Properties

Label 10.30.a.a
Level $10$
Weight $30$
Character orbit 10.a
Self dual yes
Analytic conductor $53.278$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,30,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 30, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 30);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 30 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2780423830\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2788867122 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 30\sqrt{11155468489}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 16384 q^{2} + ( - 3 \beta - 1822374) q^{3} + 268435456 q^{4} + 6103515625 q^{5} + ( - 49152 \beta - 29857775616) q^{6} + (53879 \beta - 1309996265158) q^{7} + 4398046511104 q^{8} + (10934244 \beta + 25049964391893) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 16384 q^{2} + ( - 3 \beta - 1822374) q^{3} + 268435456 q^{4} + 6103515625 q^{5} + ( - 49152 \beta - 29857775616) q^{6} + (53879 \beta - 1309996265158) q^{7} + 4398046511104 q^{8} + (10934244 \beta + 25049964391893) q^{9} + 100000000000000 q^{10} + (374689634 \beta - 304800693304008) q^{11} + ( - 805306368 \beta - 489189795692544) q^{12} + (2277242084 \beta - 11\!\cdots\!54) q^{13}+ \cdots + (60\!\cdots\!10 \beta + 33\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32768 q^{2} - 3644748 q^{3} + 536870912 q^{4} + 12207031250 q^{5} - 59715551232 q^{6} - 2619992530316 q^{7} + 8796093022208 q^{8} + 50099928783786 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 32768 q^{2} - 3644748 q^{3} + 536870912 q^{4} + 12207031250 q^{5} - 59715551232 q^{6} - 2619992530316 q^{7} + 8796093022208 q^{8} + 50099928783786 q^{9} + 200000000000000 q^{10} - 609601386608016 q^{11} - 978379591385088 q^{12} - 23\!\cdots\!08 q^{13}+ \cdots + 66\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
52810.2
−52809.2
16384.0 −1.13281e7 2.68435e8 6.10352e9 −1.85600e11 −1.13928e12 4.39805e12 5.96960e13 1.00000e14
1.2 16384.0 7.68338e6 2.68435e8 6.10352e9 1.25884e11 −1.48072e12 4.39805e12 −9.59610e12 1.00000e14
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.30.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.30.a.a 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 3644748T_{3} - 87038247765024 \) acting on \(S_{30}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 16384)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 87038247765024 \) Copy content Toggle raw display
$5$ \( (T - 6103515625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 16\!\cdots\!64 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 13\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 81\!\cdots\!16 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 18\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 75\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 43\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 36\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 14\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 99\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 26\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 35\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 37\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 77\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 74\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 69\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 32\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 80\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 52\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 48\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 49\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 57\!\cdots\!56 \) Copy content Toggle raw display
show more
show less