Properties

Label 10.28.a.c.1.2
Level $10$
Weight $28$
Character 10.1
Self dual yes
Analytic conductor $46.186$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,28,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.1855574838\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{711649}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 177912 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-421.296\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8192.00 q^{2} +786688. q^{3} +6.71089e7 q^{4} -1.22070e9 q^{5} +6.44455e9 q^{6} +2.43901e10 q^{7} +5.49756e11 q^{8} -7.00672e12 q^{9} -1.00000e13 q^{10} +1.56456e14 q^{11} +5.27937e13 q^{12} -1.60378e15 q^{13} +1.99804e14 q^{14} -9.60312e14 q^{15} +4.50360e15 q^{16} -3.75540e16 q^{17} -5.73991e16 q^{18} +1.39712e17 q^{19} -8.19200e16 q^{20} +1.91874e16 q^{21} +1.28169e18 q^{22} -4.64860e18 q^{23} +4.32486e17 q^{24} +1.49012e18 q^{25} -1.31382e19 q^{26} -1.15111e19 q^{27} +1.63679e18 q^{28} +4.00120e19 q^{29} -7.86688e18 q^{30} -1.89185e20 q^{31} +3.68935e19 q^{32} +1.23082e20 q^{33} -3.07643e20 q^{34} -2.97731e19 q^{35} -4.70213e20 q^{36} +2.68895e20 q^{37} +1.14452e21 q^{38} -1.26167e21 q^{39} -6.71089e20 q^{40} +8.50604e21 q^{41} +1.57183e20 q^{42} -1.32531e22 q^{43} +1.04996e22 q^{44} +8.55313e21 q^{45} -3.80813e22 q^{46} -4.40838e22 q^{47} +3.54293e21 q^{48} -6.51175e22 q^{49} +1.22070e22 q^{50} -2.95433e22 q^{51} -1.07628e23 q^{52} -3.29888e23 q^{53} -9.42986e22 q^{54} -1.90987e23 q^{55} +1.34086e22 q^{56} +1.09910e23 q^{57} +3.27778e23 q^{58} -6.47621e23 q^{59} -6.44455e22 q^{60} -9.24075e23 q^{61} -1.54981e24 q^{62} -1.70895e23 q^{63} +3.02231e23 q^{64} +1.95774e24 q^{65} +1.00829e24 q^{66} -2.10405e24 q^{67} -2.52021e24 q^{68} -3.65700e24 q^{69} -2.43901e23 q^{70} +6.52419e24 q^{71} -3.85199e24 q^{72} +9.44471e24 q^{73} +2.20279e24 q^{74} +1.17226e24 q^{75} +9.37594e24 q^{76} +3.81600e24 q^{77} -1.03356e25 q^{78} +3.61816e24 q^{79} -5.49756e24 q^{80} +4.43748e25 q^{81} +6.96814e25 q^{82} +9.10508e25 q^{83} +1.28765e24 q^{84} +4.58423e25 q^{85} -1.08569e26 q^{86} +3.14769e25 q^{87} +8.60128e25 q^{88} +3.18108e26 q^{89} +7.00672e25 q^{90} -3.91164e25 q^{91} -3.11962e26 q^{92} -1.48830e26 q^{93} -3.61134e26 q^{94} -1.70547e26 q^{95} +2.90237e25 q^{96} +3.11846e26 q^{97} -5.33442e26 q^{98} -1.09625e27 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16384 q^{2} - 4702956 q^{3} + 134217728 q^{4} - 2441406250 q^{5} - 38526615552 q^{6} - 57185041508 q^{7} + 1099511627776 q^{8} + 15503869642194 q^{9} - 20000000000000 q^{10} + 169851430699104 q^{11}+ \cdots - 79\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8192.00 0.707107
\(3\) 786688. 0.284882 0.142441 0.989803i \(-0.454505\pi\)
0.142441 + 0.989803i \(0.454505\pi\)
\(4\) 6.71089e7 0.500000
\(5\) −1.22070e9 −0.447214
\(6\) 6.44455e9 0.201442
\(7\) 2.43901e10 0.0951461 0.0475730 0.998868i \(-0.484851\pi\)
0.0475730 + 0.998868i \(0.484851\pi\)
\(8\) 5.49756e11 0.353553
\(9\) −7.00672e12 −0.918842
\(10\) −1.00000e13 −0.316228
\(11\) 1.56456e14 1.36645 0.683223 0.730210i \(-0.260578\pi\)
0.683223 + 0.730210i \(0.260578\pi\)
\(12\) 5.27937e13 0.142441
\(13\) −1.60378e15 −1.46862 −0.734310 0.678814i \(-0.762494\pi\)
−0.734310 + 0.678814i \(0.762494\pi\)
\(14\) 1.99804e14 0.0672784
\(15\) −9.60312e14 −0.127403
\(16\) 4.50360e15 0.250000
\(17\) −3.75540e16 −0.919594 −0.459797 0.888024i \(-0.652078\pi\)
−0.459797 + 0.888024i \(0.652078\pi\)
\(18\) −5.73991e16 −0.649719
\(19\) 1.39712e17 0.762187 0.381093 0.924537i \(-0.375548\pi\)
0.381093 + 0.924537i \(0.375548\pi\)
\(20\) −8.19200e16 −0.223607
\(21\) 1.91874e16 0.0271054
\(22\) 1.28169e18 0.966223
\(23\) −4.64860e18 −1.92308 −0.961538 0.274671i \(-0.911431\pi\)
−0.961538 + 0.274671i \(0.911431\pi\)
\(24\) 4.32486e17 0.100721
\(25\) 1.49012e18 0.200000
\(26\) −1.31382e19 −1.03847
\(27\) −1.15111e19 −0.546644
\(28\) 1.63679e18 0.0475730
\(29\) 4.00120e19 0.724131 0.362066 0.932153i \(-0.382072\pi\)
0.362066 + 0.932153i \(0.382072\pi\)
\(30\) −7.86688e18 −0.0900877
\(31\) −1.89185e20 −1.39157 −0.695784 0.718251i \(-0.744943\pi\)
−0.695784 + 0.718251i \(0.744943\pi\)
\(32\) 3.68935e19 0.176777
\(33\) 1.23082e20 0.389276
\(34\) −3.07643e20 −0.650251
\(35\) −2.97731e19 −0.0425506
\(36\) −4.70213e20 −0.459421
\(37\) 2.68895e20 0.181493 0.0907465 0.995874i \(-0.471075\pi\)
0.0907465 + 0.995874i \(0.471075\pi\)
\(38\) 1.14452e21 0.538947
\(39\) −1.26167e21 −0.418384
\(40\) −6.71089e20 −0.158114
\(41\) 8.50604e21 1.43597 0.717985 0.696059i \(-0.245065\pi\)
0.717985 + 0.696059i \(0.245065\pi\)
\(42\) 1.57183e20 0.0191664
\(43\) −1.32531e22 −1.17623 −0.588117 0.808776i \(-0.700130\pi\)
−0.588117 + 0.808776i \(0.700130\pi\)
\(44\) 1.04996e22 0.683223
\(45\) 8.55313e21 0.410919
\(46\) −3.80813e22 −1.35982
\(47\) −4.40838e22 −1.17749 −0.588745 0.808318i \(-0.700378\pi\)
−0.588745 + 0.808318i \(0.700378\pi\)
\(48\) 3.54293e21 0.0712206
\(49\) −6.51175e22 −0.990947
\(50\) 1.22070e22 0.141421
\(51\) −2.95433e22 −0.261976
\(52\) −1.07628e23 −0.734310
\(53\) −3.29888e23 −1.74037 −0.870187 0.492722i \(-0.836002\pi\)
−0.870187 + 0.492722i \(0.836002\pi\)
\(54\) −9.42986e22 −0.386536
\(55\) −1.90987e23 −0.611093
\(56\) 1.34086e22 0.0336392
\(57\) 1.09910e23 0.217133
\(58\) 3.27778e23 0.512038
\(59\) −6.47621e23 −0.803191 −0.401595 0.915817i \(-0.631544\pi\)
−0.401595 + 0.915817i \(0.631544\pi\)
\(60\) −6.44455e22 −0.0637016
\(61\) −9.24075e23 −0.730726 −0.365363 0.930865i \(-0.619055\pi\)
−0.365363 + 0.930865i \(0.619055\pi\)
\(62\) −1.54981e24 −0.983988
\(63\) −1.70895e23 −0.0874242
\(64\) 3.02231e23 0.125000
\(65\) 1.95774e24 0.656787
\(66\) 1.00829e24 0.275260
\(67\) −2.10405e24 −0.468863 −0.234432 0.972133i \(-0.575323\pi\)
−0.234432 + 0.972133i \(0.575323\pi\)
\(68\) −2.52021e24 −0.459797
\(69\) −3.65700e24 −0.547850
\(70\) −2.43901e23 −0.0300878
\(71\) 6.52419e24 0.664567 0.332283 0.943180i \(-0.392181\pi\)
0.332283 + 0.943180i \(0.392181\pi\)
\(72\) −3.85199e24 −0.324860
\(73\) 9.44471e24 0.661196 0.330598 0.943772i \(-0.392750\pi\)
0.330598 + 0.943772i \(0.392750\pi\)
\(74\) 2.20279e24 0.128335
\(75\) 1.17226e24 0.0569764
\(76\) 9.37594e24 0.381093
\(77\) 3.81600e24 0.130012
\(78\) −1.03356e25 −0.295842
\(79\) 3.61816e24 0.0872012 0.0436006 0.999049i \(-0.486117\pi\)
0.0436006 + 0.999049i \(0.486117\pi\)
\(80\) −5.49756e24 −0.111803
\(81\) 4.43748e25 0.763113
\(82\) 6.96814e25 1.01538
\(83\) 9.10508e25 1.12650 0.563248 0.826288i \(-0.309552\pi\)
0.563248 + 0.826288i \(0.309552\pi\)
\(84\) 1.28765e24 0.0135527
\(85\) 4.58423e25 0.411255
\(86\) −1.08569e26 −0.831723
\(87\) 3.14769e25 0.206292
\(88\) 8.60128e25 0.483111
\(89\) 3.18108e26 1.53395 0.766973 0.641679i \(-0.221762\pi\)
0.766973 + 0.641679i \(0.221762\pi\)
\(90\) 7.00672e25 0.290563
\(91\) −3.91164e25 −0.139733
\(92\) −3.11962e26 −0.961538
\(93\) −1.48830e26 −0.396433
\(94\) −3.61134e26 −0.832612
\(95\) −1.70547e26 −0.340860
\(96\) 2.90237e25 0.0503605
\(97\) 3.11846e26 0.470459 0.235229 0.971940i \(-0.424416\pi\)
0.235229 + 0.971940i \(0.424416\pi\)
\(98\) −5.33442e26 −0.700706
\(99\) −1.09625e27 −1.25555
\(100\) 1.00000e26 0.100000
\(101\) −8.53804e26 −0.746482 −0.373241 0.927734i \(-0.621754\pi\)
−0.373241 + 0.927734i \(0.621754\pi\)
\(102\) −2.42019e26 −0.185245
\(103\) 1.09712e27 0.736123 0.368062 0.929801i \(-0.380022\pi\)
0.368062 + 0.929801i \(0.380022\pi\)
\(104\) −8.81688e26 −0.519236
\(105\) −2.34221e25 −0.0121219
\(106\) −2.70244e27 −1.23063
\(107\) 1.02584e27 0.411527 0.205764 0.978602i \(-0.434032\pi\)
0.205764 + 0.978602i \(0.434032\pi\)
\(108\) −7.72494e26 −0.273322
\(109\) 1.45319e27 0.454008 0.227004 0.973894i \(-0.427107\pi\)
0.227004 + 0.973894i \(0.427107\pi\)
\(110\) −1.56456e27 −0.432108
\(111\) 2.11537e26 0.0517041
\(112\) 1.09843e26 0.0237865
\(113\) −8.27745e26 −0.158978 −0.0794891 0.996836i \(-0.525329\pi\)
−0.0794891 + 0.996836i \(0.525329\pi\)
\(114\) 9.00383e26 0.153537
\(115\) 5.67456e27 0.860026
\(116\) 2.68516e27 0.362066
\(117\) 1.12372e28 1.34943
\(118\) −5.30531e27 −0.567942
\(119\) −9.15948e26 −0.0874957
\(120\) −5.27937e26 −0.0450438
\(121\) 1.13686e28 0.867173
\(122\) −7.57002e27 −0.516701
\(123\) 6.69159e27 0.409082
\(124\) −1.26960e28 −0.695784
\(125\) −1.81899e27 −0.0894427
\(126\) −1.39997e27 −0.0618182
\(127\) 1.19218e28 0.473144 0.236572 0.971614i \(-0.423976\pi\)
0.236572 + 0.971614i \(0.423976\pi\)
\(128\) 2.47588e27 0.0883883
\(129\) −1.04261e28 −0.335088
\(130\) 1.60378e28 0.464419
\(131\) 3.02913e28 0.790961 0.395481 0.918474i \(-0.370578\pi\)
0.395481 + 0.918474i \(0.370578\pi\)
\(132\) 8.25992e27 0.194638
\(133\) 3.40760e27 0.0725190
\(134\) −1.72364e28 −0.331536
\(135\) 1.40516e28 0.244467
\(136\) −2.06455e28 −0.325126
\(137\) 9.52278e28 1.35843 0.679213 0.733941i \(-0.262321\pi\)
0.679213 + 0.733941i \(0.262321\pi\)
\(138\) −2.99581e28 −0.387389
\(139\) 3.05255e28 0.358066 0.179033 0.983843i \(-0.442703\pi\)
0.179033 + 0.983843i \(0.442703\pi\)
\(140\) −1.99804e27 −0.0212753
\(141\) −3.46802e28 −0.335446
\(142\) 5.34461e28 0.469920
\(143\) −2.50922e29 −2.00679
\(144\) −3.15555e28 −0.229711
\(145\) −4.88428e28 −0.323841
\(146\) 7.73710e28 0.467536
\(147\) −5.12271e28 −0.282303
\(148\) 1.80453e28 0.0907465
\(149\) −4.28044e29 −1.96550 −0.982751 0.184936i \(-0.940792\pi\)
−0.982751 + 0.184936i \(0.940792\pi\)
\(150\) 9.60312e27 0.0402884
\(151\) −3.33767e29 −1.28013 −0.640066 0.768320i \(-0.721093\pi\)
−0.640066 + 0.768320i \(0.721093\pi\)
\(152\) 7.68077e28 0.269474
\(153\) 2.63131e29 0.844962
\(154\) 3.12606e28 0.0919323
\(155\) 2.30939e29 0.622328
\(156\) −8.46695e28 −0.209192
\(157\) −1.69907e29 −0.385093 −0.192546 0.981288i \(-0.561675\pi\)
−0.192546 + 0.981288i \(0.561675\pi\)
\(158\) 2.96400e28 0.0616605
\(159\) −2.59519e29 −0.495802
\(160\) −4.50360e28 −0.0790569
\(161\) −1.13380e29 −0.182973
\(162\) 3.63518e29 0.539602
\(163\) −5.25888e29 −0.718391 −0.359196 0.933262i \(-0.616949\pi\)
−0.359196 + 0.933262i \(0.616949\pi\)
\(164\) 5.70830e29 0.717985
\(165\) −1.50247e29 −0.174090
\(166\) 7.45888e29 0.796552
\(167\) 1.73272e30 1.70630 0.853149 0.521667i \(-0.174690\pi\)
0.853149 + 0.521667i \(0.174690\pi\)
\(168\) 1.05484e28 0.00958321
\(169\) 1.37958e30 1.15685
\(170\) 3.75540e29 0.290801
\(171\) −9.78926e29 −0.700329
\(172\) −8.89401e29 −0.588117
\(173\) 4.42261e29 0.270431 0.135215 0.990816i \(-0.456827\pi\)
0.135215 + 0.990816i \(0.456827\pi\)
\(174\) 2.57859e29 0.145871
\(175\) 3.63441e28 0.0190292
\(176\) 7.04617e29 0.341611
\(177\) −5.09475e29 −0.228815
\(178\) 2.60594e30 1.08466
\(179\) −3.27531e29 −0.126397 −0.0631984 0.998001i \(-0.520130\pi\)
−0.0631984 + 0.998001i \(0.520130\pi\)
\(180\) 5.73991e29 0.205459
\(181\) 1.79864e30 0.597424 0.298712 0.954343i \(-0.403443\pi\)
0.298712 + 0.954343i \(0.403443\pi\)
\(182\) −3.20442e29 −0.0988065
\(183\) −7.26958e29 −0.208171
\(184\) −2.55560e30 −0.679910
\(185\) −3.28241e29 −0.0811661
\(186\) −1.21921e30 −0.280321
\(187\) −5.87557e30 −1.25657
\(188\) −2.95841e30 −0.588745
\(189\) −2.80756e29 −0.0520110
\(190\) −1.39712e30 −0.241025
\(191\) 6.47244e29 0.104020 0.0520101 0.998647i \(-0.483437\pi\)
0.0520101 + 0.998647i \(0.483437\pi\)
\(192\) 2.37762e29 0.0356103
\(193\) −6.41550e28 −0.00895791 −0.00447895 0.999990i \(-0.501426\pi\)
−0.00447895 + 0.999990i \(0.501426\pi\)
\(194\) 2.55464e30 0.332664
\(195\) 1.54013e30 0.187107
\(196\) −4.36996e30 −0.495474
\(197\) −1.36364e31 −1.44346 −0.721732 0.692173i \(-0.756653\pi\)
−0.721732 + 0.692173i \(0.756653\pi\)
\(198\) −8.98045e30 −0.887806
\(199\) 1.77125e31 1.63592 0.817962 0.575273i \(-0.195104\pi\)
0.817962 + 0.575273i \(0.195104\pi\)
\(200\) 8.19200e29 0.0707107
\(201\) −1.65523e30 −0.133571
\(202\) −6.99436e30 −0.527843
\(203\) 9.75898e29 0.0688982
\(204\) −1.98262e30 −0.130988
\(205\) −1.03833e31 −0.642185
\(206\) 8.98758e30 0.520518
\(207\) 3.25714e31 1.76700
\(208\) −7.22279e30 −0.367155
\(209\) 2.18589e31 1.04149
\(210\) −1.91874e29 −0.00857149
\(211\) −3.07396e31 −1.28791 −0.643955 0.765063i \(-0.722708\pi\)
−0.643955 + 0.765063i \(0.722708\pi\)
\(212\) −2.21384e31 −0.870187
\(213\) 5.13250e30 0.189323
\(214\) 8.40368e30 0.290994
\(215\) 1.61781e31 0.526028
\(216\) −6.32827e30 −0.193268
\(217\) −4.61426e30 −0.132402
\(218\) 1.19045e31 0.321032
\(219\) 7.43004e30 0.188363
\(220\) −1.28169e31 −0.305546
\(221\) 6.02284e31 1.35054
\(222\) 1.73291e30 0.0365603
\(223\) −2.77369e31 −0.550735 −0.275367 0.961339i \(-0.588800\pi\)
−0.275367 + 0.961339i \(0.588800\pi\)
\(224\) 8.99837e29 0.0168196
\(225\) −1.04408e31 −0.183768
\(226\) −6.78089e30 −0.112415
\(227\) −6.22052e30 −0.0971578 −0.0485789 0.998819i \(-0.515469\pi\)
−0.0485789 + 0.998819i \(0.515469\pi\)
\(228\) 7.37594e30 0.108567
\(229\) 1.25376e32 1.73954 0.869770 0.493458i \(-0.164267\pi\)
0.869770 + 0.493458i \(0.164267\pi\)
\(230\) 4.64860e31 0.608130
\(231\) 3.00200e30 0.0370381
\(232\) 2.19968e31 0.256019
\(233\) −1.22009e32 −1.33994 −0.669970 0.742388i \(-0.733693\pi\)
−0.669970 + 0.742388i \(0.733693\pi\)
\(234\) 9.20555e31 0.954192
\(235\) 5.38132e31 0.526590
\(236\) −4.34611e31 −0.401595
\(237\) 2.84636e30 0.0248421
\(238\) −7.50345e30 −0.0618688
\(239\) −1.02378e32 −0.797690 −0.398845 0.917018i \(-0.630589\pi\)
−0.398845 + 0.917018i \(0.630589\pi\)
\(240\) −4.32486e30 −0.0318508
\(241\) −2.18292e32 −1.51988 −0.759938 0.649995i \(-0.774771\pi\)
−0.759938 + 0.649995i \(0.774771\pi\)
\(242\) 9.31318e31 0.613184
\(243\) 1.22688e32 0.764041
\(244\) −6.20136e31 −0.365363
\(245\) 7.94891e31 0.443165
\(246\) 5.48175e31 0.289265
\(247\) −2.24068e32 −1.11936
\(248\) −1.04006e32 −0.491994
\(249\) 7.16285e31 0.320918
\(250\) −1.49012e31 −0.0632456
\(251\) −8.02953e31 −0.322920 −0.161460 0.986879i \(-0.551620\pi\)
−0.161460 + 0.986879i \(0.551620\pi\)
\(252\) −1.14686e31 −0.0437121
\(253\) −7.27304e32 −2.62778
\(254\) 9.76637e31 0.334563
\(255\) 3.60636e31 0.117159
\(256\) 2.02824e31 0.0625000
\(257\) −9.14634e29 −0.00267393 −0.00133697 0.999999i \(-0.500426\pi\)
−0.00133697 + 0.999999i \(0.500426\pi\)
\(258\) −8.54102e31 −0.236943
\(259\) 6.55839e30 0.0172683
\(260\) 1.31382e32 0.328394
\(261\) −2.80353e32 −0.665362
\(262\) 2.48146e32 0.559294
\(263\) −4.16605e32 −0.891912 −0.445956 0.895055i \(-0.647136\pi\)
−0.445956 + 0.895055i \(0.647136\pi\)
\(264\) 6.76652e31 0.137630
\(265\) 4.02696e32 0.778319
\(266\) 2.79151e31 0.0512787
\(267\) 2.50252e32 0.436994
\(268\) −1.41200e32 −0.234432
\(269\) 9.95223e32 1.57132 0.785660 0.618659i \(-0.212324\pi\)
0.785660 + 0.618659i \(0.212324\pi\)
\(270\) 1.15111e32 0.172864
\(271\) −3.38305e32 −0.483307 −0.241654 0.970363i \(-0.577690\pi\)
−0.241654 + 0.970363i \(0.577690\pi\)
\(272\) −1.69128e32 −0.229899
\(273\) −3.07724e31 −0.0398076
\(274\) 7.80106e32 0.960552
\(275\) 2.33138e32 0.273289
\(276\) −2.45417e32 −0.273925
\(277\) 1.06018e33 1.12694 0.563472 0.826135i \(-0.309465\pi\)
0.563472 + 0.826135i \(0.309465\pi\)
\(278\) 2.50065e32 0.253191
\(279\) 1.32557e33 1.27863
\(280\) −1.63679e31 −0.0150439
\(281\) 9.26140e32 0.811225 0.405613 0.914045i \(-0.367058\pi\)
0.405613 + 0.914045i \(0.367058\pi\)
\(282\) −2.84100e32 −0.237196
\(283\) −4.46833e32 −0.355655 −0.177827 0.984062i \(-0.556907\pi\)
−0.177827 + 0.984062i \(0.556907\pi\)
\(284\) 4.37831e32 0.332283
\(285\) −1.34167e32 −0.0971050
\(286\) −2.05555e33 −1.41901
\(287\) 2.07463e32 0.136627
\(288\) −2.58502e32 −0.162430
\(289\) −2.57406e32 −0.154347
\(290\) −4.00120e32 −0.228990
\(291\) 2.45325e32 0.134025
\(292\) 6.33824e32 0.330598
\(293\) −3.29906e33 −1.64315 −0.821576 0.570098i \(-0.806905\pi\)
−0.821576 + 0.570098i \(0.806905\pi\)
\(294\) −4.19653e32 −0.199619
\(295\) 7.90553e32 0.359198
\(296\) 1.47827e32 0.0641674
\(297\) −1.80098e33 −0.746959
\(298\) −3.50653e33 −1.38982
\(299\) 7.45534e33 2.82427
\(300\) 7.86688e31 0.0284882
\(301\) −3.23245e32 −0.111914
\(302\) −2.73422e33 −0.905190
\(303\) −6.71677e32 −0.212660
\(304\) 6.29209e32 0.190547
\(305\) 1.12802e33 0.326790
\(306\) 2.15557e33 0.597478
\(307\) −7.19835e33 −1.90926 −0.954629 0.297796i \(-0.903748\pi\)
−0.954629 + 0.297796i \(0.903748\pi\)
\(308\) 2.56087e32 0.0650059
\(309\) 8.63089e32 0.209708
\(310\) 1.89185e33 0.440053
\(311\) −7.47510e33 −1.66476 −0.832381 0.554204i \(-0.813023\pi\)
−0.832381 + 0.554204i \(0.813023\pi\)
\(312\) −6.93613e32 −0.147921
\(313\) 2.05380e33 0.419479 0.209740 0.977757i \(-0.432738\pi\)
0.209740 + 0.977757i \(0.432738\pi\)
\(314\) −1.39188e33 −0.272302
\(315\) 2.08612e32 0.0390973
\(316\) 2.42811e32 0.0436006
\(317\) 2.12465e33 0.365583 0.182792 0.983152i \(-0.441487\pi\)
0.182792 + 0.983152i \(0.441487\pi\)
\(318\) −2.12598e33 −0.350585
\(319\) 6.26013e33 0.989485
\(320\) −3.68935e32 −0.0559017
\(321\) 8.07015e32 0.117237
\(322\) −9.28809e32 −0.129382
\(323\) −5.24676e33 −0.700902
\(324\) 2.97794e33 0.381556
\(325\) −2.38982e33 −0.293724
\(326\) −4.30808e33 −0.507979
\(327\) 1.14320e33 0.129339
\(328\) 4.67624e33 0.507692
\(329\) −1.07521e33 −0.112034
\(330\) −1.23082e33 −0.123100
\(331\) 1.48960e34 1.43019 0.715093 0.699029i \(-0.246384\pi\)
0.715093 + 0.699029i \(0.246384\pi\)
\(332\) 6.11031e33 0.563248
\(333\) −1.88407e33 −0.166763
\(334\) 1.41944e34 1.20654
\(335\) 2.56842e33 0.209682
\(336\) 8.64125e31 0.00677636
\(337\) −7.49821e33 −0.564877 −0.282439 0.959285i \(-0.591143\pi\)
−0.282439 + 0.959285i \(0.591143\pi\)
\(338\) 1.13015e34 0.818015
\(339\) −6.51177e32 −0.0452901
\(340\) 3.07643e33 0.205627
\(341\) −2.95993e34 −1.90150
\(342\) −8.01936e33 −0.495207
\(343\) −3.19096e33 −0.189431
\(344\) −7.28597e33 −0.415861
\(345\) 4.46411e33 0.245006
\(346\) 3.62300e33 0.191223
\(347\) 2.52764e34 1.28312 0.641560 0.767073i \(-0.278287\pi\)
0.641560 + 0.767073i \(0.278287\pi\)
\(348\) 2.11238e33 0.103146
\(349\) 1.38700e34 0.651529 0.325764 0.945451i \(-0.394378\pi\)
0.325764 + 0.945451i \(0.394378\pi\)
\(350\) 2.97731e32 0.0134557
\(351\) 1.84612e34 0.802813
\(352\) 5.77222e33 0.241556
\(353\) −1.24760e34 −0.502478 −0.251239 0.967925i \(-0.580838\pi\)
−0.251239 + 0.967925i \(0.580838\pi\)
\(354\) −4.17362e33 −0.161796
\(355\) −7.96409e33 −0.297203
\(356\) 2.13479e34 0.766973
\(357\) −7.20565e32 −0.0249260
\(358\) −2.68313e33 −0.0893761
\(359\) −4.30170e34 −1.37995 −0.689977 0.723831i \(-0.742379\pi\)
−0.689977 + 0.723831i \(0.742379\pi\)
\(360\) 4.70213e33 0.145282
\(361\) −1.40811e34 −0.419072
\(362\) 1.47344e34 0.422443
\(363\) 8.94356e33 0.247042
\(364\) −2.62506e33 −0.0698667
\(365\) −1.15292e34 −0.295696
\(366\) −5.95524e33 −0.147199
\(367\) 3.46384e34 0.825213 0.412607 0.910909i \(-0.364618\pi\)
0.412607 + 0.910909i \(0.364618\pi\)
\(368\) −2.09354e34 −0.480769
\(369\) −5.95994e34 −1.31943
\(370\) −2.68895e33 −0.0573931
\(371\) −8.04602e33 −0.165590
\(372\) −9.98780e33 −0.198217
\(373\) 4.17174e34 0.798451 0.399226 0.916853i \(-0.369279\pi\)
0.399226 + 0.916853i \(0.369279\pi\)
\(374\) −4.81327e34 −0.888533
\(375\) −1.43098e33 −0.0254806
\(376\) −2.42353e34 −0.416306
\(377\) −6.41705e34 −1.06347
\(378\) −2.29996e33 −0.0367773
\(379\) −3.57084e34 −0.550987 −0.275494 0.961303i \(-0.588841\pi\)
−0.275494 + 0.961303i \(0.588841\pi\)
\(380\) −1.14452e34 −0.170430
\(381\) 9.37876e33 0.134790
\(382\) 5.30222e33 0.0735534
\(383\) −3.61414e34 −0.483973 −0.241987 0.970280i \(-0.577799\pi\)
−0.241987 + 0.970280i \(0.577799\pi\)
\(384\) 1.94774e33 0.0251803
\(385\) −4.65820e33 −0.0581431
\(386\) −5.25557e32 −0.00633420
\(387\) 9.28608e34 1.08077
\(388\) 2.09276e34 0.235229
\(389\) −2.21108e34 −0.240041 −0.120020 0.992771i \(-0.538296\pi\)
−0.120020 + 0.992771i \(0.538296\pi\)
\(390\) 1.26167e34 0.132305
\(391\) 1.74574e35 1.76845
\(392\) −3.57987e34 −0.350353
\(393\) 2.38298e34 0.225331
\(394\) −1.11709e35 −1.02068
\(395\) −4.41670e33 −0.0389975
\(396\) −7.35679e34 −0.627774
\(397\) 3.17208e34 0.261621 0.130810 0.991407i \(-0.458242\pi\)
0.130810 + 0.991407i \(0.458242\pi\)
\(398\) 1.45101e35 1.15677
\(399\) 2.68072e33 0.0206594
\(400\) 6.71089e33 0.0500000
\(401\) 2.56968e35 1.85110 0.925549 0.378628i \(-0.123604\pi\)
0.925549 + 0.378628i \(0.123604\pi\)
\(402\) −1.35596e34 −0.0944488
\(403\) 3.03412e35 2.04369
\(404\) −5.72978e34 −0.373241
\(405\) −5.41685e34 −0.341274
\(406\) 7.99456e33 0.0487184
\(407\) 4.20704e34 0.248000
\(408\) −1.62416e34 −0.0926225
\(409\) −1.31563e35 −0.725885 −0.362942 0.931812i \(-0.618228\pi\)
−0.362942 + 0.931812i \(0.618228\pi\)
\(410\) −8.50604e34 −0.454093
\(411\) 7.49145e34 0.386991
\(412\) 7.36263e34 0.368062
\(413\) −1.57956e34 −0.0764204
\(414\) 2.66825e35 1.24946
\(415\) −1.11146e35 −0.503784
\(416\) −5.91691e34 −0.259618
\(417\) 2.40141e34 0.102007
\(418\) 1.79068e35 0.736442
\(419\) −1.77721e35 −0.707702 −0.353851 0.935302i \(-0.615128\pi\)
−0.353851 + 0.935302i \(0.615128\pi\)
\(420\) −1.57183e33 −0.00606096
\(421\) −4.73825e35 −1.76933 −0.884667 0.466223i \(-0.845614\pi\)
−0.884667 + 0.466223i \(0.845614\pi\)
\(422\) −2.51819e35 −0.910690
\(423\) 3.08883e35 1.08193
\(424\) −1.81358e35 −0.615315
\(425\) −5.59599e34 −0.183919
\(426\) 4.20454e34 0.133872
\(427\) −2.25383e34 −0.0695257
\(428\) 6.88429e34 0.205764
\(429\) −1.97397e35 −0.571699
\(430\) 1.32531e35 0.371958
\(431\) −2.46508e35 −0.670484 −0.335242 0.942132i \(-0.608818\pi\)
−0.335242 + 0.942132i \(0.608818\pi\)
\(432\) −5.18412e34 −0.136661
\(433\) −4.00013e35 −1.02209 −0.511043 0.859555i \(-0.670741\pi\)
−0.511043 + 0.859555i \(0.670741\pi\)
\(434\) −3.78000e34 −0.0936226
\(435\) −3.84240e34 −0.0922566
\(436\) 9.75217e34 0.227004
\(437\) −6.49467e35 −1.46574
\(438\) 6.08668e34 0.133193
\(439\) 5.56669e35 1.18121 0.590603 0.806962i \(-0.298890\pi\)
0.590603 + 0.806962i \(0.298890\pi\)
\(440\) −1.04996e35 −0.216054
\(441\) 4.56260e35 0.910524
\(442\) 4.93391e35 0.954972
\(443\) −9.29221e34 −0.174449 −0.0872246 0.996189i \(-0.527800\pi\)
−0.0872246 + 0.996189i \(0.527800\pi\)
\(444\) 1.41960e34 0.0258521
\(445\) −3.88316e35 −0.686002
\(446\) −2.27221e35 −0.389428
\(447\) −3.36737e35 −0.559936
\(448\) 7.37147e33 0.0118933
\(449\) −1.08452e36 −1.69789 −0.848946 0.528479i \(-0.822762\pi\)
−0.848946 + 0.528479i \(0.822762\pi\)
\(450\) −8.55313e34 −0.129944
\(451\) 1.33082e36 1.96217
\(452\) −5.55490e34 −0.0794891
\(453\) −2.62571e35 −0.364687
\(454\) −5.09585e34 −0.0687010
\(455\) 4.77496e34 0.0624907
\(456\) 6.04237e34 0.0767683
\(457\) 1.55761e35 0.192128 0.0960640 0.995375i \(-0.469375\pi\)
0.0960640 + 0.995375i \(0.469375\pi\)
\(458\) 1.02708e36 1.23004
\(459\) 4.32287e35 0.502691
\(460\) 3.80813e35 0.430013
\(461\) −1.20864e35 −0.132537 −0.0662683 0.997802i \(-0.521109\pi\)
−0.0662683 + 0.997802i \(0.521109\pi\)
\(462\) 2.45924e34 0.0261899
\(463\) −1.68010e35 −0.173777 −0.0868886 0.996218i \(-0.527692\pi\)
−0.0868886 + 0.996218i \(0.527692\pi\)
\(464\) 1.80198e35 0.181033
\(465\) 1.81677e35 0.177290
\(466\) −9.99494e35 −0.947480
\(467\) 4.47847e35 0.412431 0.206216 0.978507i \(-0.433885\pi\)
0.206216 + 0.978507i \(0.433885\pi\)
\(468\) 7.54119e35 0.674715
\(469\) −5.13181e34 −0.0446105
\(470\) 4.40838e35 0.372355
\(471\) −1.33664e35 −0.109706
\(472\) −3.56033e35 −0.283971
\(473\) −2.07353e36 −1.60726
\(474\) 2.33174e34 0.0175660
\(475\) 2.08188e35 0.152437
\(476\) −6.14682e34 −0.0437479
\(477\) 2.31143e36 1.59913
\(478\) −8.38679e35 −0.564052
\(479\) 2.57973e36 1.68673 0.843364 0.537343i \(-0.180572\pi\)
0.843364 + 0.537343i \(0.180572\pi\)
\(480\) −3.54293e34 −0.0225219
\(481\) −4.31249e35 −0.266544
\(482\) −1.78825e36 −1.07471
\(483\) −8.91947e34 −0.0521258
\(484\) 7.62936e35 0.433586
\(485\) −3.80671e35 −0.210395
\(486\) 1.00506e36 0.540259
\(487\) 1.89812e36 0.992390 0.496195 0.868211i \(-0.334730\pi\)
0.496195 + 0.868211i \(0.334730\pi\)
\(488\) −5.08015e35 −0.258351
\(489\) −4.13710e35 −0.204657
\(490\) 6.51175e35 0.313365
\(491\) −8.37086e34 −0.0391895 −0.0195947 0.999808i \(-0.506238\pi\)
−0.0195947 + 0.999808i \(0.506238\pi\)
\(492\) 4.49065e35 0.204541
\(493\) −1.50261e36 −0.665907
\(494\) −1.83557e36 −0.791509
\(495\) 1.33819e36 0.561498
\(496\) −8.52015e35 −0.347892
\(497\) 1.59126e35 0.0632309
\(498\) 5.86781e35 0.226924
\(499\) 1.76824e36 0.665554 0.332777 0.943005i \(-0.392014\pi\)
0.332777 + 0.943005i \(0.392014\pi\)
\(500\) −1.22070e35 −0.0447214
\(501\) 1.36311e36 0.486094
\(502\) −6.57779e35 −0.228339
\(503\) −3.64441e36 −1.23157 −0.615786 0.787913i \(-0.711161\pi\)
−0.615786 + 0.787913i \(0.711161\pi\)
\(504\) −9.39505e34 −0.0309091
\(505\) 1.04224e36 0.333837
\(506\) −5.95807e36 −1.85812
\(507\) 1.08530e36 0.329565
\(508\) 8.00061e35 0.236572
\(509\) 7.64417e35 0.220110 0.110055 0.993925i \(-0.464897\pi\)
0.110055 + 0.993925i \(0.464897\pi\)
\(510\) 2.95433e35 0.0828441
\(511\) 2.30358e35 0.0629101
\(512\) 1.66153e35 0.0441942
\(513\) −1.60824e36 −0.416645
\(514\) −7.49268e33 −0.00189076
\(515\) −1.33925e36 −0.329204
\(516\) −6.99681e35 −0.167544
\(517\) −6.89719e36 −1.60898
\(518\) 5.37263e34 0.0122106
\(519\) 3.47921e35 0.0770409
\(520\) 1.07628e36 0.232209
\(521\) −7.23178e36 −1.52032 −0.760161 0.649734i \(-0.774880\pi\)
−0.760161 + 0.649734i \(0.774880\pi\)
\(522\) −2.29665e36 −0.470482
\(523\) −3.07997e36 −0.614856 −0.307428 0.951571i \(-0.599468\pi\)
−0.307428 + 0.951571i \(0.599468\pi\)
\(524\) 2.03281e36 0.395481
\(525\) 2.85915e34 0.00542108
\(526\) −3.41283e36 −0.630677
\(527\) 7.10467e36 1.27968
\(528\) 5.54314e35 0.0973190
\(529\) 1.57663e37 2.69822
\(530\) 3.29888e36 0.550355
\(531\) 4.53770e36 0.738005
\(532\) 2.28680e35 0.0362595
\(533\) −1.36418e37 −2.10889
\(534\) 2.05006e36 0.309001
\(535\) −1.25225e36 −0.184041
\(536\) −1.15671e36 −0.165768
\(537\) −2.57664e35 −0.0360082
\(538\) 8.15286e36 1.11109
\(539\) −1.01881e37 −1.35408
\(540\) 9.42986e35 0.122233
\(541\) 1.36003e37 1.71943 0.859714 0.510775i \(-0.170642\pi\)
0.859714 + 0.510775i \(0.170642\pi\)
\(542\) −2.77140e36 −0.341750
\(543\) 1.41497e36 0.170196
\(544\) −1.38550e36 −0.162563
\(545\) −1.77391e36 −0.203039
\(546\) −2.52088e35 −0.0281482
\(547\) −2.33868e36 −0.254767 −0.127383 0.991854i \(-0.540658\pi\)
−0.127383 + 0.991854i \(0.540658\pi\)
\(548\) 6.39063e36 0.679213
\(549\) 6.47473e36 0.671421
\(550\) 1.90987e36 0.193245
\(551\) 5.59017e36 0.551923
\(552\) −2.01046e36 −0.193694
\(553\) 8.82475e34 0.00829685
\(554\) 8.68499e36 0.796870
\(555\) −2.58223e35 −0.0231228
\(556\) 2.04853e36 0.179033
\(557\) −1.34839e37 −1.15019 −0.575095 0.818087i \(-0.695035\pi\)
−0.575095 + 0.818087i \(0.695035\pi\)
\(558\) 1.08591e37 0.904129
\(559\) 2.12551e37 1.72744
\(560\) −1.34086e35 −0.0106377
\(561\) −4.62224e36 −0.357976
\(562\) 7.58694e36 0.573623
\(563\) −1.19905e37 −0.885060 −0.442530 0.896754i \(-0.645919\pi\)
−0.442530 + 0.896754i \(0.645919\pi\)
\(564\) −2.32735e36 −0.167723
\(565\) 1.01043e36 0.0710972
\(566\) −3.66046e36 −0.251486
\(567\) 1.08231e36 0.0726072
\(568\) 3.58671e36 0.234960
\(569\) −2.22877e37 −1.42577 −0.712884 0.701282i \(-0.752611\pi\)
−0.712884 + 0.701282i \(0.752611\pi\)
\(570\) −1.09910e36 −0.0686636
\(571\) 1.08564e37 0.662365 0.331182 0.943567i \(-0.392552\pi\)
0.331182 + 0.943567i \(0.392552\pi\)
\(572\) −1.68391e37 −1.00339
\(573\) 5.09179e35 0.0296335
\(574\) 1.69954e36 0.0966097
\(575\) −6.92696e36 −0.384615
\(576\) −2.11765e36 −0.114855
\(577\) 2.64597e37 1.40188 0.700942 0.713218i \(-0.252763\pi\)
0.700942 + 0.713218i \(0.252763\pi\)
\(578\) −2.10867e36 −0.109140
\(579\) −5.04699e34 −0.00255195
\(580\) −3.27778e36 −0.161921
\(581\) 2.22074e36 0.107182
\(582\) 2.00970e36 0.0947702
\(583\) −5.16131e37 −2.37813
\(584\) 5.19228e36 0.233768
\(585\) −1.37173e37 −0.603484
\(586\) −2.70259e37 −1.16188
\(587\) −2.85761e37 −1.20057 −0.600286 0.799785i \(-0.704947\pi\)
−0.600286 + 0.799785i \(0.704947\pi\)
\(588\) −3.43779e36 −0.141152
\(589\) −2.64315e37 −1.06063
\(590\) 6.47621e36 0.253991
\(591\) −1.07276e37 −0.411217
\(592\) 1.21100e36 0.0453732
\(593\) 5.14830e37 1.88550 0.942748 0.333506i \(-0.108232\pi\)
0.942748 + 0.333506i \(0.108232\pi\)
\(594\) −1.47536e37 −0.528180
\(595\) 1.11810e36 0.0391293
\(596\) −2.87255e37 −0.982751
\(597\) 1.39342e37 0.466045
\(598\) 6.10741e37 1.99706
\(599\) −2.26841e37 −0.725202 −0.362601 0.931944i \(-0.618111\pi\)
−0.362601 + 0.931944i \(0.618111\pi\)
\(600\) 6.44455e35 0.0201442
\(601\) 2.68428e37 0.820395 0.410197 0.911997i \(-0.365460\pi\)
0.410197 + 0.911997i \(0.365460\pi\)
\(602\) −2.64802e36 −0.0791351
\(603\) 1.47425e37 0.430811
\(604\) −2.23987e37 −0.640066
\(605\) −1.38777e37 −0.387811
\(606\) −5.50238e36 −0.150373
\(607\) 2.71824e37 0.726508 0.363254 0.931690i \(-0.381666\pi\)
0.363254 + 0.931690i \(0.381666\pi\)
\(608\) 5.15448e36 0.134737
\(609\) 7.67727e35 0.0196279
\(610\) 9.24075e36 0.231076
\(611\) 7.07007e37 1.72929
\(612\) 1.76584e37 0.422481
\(613\) −2.70461e36 −0.0632977 −0.0316488 0.999499i \(-0.510076\pi\)
−0.0316488 + 0.999499i \(0.510076\pi\)
\(614\) −5.89689e37 −1.35005
\(615\) −8.16845e36 −0.182947
\(616\) 2.09787e36 0.0459661
\(617\) 5.25699e37 1.12691 0.563453 0.826148i \(-0.309473\pi\)
0.563453 + 0.826148i \(0.309473\pi\)
\(618\) 7.07042e36 0.148286
\(619\) −1.09889e37 −0.225492 −0.112746 0.993624i \(-0.535965\pi\)
−0.112746 + 0.993624i \(0.535965\pi\)
\(620\) 1.54981e37 0.311164
\(621\) 5.35103e37 1.05124
\(622\) −6.12361e37 −1.17716
\(623\) 7.75871e36 0.145949
\(624\) −5.68208e36 −0.104596
\(625\) 2.22045e36 0.0400000
\(626\) 1.68248e37 0.296616
\(627\) 1.71961e37 0.296701
\(628\) −1.14022e37 −0.192546
\(629\) −1.00981e37 −0.166900
\(630\) 1.70895e36 0.0276460
\(631\) −8.11189e37 −1.28448 −0.642238 0.766506i \(-0.721994\pi\)
−0.642238 + 0.766506i \(0.721994\pi\)
\(632\) 1.98911e36 0.0308303
\(633\) −2.41825e37 −0.366903
\(634\) 1.74051e37 0.258507
\(635\) −1.45530e37 −0.211596
\(636\) −1.74160e37 −0.247901
\(637\) 1.04434e38 1.45533
\(638\) 5.12830e37 0.699672
\(639\) −4.57131e37 −0.610632
\(640\) −3.02231e36 −0.0395285
\(641\) 1.03316e38 1.32308 0.661538 0.749912i \(-0.269904\pi\)
0.661538 + 0.749912i \(0.269904\pi\)
\(642\) 6.61107e36 0.0828989
\(643\) 6.59284e37 0.809514 0.404757 0.914424i \(-0.367356\pi\)
0.404757 + 0.914424i \(0.367356\pi\)
\(644\) −7.60881e36 −0.0914866
\(645\) 1.27271e37 0.149856
\(646\) −4.29815e37 −0.495613
\(647\) −3.55430e37 −0.401372 −0.200686 0.979656i \(-0.564317\pi\)
−0.200686 + 0.979656i \(0.564317\pi\)
\(648\) 2.43953e37 0.269801
\(649\) −1.01324e38 −1.09752
\(650\) −1.95774e37 −0.207694
\(651\) −3.62998e36 −0.0377191
\(652\) −3.52918e37 −0.359196
\(653\) −2.81161e35 −0.00280303 −0.00140151 0.999999i \(-0.500446\pi\)
−0.00140151 + 0.999999i \(0.500446\pi\)
\(654\) 9.36513e36 0.0914564
\(655\) −3.69767e37 −0.353729
\(656\) 3.83078e37 0.358992
\(657\) −6.61764e37 −0.607534
\(658\) −8.80811e36 −0.0792197
\(659\) −9.14262e37 −0.805597 −0.402798 0.915289i \(-0.631962\pi\)
−0.402798 + 0.915289i \(0.631962\pi\)
\(660\) −1.00829e37 −0.0870448
\(661\) 5.68399e37 0.480766 0.240383 0.970678i \(-0.422727\pi\)
0.240383 + 0.970678i \(0.422727\pi\)
\(662\) 1.22028e38 1.01129
\(663\) 4.73810e37 0.384743
\(664\) 5.00557e37 0.398276
\(665\) −4.15967e36 −0.0324315
\(666\) −1.54343e37 −0.117920
\(667\) −1.86000e38 −1.39256
\(668\) 1.16281e38 0.853149
\(669\) −2.18203e37 −0.156895
\(670\) 2.10405e37 0.148268
\(671\) −1.44577e38 −0.998497
\(672\) 7.07891e35 0.00479161
\(673\) −1.14007e38 −0.756361 −0.378180 0.925732i \(-0.623450\pi\)
−0.378180 + 0.925732i \(0.623450\pi\)
\(674\) −6.14254e37 −0.399429
\(675\) −1.71528e37 −0.109329
\(676\) 9.25820e37 0.578424
\(677\) 1.44663e38 0.885950 0.442975 0.896534i \(-0.353923\pi\)
0.442975 + 0.896534i \(0.353923\pi\)
\(678\) −5.33444e36 −0.0320249
\(679\) 7.60596e36 0.0447623
\(680\) 2.52021e37 0.145401
\(681\) −4.89361e36 −0.0276785
\(682\) −2.42477e38 −1.34457
\(683\) −3.65913e38 −1.98929 −0.994645 0.103349i \(-0.967044\pi\)
−0.994645 + 0.103349i \(0.967044\pi\)
\(684\) −6.56946e37 −0.350165
\(685\) −1.16245e38 −0.607506
\(686\) −2.61403e37 −0.133948
\(687\) 9.86315e37 0.495564
\(688\) −5.96867e37 −0.294058
\(689\) 5.29068e38 2.55595
\(690\) 3.65700e37 0.173245
\(691\) −3.38804e37 −0.157396 −0.0786982 0.996898i \(-0.525076\pi\)
−0.0786982 + 0.996898i \(0.525076\pi\)
\(692\) 2.96796e37 0.135215
\(693\) −2.67376e37 −0.119460
\(694\) 2.07064e38 0.907303
\(695\) −3.72626e37 −0.160132
\(696\) 1.73046e37 0.0729353
\(697\) −3.19436e38 −1.32051
\(698\) 1.13623e38 0.460701
\(699\) −9.59826e37 −0.381725
\(700\) 2.43901e36 0.00951461
\(701\) −1.18033e38 −0.451657 −0.225829 0.974167i \(-0.572509\pi\)
−0.225829 + 0.974167i \(0.572509\pi\)
\(702\) 1.51234e38 0.567674
\(703\) 3.75680e37 0.138331
\(704\) 4.72861e37 0.170806
\(705\) 4.23342e37 0.150016
\(706\) −1.02203e38 −0.355306
\(707\) −2.08244e37 −0.0710248
\(708\) −3.41903e37 −0.114407
\(709\) 2.06770e38 0.678832 0.339416 0.940636i \(-0.389771\pi\)
0.339416 + 0.940636i \(0.389771\pi\)
\(710\) −6.52419e37 −0.210154
\(711\) −2.53514e37 −0.0801241
\(712\) 1.74882e38 0.542332
\(713\) 8.79447e38 2.67609
\(714\) −5.90287e36 −0.0176253
\(715\) 3.06301e38 0.897464
\(716\) −2.19802e37 −0.0631984
\(717\) −8.05393e37 −0.227248
\(718\) −3.52395e38 −0.975775
\(719\) 4.45988e38 1.21194 0.605972 0.795486i \(-0.292784\pi\)
0.605972 + 0.795486i \(0.292784\pi\)
\(720\) 3.85199e37 0.102730
\(721\) 2.67588e37 0.0700392
\(722\) −1.15352e38 −0.296328
\(723\) −1.71728e38 −0.432986
\(724\) 1.20705e38 0.298712
\(725\) 5.96225e37 0.144826
\(726\) 7.32656e37 0.174685
\(727\) 2.82029e38 0.660054 0.330027 0.943971i \(-0.392942\pi\)
0.330027 + 0.943971i \(0.392942\pi\)
\(728\) −2.15045e37 −0.0494032
\(729\) −2.41867e38 −0.545451
\(730\) −9.44471e37 −0.209088
\(731\) 4.97708e38 1.08166
\(732\) −4.87853e37 −0.104085
\(733\) −6.44508e38 −1.34997 −0.674985 0.737831i \(-0.735850\pi\)
−0.674985 + 0.737831i \(0.735850\pi\)
\(734\) 2.83758e38 0.583514
\(735\) 6.25331e37 0.126250
\(736\) −1.71503e38 −0.339955
\(737\) −3.29192e38 −0.640676
\(738\) −4.88238e38 −0.932977
\(739\) 6.59016e38 1.23650 0.618252 0.785980i \(-0.287841\pi\)
0.618252 + 0.785980i \(0.287841\pi\)
\(740\) −2.20279e37 −0.0405831
\(741\) −1.76272e38 −0.318887
\(742\) −6.59130e37 −0.117090
\(743\) −1.94056e38 −0.338515 −0.169258 0.985572i \(-0.554137\pi\)
−0.169258 + 0.985572i \(0.554137\pi\)
\(744\) −8.18200e37 −0.140160
\(745\) 5.22514e38 0.878999
\(746\) 3.41749e38 0.564590
\(747\) −6.37967e38 −1.03507
\(748\) −3.94303e38 −0.628287
\(749\) 2.50204e37 0.0391552
\(750\) −1.17226e37 −0.0180175
\(751\) −9.80831e38 −1.48066 −0.740329 0.672245i \(-0.765330\pi\)
−0.740329 + 0.672245i \(0.765330\pi\)
\(752\) −1.98536e38 −0.294373
\(753\) −6.31674e37 −0.0919942
\(754\) −5.25684e38 −0.751990
\(755\) 4.07431e38 0.572493
\(756\) −1.88412e37 −0.0260055
\(757\) 5.73445e38 0.777494 0.388747 0.921344i \(-0.372908\pi\)
0.388747 + 0.921344i \(0.372908\pi\)
\(758\) −2.92524e38 −0.389607
\(759\) −5.72161e38 −0.748607
\(760\) −9.37594e37 −0.120512
\(761\) −1.19199e39 −1.50515 −0.752575 0.658507i \(-0.771188\pi\)
−0.752575 + 0.658507i \(0.771188\pi\)
\(762\) 7.68308e37 0.0953111
\(763\) 3.54434e37 0.0431971
\(764\) 4.34358e37 0.0520101
\(765\) −3.21204e38 −0.377878
\(766\) −2.96070e38 −0.342221
\(767\) 1.03864e39 1.17958
\(768\) 1.59559e37 0.0178051
\(769\) −6.10545e38 −0.669441 −0.334721 0.942317i \(-0.608642\pi\)
−0.334721 + 0.942317i \(0.608642\pi\)
\(770\) −3.81600e37 −0.0411134
\(771\) −7.19531e35 −0.000761756 0
\(772\) −4.30537e36 −0.00447895
\(773\) −2.79488e38 −0.285720 −0.142860 0.989743i \(-0.545630\pi\)
−0.142860 + 0.989743i \(0.545630\pi\)
\(774\) 7.60716e38 0.764222
\(775\) −2.81908e38 −0.278314
\(776\) 1.71439e38 0.166332
\(777\) 5.15941e36 0.00491944
\(778\) −1.81132e38 −0.169734
\(779\) 1.18840e39 1.09448
\(780\) 1.03356e38 0.0935535
\(781\) 1.02075e39 0.908094
\(782\) 1.43011e39 1.25048
\(783\) −4.60581e38 −0.395842
\(784\) −2.93263e38 −0.247737
\(785\) 2.07406e38 0.172219
\(786\) 1.95214e38 0.159333
\(787\) −2.69307e38 −0.216067 −0.108033 0.994147i \(-0.534455\pi\)
−0.108033 + 0.994147i \(0.534455\pi\)
\(788\) −9.15123e38 −0.721732
\(789\) −3.27738e38 −0.254090
\(790\) −3.61816e37 −0.0275754
\(791\) −2.01888e37 −0.0151262
\(792\) −6.02668e38 −0.443903
\(793\) 1.48201e39 1.07316
\(794\) 2.59857e38 0.184994
\(795\) 3.16796e38 0.221729
\(796\) 1.18866e39 0.817962
\(797\) −9.27331e38 −0.627404 −0.313702 0.949521i \(-0.601569\pi\)
−0.313702 + 0.949521i \(0.601569\pi\)
\(798\) 2.19605e37 0.0146084
\(799\) 1.65552e39 1.08281
\(800\) 5.49756e37 0.0353553
\(801\) −2.22890e39 −1.40945
\(802\) 2.10508e39 1.30892
\(803\) 1.47769e39 0.903488
\(804\) −1.11081e38 −0.0667854
\(805\) 1.38403e38 0.0818281
\(806\) 2.48555e39 1.44510
\(807\) 7.82929e38 0.447641
\(808\) −4.69384e38 −0.263921
\(809\) −2.61826e39 −1.44780 −0.723898 0.689907i \(-0.757651\pi\)
−0.723898 + 0.689907i \(0.757651\pi\)
\(810\) −4.43748e38 −0.241317
\(811\) −4.92486e38 −0.263398 −0.131699 0.991290i \(-0.542043\pi\)
−0.131699 + 0.991290i \(0.542043\pi\)
\(812\) 6.54914e37 0.0344491
\(813\) −2.66140e38 −0.137686
\(814\) 3.44641e38 0.175363
\(815\) 6.41954e38 0.321274
\(816\) −1.33051e38 −0.0654940
\(817\) −1.85162e39 −0.896509
\(818\) −1.07776e39 −0.513278
\(819\) 2.74078e38 0.128393
\(820\) −6.96814e38 −0.321093
\(821\) 4.69442e38 0.212789 0.106394 0.994324i \(-0.466069\pi\)
0.106394 + 0.994324i \(0.466069\pi\)
\(822\) 6.13700e38 0.273644
\(823\) 2.90035e39 1.27219 0.636095 0.771610i \(-0.280548\pi\)
0.636095 + 0.771610i \(0.280548\pi\)
\(824\) 6.03147e38 0.260259
\(825\) 1.83407e38 0.0778552
\(826\) −1.29397e38 −0.0540374
\(827\) −3.48558e39 −1.43202 −0.716012 0.698088i \(-0.754035\pi\)
−0.716012 + 0.698088i \(0.754035\pi\)
\(828\) 2.18583e39 0.883502
\(829\) −2.11699e39 −0.841845 −0.420922 0.907097i \(-0.638294\pi\)
−0.420922 + 0.907097i \(0.638294\pi\)
\(830\) −9.10508e38 −0.356229
\(831\) 8.34030e38 0.321046
\(832\) −4.84713e38 −0.183578
\(833\) 2.44542e39 0.911269
\(834\) 1.96723e38 0.0721296
\(835\) −2.11513e39 −0.763080
\(836\) 1.46693e39 0.520743
\(837\) 2.17772e39 0.760693
\(838\) −1.45589e39 −0.500421
\(839\) −4.45636e39 −1.50728 −0.753640 0.657287i \(-0.771704\pi\)
−0.753640 + 0.657287i \(0.771704\pi\)
\(840\) −1.28765e37 −0.00428574
\(841\) −1.45218e39 −0.475634
\(842\) −3.88158e39 −1.25111
\(843\) 7.28583e38 0.231104
\(844\) −2.06290e39 −0.643955
\(845\) −1.68406e39 −0.517358
\(846\) 2.53037e39 0.765039
\(847\) 2.77282e38 0.0825080
\(848\) −1.48568e39 −0.435094
\(849\) −3.51518e38 −0.101320
\(850\) −4.58423e38 −0.130050
\(851\) −1.24999e39 −0.349025
\(852\) 3.44436e38 0.0946616
\(853\) 2.08155e39 0.563086 0.281543 0.959549i \(-0.409154\pi\)
0.281543 + 0.959549i \(0.409154\pi\)
\(854\) −1.84634e38 −0.0491621
\(855\) 1.19498e39 0.313197
\(856\) 5.63961e38 0.145497
\(857\) 1.22413e39 0.310876 0.155438 0.987846i \(-0.450321\pi\)
0.155438 + 0.987846i \(0.450321\pi\)
\(858\) −1.61708e39 −0.404252
\(859\) 2.17470e39 0.535170 0.267585 0.963534i \(-0.413774\pi\)
0.267585 + 0.963534i \(0.413774\pi\)
\(860\) 1.08569e39 0.263014
\(861\) 1.63209e38 0.0389226
\(862\) −2.01940e39 −0.474104
\(863\) 6.48177e39 1.49812 0.749062 0.662499i \(-0.230504\pi\)
0.749062 + 0.662499i \(0.230504\pi\)
\(864\) −4.24683e38 −0.0966339
\(865\) −5.39869e38 −0.120940
\(866\) −3.27691e39 −0.722724
\(867\) −2.02498e38 −0.0439707
\(868\) −3.09658e38 −0.0662011
\(869\) 5.66085e38 0.119156
\(870\) −3.14769e38 −0.0652353
\(871\) 3.37443e39 0.688582
\(872\) 7.98898e38 0.160516
\(873\) −2.18502e39 −0.432277
\(874\) −5.32043e39 −1.03644
\(875\) −4.43654e37 −0.00851012
\(876\) 4.98621e38 0.0941814
\(877\) −9.35961e39 −1.74086 −0.870429 0.492294i \(-0.836158\pi\)
−0.870429 + 0.492294i \(0.836158\pi\)
\(878\) 4.56023e39 0.835239
\(879\) −2.59533e39 −0.468105
\(880\) −8.60128e38 −0.152773
\(881\) −5.26507e39 −0.920936 −0.460468 0.887676i \(-0.652318\pi\)
−0.460468 + 0.887676i \(0.652318\pi\)
\(882\) 3.73768e39 0.643838
\(883\) 9.76342e39 1.65628 0.828138 0.560525i \(-0.189401\pi\)
0.828138 + 0.560525i \(0.189401\pi\)
\(884\) 4.04186e39 0.675268
\(885\) 6.21918e38 0.102329
\(886\) −7.61218e38 −0.123354
\(887\) 2.93008e39 0.467639 0.233820 0.972280i \(-0.424877\pi\)
0.233820 + 0.972280i \(0.424877\pi\)
\(888\) 1.16293e38 0.0182802
\(889\) 2.90775e38 0.0450177
\(890\) −3.18108e39 −0.485076
\(891\) 6.94273e39 1.04275
\(892\) −1.86139e39 −0.275367
\(893\) −6.15905e39 −0.897468
\(894\) −2.75855e39 −0.395935
\(895\) 3.99818e38 0.0565264
\(896\) 6.03871e37 0.00840980
\(897\) 5.86502e39 0.804584
\(898\) −8.88435e39 −1.20059
\(899\) −7.56968e39 −1.00768
\(900\) −7.00672e38 −0.0918842
\(901\) 1.23886e40 1.60044
\(902\) 1.09021e40 1.38747
\(903\) −2.54293e38 −0.0318823
\(904\) −4.55058e38 −0.0562073
\(905\) −2.19560e39 −0.267176
\(906\) −2.15098e39 −0.257873
\(907\) 1.56617e40 1.84987 0.924934 0.380128i \(-0.124120\pi\)
0.924934 + 0.380128i \(0.124120\pi\)
\(908\) −4.17452e38 −0.0485789
\(909\) 5.98236e39 0.685899
\(910\) 3.91164e38 0.0441876
\(911\) −1.00687e40 −1.12067 −0.560333 0.828267i \(-0.689327\pi\)
−0.560333 + 0.828267i \(0.689327\pi\)
\(912\) 4.94991e38 0.0542834
\(913\) 1.42455e40 1.53929
\(914\) 1.27600e39 0.135855
\(915\) 8.87400e38 0.0930968
\(916\) 8.41382e39 0.869770
\(917\) 7.38809e38 0.0752568
\(918\) 3.54129e39 0.355456
\(919\) 7.21315e38 0.0713453 0.0356727 0.999364i \(-0.488643\pi\)
0.0356727 + 0.999364i \(0.488643\pi\)
\(920\) 3.11962e39 0.304065
\(921\) −5.66285e39 −0.543914
\(922\) −9.90121e38 −0.0937176
\(923\) −1.04634e40 −0.975997
\(924\) 2.01461e38 0.0185190
\(925\) 4.00685e38 0.0362986
\(926\) −1.37634e39 −0.122879
\(927\) −7.68719e39 −0.676381
\(928\) 1.47618e39 0.128009
\(929\) −3.23928e39 −0.276845 −0.138422 0.990373i \(-0.544203\pi\)
−0.138422 + 0.990373i \(0.544203\pi\)
\(930\) 1.48830e39 0.125363
\(931\) −9.09772e39 −0.755287
\(932\) −8.18785e39 −0.669970
\(933\) −5.88057e39 −0.474261
\(934\) 3.66876e39 0.291633
\(935\) 7.17233e39 0.561957
\(936\) 6.17774e39 0.477096
\(937\) 1.54684e39 0.117750 0.0588752 0.998265i \(-0.481249\pi\)
0.0588752 + 0.998265i \(0.481249\pi\)
\(938\) −4.20398e38 −0.0315444
\(939\) 1.61570e39 0.119502
\(940\) 3.61134e39 0.263295
\(941\) 4.73751e39 0.340479 0.170239 0.985403i \(-0.445546\pi\)
0.170239 + 0.985403i \(0.445546\pi\)
\(942\) −1.09497e39 −0.0775739
\(943\) −3.95412e40 −2.76148
\(944\) −2.91663e39 −0.200798
\(945\) 3.42720e38 0.0232600
\(946\) −1.69864e40 −1.13650
\(947\) −2.32964e40 −1.53661 −0.768306 0.640082i \(-0.778900\pi\)
−0.768306 + 0.640082i \(0.778900\pi\)
\(948\) 1.91016e38 0.0124210
\(949\) −1.51472e40 −0.971046
\(950\) 1.70547e39 0.107789
\(951\) 1.67143e39 0.104148
\(952\) −5.03548e38 −0.0309344
\(953\) −1.13732e40 −0.688856 −0.344428 0.938813i \(-0.611927\pi\)
−0.344428 + 0.938813i \(0.611927\pi\)
\(954\) 1.89353e40 1.13075
\(955\) −7.90093e38 −0.0465193
\(956\) −6.87046e39 −0.398845
\(957\) 4.92477e39 0.281887
\(958\) 2.11332e40 1.19270
\(959\) 2.32262e39 0.129249
\(960\) −2.90237e38 −0.0159254
\(961\) 1.73084e40 0.936464
\(962\) −3.53279e39 −0.188475
\(963\) −7.18777e39 −0.378128
\(964\) −1.46493e40 −0.759938
\(965\) 7.83142e37 0.00400610
\(966\) −7.30683e38 −0.0368585
\(967\) 1.89507e40 0.942689 0.471345 0.881949i \(-0.343769\pi\)
0.471345 + 0.881949i \(0.343769\pi\)
\(968\) 6.24997e39 0.306592
\(969\) −4.12756e39 −0.199675
\(970\) −3.11846e39 −0.148772
\(971\) −1.71856e40 −0.808548 −0.404274 0.914638i \(-0.632476\pi\)
−0.404274 + 0.914638i \(0.632476\pi\)
\(972\) 8.23344e39 0.382021
\(973\) 7.44522e38 0.0340686
\(974\) 1.55494e40 0.701726
\(975\) −1.88004e39 −0.0836768
\(976\) −4.16166e39 −0.182681
\(977\) −2.53265e40 −1.09647 −0.548237 0.836323i \(-0.684701\pi\)
−0.548237 + 0.836323i \(0.684701\pi\)
\(978\) −3.38911e39 −0.144714
\(979\) 4.97701e40 2.09605
\(980\) 5.33442e39 0.221583
\(981\) −1.01821e40 −0.417162
\(982\) −6.85740e38 −0.0277112
\(983\) −2.40137e40 −0.957163 −0.478582 0.878043i \(-0.658849\pi\)
−0.478582 + 0.878043i \(0.658849\pi\)
\(984\) 3.67874e39 0.144632
\(985\) 1.66460e40 0.645536
\(986\) −1.23094e40 −0.470867
\(987\) −8.45854e38 −0.0319164
\(988\) −1.50369e40 −0.559682
\(989\) 6.16084e40 2.26199
\(990\) 1.09625e40 0.397039
\(991\) 2.42521e40 0.866471 0.433236 0.901281i \(-0.357372\pi\)
0.433236 + 0.901281i \(0.357372\pi\)
\(992\) −6.97971e39 −0.245997
\(993\) 1.17185e40 0.407435
\(994\) 1.30356e39 0.0447110
\(995\) −2.16217e40 −0.731607
\(996\) 4.80691e39 0.160459
\(997\) 5.33312e40 1.75629 0.878147 0.478391i \(-0.158780\pi\)
0.878147 + 0.478391i \(0.158780\pi\)
\(998\) 1.44854e40 0.470618
\(999\) −3.09527e39 −0.0992120
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.28.a.c.1.2 2
5.2 odd 4 50.28.b.c.49.3 4
5.3 odd 4 50.28.b.c.49.2 4
5.4 even 2 50.28.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.28.a.c.1.2 2 1.1 even 1 trivial
50.28.a.c.1.1 2 5.4 even 2
50.28.b.c.49.2 4 5.3 odd 4
50.28.b.c.49.3 4 5.2 odd 4