Properties

Label 10.30
Level 10
Weight 30
Dimension 25
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 180
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 30 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(180\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{30}(\Gamma_1(10))\).

Total New Old
Modular forms 91 25 66
Cusp forms 83 25 58
Eisenstein series 8 0 8

Trace form

\( 25 q - 16384 q^{2} - 15889676 q^{3} - 805306368 q^{4} + 22023640345 q^{5} + 71793049600 q^{6} - 3301442406392 q^{7} - 4398046511104 q^{8} + 10663690441721 q^{9} + 315117647216640 q^{10} - 27\!\cdots\!00 q^{11}+ \cdots + 62\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{30}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.30.a \(\chi_{10}(1, \cdot)\) 10.30.a.a 2 1
10.30.a.b 3
10.30.a.c 3
10.30.a.d 3
10.30.b \(\chi_{10}(9, \cdot)\) 10.30.b.a 14 1

Decomposition of \(S_{30}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{30}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{30}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{30}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)