Properties

Label 10.30.a
Level $10$
Weight $30$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $4$
Sturm bound $45$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 30 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(45\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{30}(\Gamma_0(10))\).

Total New Old
Modular forms 45 11 34
Cusp forms 41 11 30
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(5\)
Minus space\(-\)\(6\)

Trace form

\( 11 q - 16384 q^{2} - 15889676 q^{3} + 2952790016 q^{4} - 6103515625 q^{5} + 68507009024 q^{6} - 3301442406392 q^{7} - 4398046511104 q^{8} + 415441897106023 q^{9} - 100000000000000 q^{10} - 54708336104988 q^{11}+ \cdots + 24\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{30}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.30.a.a 10.a 1.a $2$ $53.278$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.30.a.a \(32768\) \(-3644748\) \(12207031250\) \(-26\!\cdots\!16\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{14}q^{2}+(-1822374-3\beta )q^{3}+\cdots\)
10.30.a.b 10.a 1.a $3$ $53.278$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 10.30.a.b \(-49152\) \(-5198628\) \(18310546875\) \(-435852143976\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{14}q^{2}+(-1732876+\beta _{1})q^{3}+\cdots\)
10.30.a.c 10.a 1.a $3$ $53.278$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 10.30.a.c \(-49152\) \(-4836878\) \(-18310546875\) \(-21\!\cdots\!26\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{14}q^{2}+(-1612293-\beta _{1})q^{3}+\cdots\)
10.30.a.d 10.a 1.a $3$ $53.278$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 10.30.a.d \(49152\) \(-2209422\) \(-18310546875\) \(19\!\cdots\!26\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{14}q^{2}+(-736474+\beta _{1})q^{3}+2^{28}q^{4}+\cdots\)

Decomposition of \(S_{30}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{30}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{30}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)