\(616\) −4.42152e39 −0.157272
\(617\) −3.99390e40 −1.38759 −0.693796 0.720171i \(-0.744063\pi\)
−0.693796 + 0.720171i \(0.744063\pi\)
\(618\) −3.92574e40 −1.33226
\(619\) −7.85149e39 −0.260278 −0.130139 0.991496i \(-0.541542\pi\)
−0.130139 + 0.991496i \(0.541542\pi\)
\(620\) −1.10164e40 −0.356745
\(621\) 3.70971e39 0.117358
\(622\) 3.13439e40 0.968706
\(623\) −3.69816e40 −1.11663
\(624\) 3.53072e39 0.104157
\(625\) 1.38778e39 0.0400000
\(626\) −1.67522e40 −0.471786
\(627\) −2.08624e40 −0.574097
\(628\) −1.26789e40 −0.340931
\(629\) 7.72858e39 0.203079
\(630\) −6.80103e39 −0.174637
\(631\) 4.84632e40 1.21615 0.608074 0.793880i \(-0.291942\pi\)
0.608074 + 0.793880i \(0.291942\pi\)
\(632\) −2.48701e40 −0.609929
\(633\) 5.23468e40 1.25469
\(634\) −1.71256e40 −0.401192
\(635\) 1.18769e40 0.271948
\(636\) 1.45647e40 0.325967
\(637\) 8.31321e39 0.181864
\(638\) −3.54057e40 −0.757136
\(639\) 5.44904e37 0.00113909
\(640\) 1.93428e39 0.0395285
\(641\) −6.50037e40 −1.29866 −0.649332 0.760505i \(-0.724951\pi\)
−0.649332 + 0.760505i \(0.724951\pi\)
\(642\) 5.69745e40 1.11281
\(643\) 3.24864e40 0.620358 0.310179 0.950678i \(-0.399611\pi\)
0.310179 + 0.950678i \(0.399611\pi\)
\(644\) −1.12096e40 −0.209288
\(645\) 5.03432e40 0.919020
\(646\) 1.16057e40 0.207158
\(647\) −8.73540e40 −1.52465 −0.762326 0.647193i \(-0.775943\pi\)
−0.762326 + 0.647193i \(0.775943\pi\)
\(648\) −2.30610e40 −0.393588
\(649\) 9.73060e39 0.162402
\(650\) −2.64001e39 −0.0430885
\(651\) −8.67770e40 −1.38510
\(652\) −1.96014e40 −0.305982
\(653\) 1.25208e41 1.91158 0.955790 0.294049i \(-0.0950030\pi\)
0.955790 + 0.294049i \(0.0950030\pi\)
\(654\) 7.34847e40 1.09729
\(655\) 3.64538e40 0.532407
\(656\) −1.55948e40 −0.222779
\(657\) 2.02309e40 0.282695
\(658\) 2.19816e38 0.00300458
\(659\) 6.56917e40 0.878359 0.439180 0.898399i \(-0.355269\pi\)
0.439180 + 0.898399i \(0.355269\pi\)
\(660\) −1.63780e40 −0.214227
\(661\) 4.78274e40 0.612006 0.306003 0.952031i \(-0.401008\pi\)
0.306003 + 0.952031i \(0.401008\pi\)
\(662\) 6.71394e39 0.0840498
\(663\) 1.66307e40 0.203688
\(664\) 2.45323e40 0.293969
\(665\) −1.45122e40 −0.170145
\(666\) 2.22709e40 0.255482
\(667\) −8.97616e40 −1.00755
\(668\) −5.92937e40 −0.651253
\(669\) 2.32285e41 2.49657
\(670\) 1.06338e40 0.111842
\(671\) −1.32821e41 −1.36707
\(672\) 1.52366e40 0.153473
\(673\) 6.08623e40 0.599971 0.299985 0.953944i \(-0.403018\pi\)
0.299985 + 0.953944i \(0.403018\pi\)
\(674\) 5.44612e40 0.525434
\(675\) 3.77034e39 0.0356022
\(676\) −4.90778e40 −0.453584
\(677\) 3.90992e40 0.353697 0.176849 0.984238i \(-0.443410\pi\)
0.176849 + 0.984238i \(0.443410\pi\)
\(678\) −1.12820e41 −0.998977
\(679\) 1.00754e41 0.873274
\(680\) 9.11104e39 0.0773017
\(681\) −1.69204e41 −1.40533
\(682\) −9.72121e40 −0.790400
\(683\) −7.22111e40 −0.574783 −0.287391 0.957813i \(-0.592788\pi\)
−0.287391 + 0.957813i \(0.592788\pi\)
\(684\) 3.34433e40 0.260613
\(685\) −1.41741e40 −0.108139
\(686\) 9.59775e40 0.716918
\(687\) 4.50722e40 0.329637
\(688\) −5.24666e40 −0.375708
\(689\) 2.07171e40 0.145262
\(690\) −4.15219e40 −0.285079
\(691\) −6.18228e40 −0.415640 −0.207820 0.978167i \(-0.566637\pi\)
−0.207820 + 0.978167i \(0.566637\pi\)
\(692\) −9.01651e40 −0.593608
\(693\) −6.00146e40 −0.386924
\(694\) −6.03047e40 −0.380749
\(695\) 9.64533e40 0.596400
\(696\) 1.22008e41 0.738848
\(697\) −7.34562e40 −0.435666
\(698\) −7.45410e40 −0.433003
\(699\) −4.09384e40 −0.232923
\(700\) −1.13928e40 −0.0634903
\(701\) 1.95882e41 1.06926 0.534631 0.845085i \(-0.320451\pi\)
0.534631 + 0.845085i \(0.320451\pi\)
\(702\) −7.17243e39 −0.0383511
\(703\) 4.75221e40 0.248911
\(704\) 1.70688e40 0.0875787
\(705\) 8.14233e38 0.00409267
\(706\) 2.32527e41 1.14500
\(707\) 1.26834e41 0.611865
\(708\) −3.35316e40 −0.158479
\(709\) −1.54732e41 −0.716488 −0.358244 0.933628i \(-0.616624\pi\)
−0.358244 + 0.933628i \(0.616624\pi\)
\(710\) 9.12798e37 0.000414122 0
\(711\) −3.37569e41 −1.50056
\(712\) 1.42763e41 0.621808
\(713\) −2.46455e41 −1.05181
\(714\) 7.17687e40 0.300131
\(715\) −2.32964e40 −0.0954664
\(716\) 1.76476e41 0.708674
\(717\) 3.02404e40 0.119003
\(718\) −2.24343e41 −0.865184
\(719\) 2.87780e41 1.08766 0.543828 0.839197i \(-0.316974\pi\)
0.543828 + 0.839197i \(0.316974\pi\)
\(720\) 2.62546e40 0.0972488
\(721\) −2.40975e41 −0.874804
\(722\) −1.27373e41 −0.453197
\(723\) −6.91444e41 −2.41130
\(724\) −2.53614e41 −0.866891
\(725\) −9.12287e40 −0.305654
\(726\) 1.49894e41 0.492270
\(727\) −4.19375e41 −1.35006 −0.675031 0.737789i \(-0.735870\pi\)
−0.675031 + 0.737789i \(0.735870\pi\)
\(728\) 2.16728e40 0.0683926
\(729\) −2.34329e41 −0.724898
\(730\) 3.38899e40 0.102775
\(731\) −2.47133e41 −0.734732
\(732\) 4.57703e41 1.33405
\(733\) 3.83993e41 1.09727 0.548637 0.836061i \(-0.315147\pi\)
0.548637 + 0.836061i \(0.315147\pi\)
\(734\) 1.46203e41 0.409602
\(735\) 1.32887e41 0.365019
\(736\) 4.32732e40 0.116544
\(737\) 9.38362e40 0.247795
\(738\) −2.11673e41 −0.548086
\(739\) 4.34726e41 1.10375 0.551876 0.833926i \(-0.313912\pi\)
0.551876 + 0.833926i \(0.313912\pi\)
\(740\) 3.73071e40 0.0928820
\(741\) 1.02260e41 0.249657
\(742\) 8.94032e40 0.214041
\(743\) 6.88261e40 0.161590 0.0807951 0.996731i \(-0.474254\pi\)
0.0807951 + 0.996731i \(0.474254\pi\)
\(744\) 3.34993e41 0.771308
\(745\) 4.45960e40 0.100700
\(746\) 3.88623e41 0.860627
\(747\) 3.32985e41 0.723229
\(748\) 8.03990e40 0.171269
\(749\) 3.49729e41 0.730710
\(750\) −4.22006e40 −0.0864828
\(751\) −6.97779e40 −0.140262 −0.0701308 0.997538i \(-0.522342\pi\)
−0.0701308 + 0.997538i \(0.522342\pi\)
\(752\) −8.48575e38 −0.00167314
\(753\) 4.63913e41 0.897243
\(754\) 1.73547e41 0.329255
\(755\) 2.52305e41 0.469565
\(756\) −3.09521e40 −0.0565098
\(757\) 6.69982e41 1.19998 0.599989 0.800008i \(-0.295172\pi\)
0.599989 + 0.800008i \(0.295172\pi\)
\(758\) 5.92005e39 0.0104021
\(759\) −3.66404e41 −0.631618
\(760\) 5.60227e40 0.0947473
\(761\) 8.30046e41 1.37729 0.688644 0.725100i \(-0.258206\pi\)
0.688644 + 0.725100i \(0.258206\pi\)
\(762\) −3.61162e41 −0.587970
\(763\) 4.51074e41 0.720514
\(764\) −4.54469e41 −0.712279
\(765\) 1.23667e41 0.190179
\(766\) −5.98202e41 −0.902674
\(767\) −4.76960e40 −0.0706235
\(768\) −5.88190e40 −0.0854633
\(769\) −1.35470e42 −1.93157 −0.965787 0.259338i \(-0.916496\pi\)
−0.965787 + 0.259338i \(0.916496\pi\)
\(770\) −1.00534e41 −0.140668
\(771\) −6.62971e41 −0.910346
\(772\) −1.25492e41 −0.169108
\(773\) 1.32622e42 1.75393 0.876963 0.480558i \(-0.159566\pi\)
0.876963 + 0.480558i \(0.159566\pi\)
\(774\) −7.12145e41 −0.924324
\(775\) −2.50483e41 −0.319083
\(776\) −3.88949e41 −0.486293
\(777\) 2.93872e41 0.360623
\(778\) 3.78398e41 0.455769
\(779\) −4.51673e41 −0.533988
\(780\) 8.02793e40 0.0931605
\(781\) 8.05485e38 0.000917524 0
\(782\) 2.03830e41 0.227913
\(783\) −2.47852e41 −0.272049
\(784\) −1.38491e41 −0.149225
\(785\) −2.88284e41 −0.304938
\(786\) −1.10851e42 −1.15110
\(787\) −1.42306e42 −1.45074 −0.725372 0.688357i \(-0.758332\pi\)
−0.725372 + 0.688357i \(0.758332\pi\)
\(788\) 1.35893e41 0.136008
\(789\) −1.29916e42 −1.27657
\(790\) −5.65480e41 −0.545537
\(791\) −6.92528e41 −0.655961
\(792\) 2.31680e41 0.215463
\(793\) 6.51045e41 0.594497
\(794\) 6.06195e41 0.543519
\(795\) 3.31163e41 0.291554
\(796\) −2.69662e41 −0.233120
\(797\) −7.08466e40 −0.0601414 −0.0300707 0.999548i \(-0.509573\pi\)
−0.0300707 + 0.999548i \(0.509573\pi\)
\(798\) 4.41297e41 0.367866
\(799\) −3.99704e39 −0.00327198
\(800\) 4.39805e40 0.0353553
\(801\) 1.93777e42 1.52979
\(802\) −3.55195e41 −0.275384
\(803\) 2.99056e41 0.227708
\(804\) −3.23360e41 −0.241809
\(805\) −2.54876e41 −0.187192
\(806\) 4.76500e41 0.343720
\(807\) 2.34454e39 0.00166108
\(808\) −4.89630e41 −0.340724
\(809\) −2.64896e41 −0.181060 −0.0905299 0.995894i \(-0.528856\pi\)
−0.0905299 + 0.995894i \(0.528856\pi\)
\(810\) −5.24347e41 −0.352035
\(811\) 5.45808e41 0.359946 0.179973 0.983672i \(-0.442399\pi\)
0.179973 + 0.983672i \(0.442399\pi\)
\(812\) 7.48928e41 0.485152
\(813\) 2.32091e42 1.47688
\(814\) 3.29211e41 0.205788
\(815\) −4.45684e41 −0.273679
\(816\) −2.77055e41 −0.167132
\(817\) −1.51959e42 −0.900549
\(818\) 4.13665e41 0.240839
\(819\) 2.94171e41 0.168261
\(820\) −3.54585e41 −0.199260
\(821\) 1.28422e42 0.709027 0.354514 0.935051i \(-0.384646\pi\)
0.354514 + 0.935051i \(0.384646\pi\)
\(822\) 4.31016e41 0.233804
\(823\) −3.31448e42 −1.76652 −0.883259 0.468885i \(-0.844656\pi\)
−0.883259 + 0.468885i \(0.844656\pi\)
\(824\) 9.30257e41 0.487145
\(825\) −3.72392e41 −0.191610
\(826\) −2.05829e41 −0.104063
\(827\) −1.88558e41 −0.0936730 −0.0468365 0.998903i \(-0.514914\pi\)
−0.0468365 + 0.998903i \(0.514914\pi\)
\(828\) 5.87361e41 0.286725
\(829\) −5.20112e41 −0.249492 −0.124746 0.992189i \(-0.539812\pi\)
−0.124746 + 0.992189i \(0.539812\pi\)
\(830\) 5.57801e41 0.262934
\(831\) 3.94540e42 1.82758
\(832\) −8.36652e40 −0.0380852
\(833\) −6.52336e41 −0.291823
\(834\) −2.93302e42 −1.28946
\(835\) −1.34818e42 −0.582499
\(836\) 4.94364e41 0.209921
\(837\) −6.80517e41 −0.284001
\(838\) 2.70916e42 1.11121
\(839\) 3.93914e42 1.58801 0.794004 0.607913i \(-0.207993\pi\)
0.794004 + 0.607913i \(0.207993\pi\)
\(840\) 3.46439e41 0.137271
\(841\) 3.42943e42 1.33561
\(842\) −1.37764e42 −0.527363
\(843\) −3.03750e42 −1.14292
\(844\) −1.24043e42 −0.458782
\(845\) −1.11590e42 −0.405698
\(846\) −1.15180e40 −0.00411629
\(847\) 9.20100e41 0.323240
\(848\) −3.45131e41 −0.119191
\(849\) −4.69428e42 −1.59370
\(850\) 2.07161e41 0.0691407
\(851\) 8.34625e41 0.273850
\(852\) −2.77570e39 −0.000895362 0
\(853\) 2.68152e42 0.850392 0.425196 0.905101i \(-0.360205\pi\)
0.425196 + 0.905101i \(0.360205\pi\)
\(854\) 2.80954e42 0.875982
\(855\) 7.60413e41 0.233099
\(856\) −1.35009e42 −0.406905
\(857\) 2.09539e42 0.620929 0.310465 0.950585i \(-0.399515\pi\)
0.310465 + 0.950585i \(0.399515\pi\)
\(858\) 7.08412e41 0.206405
\(859\) 4.56193e42 1.30691 0.653457 0.756963i \(-0.273318\pi\)
0.653457 + 0.756963i \(0.273318\pi\)
\(860\) −1.19295e42 −0.336043
\(861\) −2.79311e42 −0.773645
\(862\) 2.96230e42 0.806815
\(863\) 5.63111e41 0.150812 0.0754062 0.997153i \(-0.475975\pi\)
0.0754062 + 0.997153i \(0.475975\pi\)
\(864\) 1.19487e41 0.0314682
\(865\) −2.05012e42 −0.530940
\(866\) 1.91422e42 0.487509
\(867\) 4.15479e42 1.04057
\(868\) 2.05630e42 0.506466
\(869\) −4.98999e42 −1.20868
\(870\) 2.77415e42 0.660846
\(871\) −4.59953e41 −0.107758
\(872\) −1.74132e42 −0.401227
\(873\) −5.27933e42 −1.19639
\(874\) 1.25333e42 0.279350
\(875\) −2.59041e41 −0.0567875
\(876\) −1.03055e42 −0.222207
\(877\) −2.98436e42 −0.632933 −0.316466 0.948604i \(-0.602496\pi\)
−0.316466 + 0.948604i \(0.602496\pi\)
\(878\) 6.63671e42 1.38447
\(879\) −7.35063e42 −1.50829
\(880\) 3.88099e41 0.0783328
\(881\) −8.36857e42 −1.66150 −0.830750 0.556645i \(-0.812088\pi\)
−0.830750 + 0.556645i \(0.812088\pi\)
\(882\) −1.87979e42 −0.367125
\(883\) −1.29464e42 −0.248725 −0.124363 0.992237i \(-0.539689\pi\)
−0.124363 + 0.992237i \(0.539689\pi\)
\(884\) −3.94088e41 −0.0744793
\(885\) −7.62421e41 −0.141748
\(886\) −2.21745e41 −0.0405570
\(887\) 5.57695e42 1.00347 0.501735 0.865022i \(-0.332695\pi\)
0.501735 + 0.865022i \(0.332695\pi\)
\(888\) −1.13446e42 −0.200817
\(889\) −2.21694e42 −0.386080
\(890\) 3.24606e42 0.556162
\(891\) −4.62702e42 −0.779965
\(892\) −5.50432e42 −0.912880
\(893\) −2.45773e40 −0.00401041
\(894\) −1.35611e42 −0.217721
\(895\) 4.01260e42 0.633857
\(896\) −3.61051e41 −0.0561180
\(897\) 1.79599e42 0.274671
\(898\) −4.94927e42 −0.744791
\(899\) 1.64660e43 2.43822
\(900\) 5.96960e41 0.0869819
\(901\) −1.62567e42 −0.233090
\(902\) −3.12898e42 −0.441477
\(903\) −9.39701e42 −1.30472
\(904\) 2.67343e42 0.365280
\(905\) −5.76652e42 −0.775371
\(906\) −7.67228e42 −1.01523
\(907\) 6.70212e41 0.0872784 0.0436392 0.999047i \(-0.486105\pi\)
0.0436392 + 0.999047i \(0.486105\pi\)
\(908\) 4.00952e42 0.513863
\(909\) −6.64590e42 −0.838257
\(910\) 4.92782e41 0.0611722
\(911\) −2.90514e41 −0.0354937 −0.0177468 0.999843i \(-0.505649\pi\)
−0.0177468 + 0.999843i \(0.505649\pi\)
\(912\) −1.70358e42 −0.204850
\(913\) 4.92223e42 0.582553
\(914\) −7.83158e42 −0.912283
\(915\) 1.04070e43 1.19321
\(916\) −1.06805e42 −0.120533
\(917\) −6.80442e42 −0.755851
\(918\) 5.62819e41 0.0615390
\(919\) 1.45950e43 1.57083 0.785417 0.618967i \(-0.212448\pi\)
0.785417 + 0.618967i \(0.212448\pi\)
\(920\) 9.83919e41 0.104240
\(921\) 9.49632e42 0.990354
\(922\) −8.70245e42 −0.893394
\(923\) −3.94821e39 −0.000399002 0
\(924\) 3.05710e42 0.304135
\(925\) 8.48265e41 0.0830762
\(926\) −1.30453e42 −0.125776
\(927\) 1.26267e43 1.19849
\(928\) −2.89115e42 −0.270163
\(929\) 1.64002e43 1.50876 0.754380 0.656438i \(-0.227938\pi\)
0.754380 + 0.656438i \(0.227938\pi\)
\(930\) 7.61686e42 0.689879
\(931\) −4.01114e42 −0.357682
\(932\) 9.70092e41 0.0851691
\(933\) −2.16716e43 −1.87330
\(934\) −7.38859e42 −0.628828
\(935\) 1.82806e42 0.153187
\(936\) −1.13561e42 −0.0936981
\(937\) 2.23884e43 1.81886 0.909431 0.415855i \(-0.136517\pi\)
0.909431 + 0.415855i \(0.136517\pi\)
\(938\) −1.98489e42 −0.158780
\(939\) 1.15827e43 0.912347
\(940\) −1.92944e40 −0.00149650
\(941\) −8.31227e41 −0.0634848 −0.0317424 0.999496i \(-0.510106\pi\)
−0.0317424 + 0.999496i \(0.510106\pi\)
\(942\) 8.76635e42 0.659296
\(943\) −7.93268e42 −0.587490
\(944\) 7.94578e41 0.0579486
\(945\) −7.03769e41 −0.0505439
\(946\) −1.05270e43 −0.744533
\(947\) −2.07044e43 −1.44207 −0.721036 0.692897i \(-0.756334\pi\)
−0.721036 + 0.692897i \(0.756334\pi\)
\(948\) 1.71955e43 1.17949
\(949\) −1.46587e42 −0.0990229
\(950\) 1.27381e42 0.0847446
\(951\) 1.18409e43 0.775831
\(952\) −1.70066e42 −0.109744
\(953\) 1.20686e42 0.0767024 0.0383512 0.999264i \(-0.487789\pi\)
0.0383512 + 0.999264i \(0.487789\pi\)
\(954\) −4.68457e42 −0.293236
\(955\) −1.03334e43 −0.637082
\(956\) −7.16587e41 −0.0435140
\(957\) 2.44800e43 1.46416
\(958\) −2.62884e42 −0.154869
\(959\) 2.64572e42 0.153523
\(960\) −1.33739e42 −0.0764407
\(961\) 2.74482e43 1.54534
\(962\) −1.61368e42 −0.0894908
\(963\) −1.83252e43 −1.00108
\(964\) 1.63847e43 0.881702
\(965\) −2.85335e42 −0.151255
\(966\) 7.75044e42 0.404723
\(967\) −2.31073e43 −1.18868 −0.594342 0.804213i \(-0.702587\pi\)
−0.594342 + 0.804213i \(0.702587\pi\)
\(968\) −3.55194e42 −0.180000
\(969\) −8.02436e42 −0.400604
\(970\) −8.84369e42 −0.434954
\(971\) 3.43616e43 1.66493 0.832463 0.554081i \(-0.186930\pi\)
0.832463 + 0.554081i \(0.186930\pi\)
\(972\) 1.40802e43 0.672120
\(973\) −1.80039e43 −0.846701
\(974\) 1.46562e43 0.679074
\(975\) 1.82534e42 0.0833252
\(976\) −1.08459e43 −0.487801
\(977\) −2.51825e43 −1.11591 −0.557953 0.829873i \(-0.688413\pi\)
−0.557953 + 0.829873i \(0.688413\pi\)
\(978\) 1.35527e43 0.591713
\(979\) 2.86444e43 1.23223
\(980\) −3.14893e42 −0.133470
\(981\) −2.36355e43 −0.987107
\(982\) −2.55501e43 −1.05142
\(983\) −3.63495e43 −1.47392 −0.736958 0.675938i \(-0.763739\pi\)
−0.736958 + 0.675938i \(0.763739\pi\)
\(984\) 1.07825e43 0.430813
\(985\) 3.08984e42 0.121650
\(986\) −1.36182e43 −0.528329
\(987\) −1.51984e41 −0.00581030
\(988\) −2.42320e42 −0.0912880
\(989\) −2.66884e43 −0.990778
\(990\) 5.26778e42 0.192716
\(991\) −1.99032e43 −0.717555 −0.358777 0.933423i \(-0.616806\pi\)
−0.358777 + 0.933423i \(0.616806\pi\)
\(992\) −7.93812e42 −0.282032
\(993\) −4.64211e42 −0.162537
\(994\) −1.70382e40 −0.000587924 0
\(995\) −6.13141e42 −0.208509
\(996\) −1.69620e43 −0.568482
\(997\) −4.87082e43 −1.60887 −0.804437 0.594038i \(-0.797533\pi\)
−0.804437 + 0.594038i \(0.797533\pi\)
\(998\) −5.95074e42 −0.193722
\(999\) 2.30458e42 0.0739423
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.30.a.a.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.30.a.a.1.1 2 1.1 even 1 trivial