Properties

Label 10.28.a.b.1.2
Level $10$
Weight $28$
Character 10.1
Self dual yes
Analytic conductor $46.186$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,28,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.1855574838\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{12929}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3232 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3}\cdot 5\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-56.3529\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8192.00 q^{2} +1.45602e6 q^{3} +6.71089e7 q^{4} -1.22070e9 q^{5} -1.19278e10 q^{6} -3.42070e11 q^{7} -5.49756e11 q^{8} -5.50559e12 q^{9} +1.00000e13 q^{10} +1.20755e13 q^{11} +9.77122e13 q^{12} -1.02154e14 q^{13} +2.80224e15 q^{14} -1.77737e15 q^{15} +4.50360e15 q^{16} +1.63337e16 q^{17} +4.51018e16 q^{18} -2.21733e15 q^{19} -8.19200e16 q^{20} -4.98063e17 q^{21} -9.89228e16 q^{22} -1.90828e17 q^{23} -8.00458e17 q^{24} +1.49012e18 q^{25} +8.36847e17 q^{26} -1.91193e19 q^{27} -2.29560e19 q^{28} -6.52176e19 q^{29} +1.45602e19 q^{30} +4.50679e19 q^{31} -3.68935e19 q^{32} +1.75823e19 q^{33} -1.33806e20 q^{34} +4.17566e20 q^{35} -3.69474e20 q^{36} +2.51294e21 q^{37} +1.81644e19 q^{38} -1.48739e20 q^{39} +6.71089e20 q^{40} +6.73990e20 q^{41} +4.08013e21 q^{42} -1.21806e21 q^{43} +8.10376e20 q^{44} +6.72069e21 q^{45} +1.56326e21 q^{46} +4.88526e22 q^{47} +6.55735e21 q^{48} +5.12997e22 q^{49} -1.22070e22 q^{50} +2.37823e22 q^{51} -6.85545e21 q^{52} +9.75271e21 q^{53} +1.56626e23 q^{54} -1.47407e22 q^{55} +1.88055e23 q^{56} -3.22849e21 q^{57} +5.34263e23 q^{58} +1.09826e24 q^{59} -1.19278e23 q^{60} +9.88829e23 q^{61} -3.69197e23 q^{62} +1.88330e24 q^{63} +3.02231e23 q^{64} +1.24700e23 q^{65} -1.44034e23 q^{66} +8.13848e24 q^{67} +1.09614e24 q^{68} -2.77850e23 q^{69} -3.42070e24 q^{70} -1.38068e25 q^{71} +3.02673e24 q^{72} -2.27541e25 q^{73} -2.05860e25 q^{74} +2.16965e24 q^{75} -1.48803e23 q^{76} -4.13068e24 q^{77} +1.21847e24 q^{78} +2.55487e24 q^{79} -5.49756e24 q^{80} +1.41452e25 q^{81} -5.52132e24 q^{82} -9.67997e25 q^{83} -3.34244e25 q^{84} -1.99387e25 q^{85} +9.97833e24 q^{86} -9.49584e25 q^{87} -6.63860e24 q^{88} +3.24368e26 q^{89} -5.50559e25 q^{90} +3.49439e25 q^{91} -1.28062e25 q^{92} +6.56200e25 q^{93} -4.00200e26 q^{94} +2.70671e24 q^{95} -5.37178e25 q^{96} +4.91800e26 q^{97} -4.20247e26 q^{98} -6.64830e25 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16384 q^{2} - 2245644 q^{3} + 134217728 q^{4} - 2441406250 q^{5} + 18396315648 q^{6} - 120196732292 q^{7} - 1099511627776 q^{8} + 571163616594 q^{9} + 20000000000000 q^{10} + 7112122732704 q^{11}+ \cdots - 96\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8192.00 −0.707107
\(3\) 1.45602e6 0.527268 0.263634 0.964623i \(-0.415079\pi\)
0.263634 + 0.964623i \(0.415079\pi\)
\(4\) 6.71089e7 0.500000
\(5\) −1.22070e9 −0.447214
\(6\) −1.19278e10 −0.372835
\(7\) −3.42070e11 −1.33442 −0.667209 0.744871i \(-0.732511\pi\)
−0.667209 + 0.744871i \(0.732511\pi\)
\(8\) −5.49756e11 −0.353553
\(9\) −5.50559e12 −0.721988
\(10\) 1.00000e13 0.316228
\(11\) 1.20755e13 0.105464 0.0527321 0.998609i \(-0.483207\pi\)
0.0527321 + 0.998609i \(0.483207\pi\)
\(12\) 9.77122e13 0.263634
\(13\) −1.02154e14 −0.0935451 −0.0467725 0.998906i \(-0.514894\pi\)
−0.0467725 + 0.998906i \(0.514894\pi\)
\(14\) 2.80224e15 0.943576
\(15\) −1.77737e15 −0.235802
\(16\) 4.50360e15 0.250000
\(17\) 1.63337e16 0.399968 0.199984 0.979799i \(-0.435911\pi\)
0.199984 + 0.979799i \(0.435911\pi\)
\(18\) 4.51018e16 0.510523
\(19\) −2.21733e15 −0.0120964 −0.00604822 0.999982i \(-0.501925\pi\)
−0.00604822 + 0.999982i \(0.501925\pi\)
\(20\) −8.19200e16 −0.223607
\(21\) −4.98063e17 −0.703596
\(22\) −9.89228e16 −0.0745745
\(23\) −1.90828e17 −0.0789434 −0.0394717 0.999221i \(-0.512567\pi\)
−0.0394717 + 0.999221i \(0.512567\pi\)
\(24\) −8.00458e17 −0.186418
\(25\) 1.49012e18 0.200000
\(26\) 8.36847e17 0.0661463
\(27\) −1.91193e19 −0.907950
\(28\) −2.29560e19 −0.667209
\(29\) −6.52176e19 −1.18030 −0.590149 0.807294i \(-0.700931\pi\)
−0.590149 + 0.807294i \(0.700931\pi\)
\(30\) 1.45602e19 0.166737
\(31\) 4.50679e19 0.331501 0.165750 0.986168i \(-0.446995\pi\)
0.165750 + 0.986168i \(0.446995\pi\)
\(32\) −3.68935e19 −0.176777
\(33\) 1.75823e19 0.0556080
\(34\) −1.33806e20 −0.282820
\(35\) 4.17566e20 0.596770
\(36\) −3.69474e20 −0.360994
\(37\) 2.51294e21 1.69613 0.848063 0.529895i \(-0.177769\pi\)
0.848063 + 0.529895i \(0.177769\pi\)
\(38\) 1.81644e19 0.00855347
\(39\) −1.48739e20 −0.0493234
\(40\) 6.71089e20 0.158114
\(41\) 6.73990e20 0.113781 0.0568907 0.998380i \(-0.481881\pi\)
0.0568907 + 0.998380i \(0.481881\pi\)
\(42\) 4.08013e21 0.497518
\(43\) −1.21806e21 −0.108104 −0.0540522 0.998538i \(-0.517214\pi\)
−0.0540522 + 0.998538i \(0.517214\pi\)
\(44\) 8.10376e20 0.0527321
\(45\) 6.72069e21 0.322883
\(46\) 1.56326e21 0.0558214
\(47\) 4.88526e22 1.30487 0.652434 0.757846i \(-0.273748\pi\)
0.652434 + 0.757846i \(0.273748\pi\)
\(48\) 6.55735e21 0.131817
\(49\) 5.12997e22 0.780671
\(50\) −1.22070e22 −0.141421
\(51\) 2.37823e22 0.210891
\(52\) −6.85545e21 −0.0467725
\(53\) 9.75271e21 0.0514519 0.0257259 0.999669i \(-0.491810\pi\)
0.0257259 + 0.999669i \(0.491810\pi\)
\(54\) 1.56626e23 0.642018
\(55\) −1.47407e22 −0.0471651
\(56\) 1.88055e23 0.471788
\(57\) −3.22849e21 −0.00637807
\(58\) 5.34263e23 0.834597
\(59\) 1.09826e24 1.36208 0.681042 0.732245i \(-0.261527\pi\)
0.681042 + 0.732245i \(0.261527\pi\)
\(60\) −1.19278e23 −0.117901
\(61\) 9.88829e23 0.781931 0.390966 0.920405i \(-0.372141\pi\)
0.390966 + 0.920405i \(0.372141\pi\)
\(62\) −3.69197e23 −0.234407
\(63\) 1.88330e24 0.963434
\(64\) 3.02231e23 0.125000
\(65\) 1.24700e23 0.0418346
\(66\) −1.44034e23 −0.0393208
\(67\) 8.13848e24 1.81357 0.906784 0.421597i \(-0.138530\pi\)
0.906784 + 0.421597i \(0.138530\pi\)
\(68\) 1.09614e24 0.199984
\(69\) −2.77850e23 −0.0416244
\(70\) −3.42070e24 −0.421980
\(71\) −1.38068e25 −1.40638 −0.703192 0.711000i \(-0.748243\pi\)
−0.703192 + 0.711000i \(0.748243\pi\)
\(72\) 3.02673e24 0.255261
\(73\) −2.27541e25 −1.59294 −0.796471 0.604676i \(-0.793302\pi\)
−0.796471 + 0.604676i \(0.793302\pi\)
\(74\) −2.05860e25 −1.19934
\(75\) 2.16965e24 0.105454
\(76\) −1.48803e23 −0.00604822
\(77\) −4.13068e24 −0.140733
\(78\) 1.21847e24 0.0348769
\(79\) 2.55487e24 0.0615748 0.0307874 0.999526i \(-0.490199\pi\)
0.0307874 + 0.999526i \(0.490199\pi\)
\(80\) −5.49756e24 −0.111803
\(81\) 1.41452e25 0.243255
\(82\) −5.52132e24 −0.0804556
\(83\) −9.67997e25 −1.19762 −0.598811 0.800891i \(-0.704360\pi\)
−0.598811 + 0.800891i \(0.704360\pi\)
\(84\) −3.34244e25 −0.351798
\(85\) −1.99387e25 −0.178871
\(86\) 9.97833e24 0.0764414
\(87\) −9.49584e25 −0.622334
\(88\) −6.63860e24 −0.0372872
\(89\) 3.24368e26 1.56413 0.782064 0.623198i \(-0.214167\pi\)
0.782064 + 0.623198i \(0.214167\pi\)
\(90\) −5.50559e25 −0.228313
\(91\) 3.49439e25 0.124828
\(92\) −1.28062e25 −0.0394717
\(93\) 6.56200e25 0.174790
\(94\) −4.00200e26 −0.922681
\(95\) 2.70671e24 0.00540969
\(96\) −5.37178e25 −0.0932088
\(97\) 4.91800e26 0.741943 0.370971 0.928644i \(-0.379025\pi\)
0.370971 + 0.928644i \(0.379025\pi\)
\(98\) −4.20247e26 −0.552018
\(99\) −6.64830e25 −0.0761439
\(100\) 1.00000e26 0.100000
\(101\) 2.12114e27 1.85452 0.927259 0.374421i \(-0.122159\pi\)
0.927259 + 0.374421i \(0.122159\pi\)
\(102\) −1.94825e26 −0.149122
\(103\) 3.47783e25 0.0233349 0.0116675 0.999932i \(-0.496286\pi\)
0.0116675 + 0.999932i \(0.496286\pi\)
\(104\) 5.61599e25 0.0330732
\(105\) 6.07987e26 0.314658
\(106\) −7.98942e25 −0.0363820
\(107\) 4.84969e27 1.94551 0.972754 0.231841i \(-0.0744750\pi\)
0.972754 + 0.231841i \(0.0744750\pi\)
\(108\) −1.28308e27 −0.453975
\(109\) −1.76094e27 −0.550158 −0.275079 0.961422i \(-0.588704\pi\)
−0.275079 + 0.961422i \(0.588704\pi\)
\(110\) 1.20755e26 0.0333507
\(111\) 3.65890e27 0.894314
\(112\) −1.54055e27 −0.333604
\(113\) 3.51618e27 0.675324 0.337662 0.941268i \(-0.390364\pi\)
0.337662 + 0.941268i \(0.390364\pi\)
\(114\) 2.64478e25 0.00450997
\(115\) 2.32944e26 0.0353046
\(116\) −4.37668e27 −0.590149
\(117\) 5.62419e26 0.0675384
\(118\) −8.99696e27 −0.963138
\(119\) −5.58729e27 −0.533725
\(120\) 9.77122e26 0.0833685
\(121\) −1.29642e28 −0.988877
\(122\) −8.10049e27 −0.552909
\(123\) 9.81346e26 0.0599933
\(124\) 3.02446e27 0.165750
\(125\) −1.81899e27 −0.0894427
\(126\) −1.54280e28 −0.681250
\(127\) 8.77438e27 0.348230 0.174115 0.984725i \(-0.444294\pi\)
0.174115 + 0.984725i \(0.444294\pi\)
\(128\) −2.47588e27 −0.0883883
\(129\) −1.77352e27 −0.0570001
\(130\) −1.02154e27 −0.0295815
\(131\) −3.38485e28 −0.883846 −0.441923 0.897053i \(-0.645703\pi\)
−0.441923 + 0.897053i \(0.645703\pi\)
\(132\) 1.17993e27 0.0278040
\(133\) 7.58484e26 0.0161417
\(134\) −6.66705e28 −1.28239
\(135\) 2.33390e28 0.406048
\(136\) −8.97957e27 −0.141410
\(137\) 1.01883e29 1.45337 0.726683 0.686973i \(-0.241061\pi\)
0.726683 + 0.686973i \(0.241061\pi\)
\(138\) 2.27615e27 0.0294329
\(139\) −4.45983e28 −0.523141 −0.261571 0.965184i \(-0.584240\pi\)
−0.261571 + 0.965184i \(0.584240\pi\)
\(140\) 2.80224e28 0.298385
\(141\) 7.11306e28 0.688015
\(142\) 1.13105e29 0.994463
\(143\) −1.23357e27 −0.00986566
\(144\) −2.47950e28 −0.180497
\(145\) 7.96113e28 0.527846
\(146\) 1.86401e29 1.12638
\(147\) 7.46937e28 0.411623
\(148\) 1.68640e29 0.848063
\(149\) −5.58786e28 −0.256585 −0.128292 0.991736i \(-0.540950\pi\)
−0.128292 + 0.991736i \(0.540950\pi\)
\(150\) −1.77737e28 −0.0745670
\(151\) −2.68196e29 −1.02864 −0.514320 0.857598i \(-0.671956\pi\)
−0.514320 + 0.857598i \(0.671956\pi\)
\(152\) 1.21899e27 0.00427673
\(153\) −8.99269e28 −0.288772
\(154\) 3.38386e28 0.0995135
\(155\) −5.50146e28 −0.148252
\(156\) −9.98171e27 −0.0246617
\(157\) −3.96402e28 −0.0898443 −0.0449222 0.998990i \(-0.514304\pi\)
−0.0449222 + 0.998990i \(0.514304\pi\)
\(158\) −2.09295e28 −0.0435400
\(159\) 1.42002e28 0.0271289
\(160\) 4.50360e28 0.0790569
\(161\) 6.52765e28 0.105343
\(162\) −1.15877e29 −0.172007
\(163\) −7.23256e29 −0.988005 −0.494003 0.869460i \(-0.664467\pi\)
−0.494003 + 0.869460i \(0.664467\pi\)
\(164\) 4.52307e28 0.0568907
\(165\) −2.14628e28 −0.0248686
\(166\) 7.92983e29 0.846846
\(167\) −9.65355e28 −0.0950637 −0.0475318 0.998870i \(-0.515136\pi\)
−0.0475318 + 0.998870i \(0.515136\pi\)
\(168\) 2.73813e29 0.248759
\(169\) −1.18210e30 −0.991249
\(170\) 1.63337e29 0.126481
\(171\) 1.22077e28 0.00873348
\(172\) −8.17424e28 −0.0540522
\(173\) −6.03771e29 −0.369190 −0.184595 0.982815i \(-0.559097\pi\)
−0.184595 + 0.982815i \(0.559097\pi\)
\(174\) 7.77900e29 0.440057
\(175\) −5.09724e29 −0.266884
\(176\) 5.43834e28 0.0263661
\(177\) 1.59910e30 0.718184
\(178\) −2.65722e30 −1.10601
\(179\) −3.15544e30 −1.21771 −0.608854 0.793282i \(-0.708371\pi\)
−0.608854 + 0.793282i \(0.708371\pi\)
\(180\) 4.51018e29 0.161441
\(181\) −2.41563e30 −0.802362 −0.401181 0.915999i \(-0.631400\pi\)
−0.401181 + 0.915999i \(0.631400\pi\)
\(182\) −2.86261e29 −0.0882669
\(183\) 1.43976e30 0.412288
\(184\) 1.04909e29 0.0279107
\(185\) −3.06755e30 −0.758531
\(186\) −5.37559e29 −0.123595
\(187\) 1.97239e29 0.0421824
\(188\) 3.27844e30 0.652434
\(189\) 6.54016e30 1.21158
\(190\) −2.21733e28 −0.00382523
\(191\) 1.23727e30 0.198845 0.0994227 0.995045i \(-0.468300\pi\)
0.0994227 + 0.995045i \(0.468300\pi\)
\(192\) 4.40056e29 0.0659086
\(193\) 9.55053e30 1.33353 0.666766 0.745267i \(-0.267678\pi\)
0.666766 + 0.745267i \(0.267678\pi\)
\(194\) −4.02883e30 −0.524633
\(195\) 1.81566e29 0.0220581
\(196\) 3.44267e30 0.390336
\(197\) −5.01468e30 −0.530822 −0.265411 0.964135i \(-0.585508\pi\)
−0.265411 + 0.964135i \(0.585508\pi\)
\(198\) 5.44629e29 0.0538419
\(199\) 1.64461e31 1.51896 0.759481 0.650530i \(-0.225453\pi\)
0.759481 + 0.650530i \(0.225453\pi\)
\(200\) −8.19200e29 −0.0707107
\(201\) 1.18498e31 0.956237
\(202\) −1.73764e31 −1.31134
\(203\) 2.23090e31 1.57501
\(204\) 1.59601e30 0.105445
\(205\) −8.22741e29 −0.0508846
\(206\) −2.84904e29 −0.0165003
\(207\) 1.05062e30 0.0569962
\(208\) −4.60062e29 −0.0233863
\(209\) −2.67755e28 −0.00127574
\(210\) −4.98063e30 −0.222497
\(211\) −1.40300e31 −0.587820 −0.293910 0.955833i \(-0.594957\pi\)
−0.293910 + 0.955833i \(0.594957\pi\)
\(212\) 6.54493e29 0.0257259
\(213\) −2.01030e31 −0.741542
\(214\) −3.97286e31 −1.37568
\(215\) 1.48689e30 0.0483458
\(216\) 1.05110e31 0.321009
\(217\) −1.54164e31 −0.442361
\(218\) 1.44256e31 0.389021
\(219\) −3.31305e31 −0.839908
\(220\) −9.89228e29 −0.0235825
\(221\) −1.66856e30 −0.0374150
\(222\) −2.99737e31 −0.632376
\(223\) 1.89499e31 0.376264 0.188132 0.982144i \(-0.439757\pi\)
0.188132 + 0.982144i \(0.439757\pi\)
\(224\) 1.26202e31 0.235894
\(225\) −8.20397e30 −0.144398
\(226\) −2.88045e31 −0.477526
\(227\) 2.62637e31 0.410211 0.205106 0.978740i \(-0.434246\pi\)
0.205106 + 0.978740i \(0.434246\pi\)
\(228\) −2.16660e29 −0.00318903
\(229\) −1.17074e32 −1.62436 −0.812182 0.583405i \(-0.801720\pi\)
−0.812182 + 0.583405i \(0.801720\pi\)
\(230\) −1.90828e30 −0.0249641
\(231\) −6.01438e30 −0.0742043
\(232\) 3.58538e31 0.417299
\(233\) 4.74248e31 0.520835 0.260418 0.965496i \(-0.416140\pi\)
0.260418 + 0.965496i \(0.416140\pi\)
\(234\) −4.60734e30 −0.0477569
\(235\) −5.96345e31 −0.583554
\(236\) 7.37031e31 0.681042
\(237\) 3.71995e30 0.0324664
\(238\) 4.57711e31 0.377400
\(239\) −4.45355e31 −0.347004 −0.173502 0.984834i \(-0.555508\pi\)
−0.173502 + 0.984834i \(0.555508\pi\)
\(240\) −8.00458e30 −0.0589504
\(241\) 1.62097e32 1.12861 0.564307 0.825565i \(-0.309144\pi\)
0.564307 + 0.825565i \(0.309144\pi\)
\(242\) 1.06203e32 0.699242
\(243\) 1.66392e32 1.03621
\(244\) 6.63592e31 0.390966
\(245\) −6.26218e31 −0.349127
\(246\) −8.03918e30 −0.0424217
\(247\) 2.26510e29 0.00113156
\(248\) −2.47764e31 −0.117203
\(249\) −1.40943e32 −0.631468
\(250\) 1.49012e31 0.0632456
\(251\) 6.55019e31 0.263426 0.131713 0.991288i \(-0.457952\pi\)
0.131713 + 0.991288i \(0.457952\pi\)
\(252\) 1.26386e32 0.481717
\(253\) −2.30435e30 −0.00832571
\(254\) −7.18797e31 −0.246236
\(255\) −2.90312e31 −0.0943131
\(256\) 2.02824e31 0.0625000
\(257\) 3.76002e32 1.09924 0.549621 0.835414i \(-0.314772\pi\)
0.549621 + 0.835414i \(0.314772\pi\)
\(258\) 1.45287e31 0.0403051
\(259\) −8.59601e32 −2.26334
\(260\) 8.36847e30 0.0209173
\(261\) 3.59061e32 0.852161
\(262\) 2.77287e32 0.624973
\(263\) 1.47130e32 0.314992 0.157496 0.987520i \(-0.449658\pi\)
0.157496 + 0.987520i \(0.449658\pi\)
\(264\) −9.66596e30 −0.0196604
\(265\) −1.19052e31 −0.0230100
\(266\) −6.21350e30 −0.0114139
\(267\) 4.72287e32 0.824715
\(268\) 5.46164e32 0.906784
\(269\) −1.09666e33 −1.73148 −0.865738 0.500498i \(-0.833150\pi\)
−0.865738 + 0.500498i \(0.833150\pi\)
\(270\) −1.91193e32 −0.287119
\(271\) −7.97318e32 −1.13906 −0.569530 0.821971i \(-0.692875\pi\)
−0.569530 + 0.821971i \(0.692875\pi\)
\(272\) 7.35607e31 0.0999920
\(273\) 5.08792e31 0.0658180
\(274\) −8.34627e32 −1.02768
\(275\) 1.79940e31 0.0210929
\(276\) −1.86462e31 −0.0208122
\(277\) −1.37742e33 −1.46416 −0.732081 0.681218i \(-0.761451\pi\)
−0.732081 + 0.681218i \(0.761451\pi\)
\(278\) 3.65350e32 0.369917
\(279\) −2.48126e32 −0.239340
\(280\) −2.29560e32 −0.210990
\(281\) 1.94855e33 1.70677 0.853387 0.521277i \(-0.174544\pi\)
0.853387 + 0.521277i \(0.174544\pi\)
\(282\) −5.82702e32 −0.486500
\(283\) 2.07385e33 1.65067 0.825336 0.564642i \(-0.190986\pi\)
0.825336 + 0.564642i \(0.190986\pi\)
\(284\) −9.26555e32 −0.703192
\(285\) 3.94103e30 0.00285236
\(286\) 1.01054e31 0.00697608
\(287\) −2.30552e32 −0.151832
\(288\) 2.03120e32 0.127631
\(289\) −1.40092e33 −0.840025
\(290\) −6.52176e32 −0.373243
\(291\) 7.16073e32 0.391203
\(292\) −1.52700e33 −0.796471
\(293\) 1.62146e33 0.807596 0.403798 0.914848i \(-0.367690\pi\)
0.403798 + 0.914848i \(0.367690\pi\)
\(294\) −6.11891e32 −0.291062
\(295\) −1.34065e33 −0.609142
\(296\) −1.38150e33 −0.599671
\(297\) −2.30876e32 −0.0957563
\(298\) 4.57758e32 0.181433
\(299\) 1.94939e31 0.00738476
\(300\) 1.45602e32 0.0527268
\(301\) 4.16661e32 0.144257
\(302\) 2.19706e33 0.727358
\(303\) 3.08843e33 0.977828
\(304\) −9.98598e30 −0.00302411
\(305\) −1.20707e33 −0.349690
\(306\) 7.36681e32 0.204193
\(307\) 4.28458e33 1.13642 0.568212 0.822882i \(-0.307635\pi\)
0.568212 + 0.822882i \(0.307635\pi\)
\(308\) −2.77206e32 −0.0703667
\(309\) 5.06381e31 0.0123038
\(310\) 4.50679e32 0.104830
\(311\) 1.87537e33 0.417658 0.208829 0.977952i \(-0.433035\pi\)
0.208829 + 0.977952i \(0.433035\pi\)
\(312\) 8.17701e31 0.0174384
\(313\) 7.71677e33 1.57611 0.788056 0.615604i \(-0.211088\pi\)
0.788056 + 0.615604i \(0.211088\pi\)
\(314\) 3.24733e32 0.0635295
\(315\) −2.29895e33 −0.430861
\(316\) 1.71454e32 0.0307874
\(317\) −3.06539e32 −0.0527455 −0.0263728 0.999652i \(-0.508396\pi\)
−0.0263728 + 0.999652i \(0.508396\pi\)
\(318\) −1.16328e32 −0.0191831
\(319\) −7.87538e32 −0.124479
\(320\) −3.68935e32 −0.0559017
\(321\) 7.06127e33 1.02580
\(322\) −5.34745e32 −0.0744891
\(323\) −3.62174e31 −0.00483819
\(324\) 9.49268e32 0.121627
\(325\) −1.52222e32 −0.0187090
\(326\) 5.92491e33 0.698625
\(327\) −2.56398e33 −0.290081
\(328\) −3.70530e32 −0.0402278
\(329\) −1.67110e34 −1.74124
\(330\) 1.75823e32 0.0175848
\(331\) −1.08931e34 −1.04586 −0.522930 0.852375i \(-0.675161\pi\)
−0.522930 + 0.852375i \(0.675161\pi\)
\(332\) −6.49612e33 −0.598811
\(333\) −1.38352e34 −1.22458
\(334\) 7.90819e32 0.0672202
\(335\) −9.93467e33 −0.811052
\(336\) −2.24308e33 −0.175899
\(337\) −2.14689e34 −1.61736 −0.808680 0.588249i \(-0.799817\pi\)
−0.808680 + 0.588249i \(0.799817\pi\)
\(338\) 9.68375e33 0.700919
\(339\) 5.11964e33 0.356077
\(340\) −1.33806e33 −0.0894356
\(341\) 5.44220e32 0.0349615
\(342\) −1.00006e32 −0.00617550
\(343\) 4.93013e33 0.292676
\(344\) 6.69634e32 0.0382207
\(345\) 3.39172e32 0.0186150
\(346\) 4.94609e33 0.261057
\(347\) 2.88990e34 1.46702 0.733509 0.679680i \(-0.237881\pi\)
0.733509 + 0.679680i \(0.237881\pi\)
\(348\) −6.37255e33 −0.311167
\(349\) −4.64738e33 −0.218306 −0.109153 0.994025i \(-0.534814\pi\)
−0.109153 + 0.994025i \(0.534814\pi\)
\(350\) 4.17566e33 0.188715
\(351\) 1.95312e33 0.0849342
\(352\) −4.45509e32 −0.0186436
\(353\) −2.34595e34 −0.944845 −0.472422 0.881372i \(-0.656620\pi\)
−0.472422 + 0.881372i \(0.656620\pi\)
\(354\) −1.30998e34 −0.507832
\(355\) 1.68539e34 0.628954
\(356\) 2.17679e34 0.782064
\(357\) −8.13523e33 −0.281416
\(358\) 2.58493e34 0.861050
\(359\) 2.11955e34 0.679937 0.339968 0.940437i \(-0.389584\pi\)
0.339968 + 0.940437i \(0.389584\pi\)
\(360\) −3.69474e33 −0.114156
\(361\) −3.35957e34 −0.999854
\(362\) 1.97889e34 0.567356
\(363\) −1.88762e34 −0.521404
\(364\) 2.34505e33 0.0624141
\(365\) 2.77759e34 0.712386
\(366\) −1.17945e34 −0.291531
\(367\) 5.17652e34 1.23323 0.616617 0.787263i \(-0.288503\pi\)
0.616617 + 0.787263i \(0.288503\pi\)
\(368\) −8.59412e32 −0.0197358
\(369\) −3.71071e33 −0.0821488
\(370\) 2.51294e34 0.536362
\(371\) −3.33611e33 −0.0686583
\(372\) 4.40369e33 0.0873950
\(373\) 2.59719e34 0.497089 0.248545 0.968620i \(-0.420048\pi\)
0.248545 + 0.968620i \(0.420048\pi\)
\(374\) −1.61578e33 −0.0298274
\(375\) −2.64849e33 −0.0471603
\(376\) −2.68570e34 −0.461340
\(377\) 6.66225e33 0.110411
\(378\) −5.35770e34 −0.856720
\(379\) 6.29669e34 0.971590 0.485795 0.874073i \(-0.338530\pi\)
0.485795 + 0.874073i \(0.338530\pi\)
\(380\) 1.81644e32 0.00270484
\(381\) 1.27757e34 0.183611
\(382\) −1.01358e34 −0.140605
\(383\) −5.45282e34 −0.730193 −0.365097 0.930970i \(-0.618964\pi\)
−0.365097 + 0.930970i \(0.618964\pi\)
\(384\) −3.60494e33 −0.0466044
\(385\) 5.04234e33 0.0629379
\(386\) −7.82379e34 −0.942950
\(387\) 6.70612e33 0.0780501
\(388\) 3.30042e34 0.370971
\(389\) 1.15416e35 1.25299 0.626495 0.779425i \(-0.284489\pi\)
0.626495 + 0.779425i \(0.284489\pi\)
\(390\) −1.48739e33 −0.0155974
\(391\) −3.11693e33 −0.0315748
\(392\) −2.82023e34 −0.276009
\(393\) −4.92842e34 −0.466024
\(394\) 4.10802e34 0.375348
\(395\) −3.11874e33 −0.0275371
\(396\) −4.46160e33 −0.0380720
\(397\) −5.65268e34 −0.466211 −0.233106 0.972451i \(-0.574889\pi\)
−0.233106 + 0.972451i \(0.574889\pi\)
\(398\) −1.34727e35 −1.07407
\(399\) 1.10437e33 0.00851101
\(400\) 6.71089e33 0.0500000
\(401\) −3.91339e33 −0.0281906 −0.0140953 0.999901i \(-0.504487\pi\)
−0.0140953 + 0.999901i \(0.504487\pi\)
\(402\) −9.70738e34 −0.676161
\(403\) −4.60388e33 −0.0310103
\(404\) 1.42347e35 0.927259
\(405\) −1.72671e34 −0.108787
\(406\) −1.82755e35 −1.11370
\(407\) 3.03451e34 0.178881
\(408\) −1.30745e34 −0.0745611
\(409\) −2.50975e34 −0.138473 −0.0692366 0.997600i \(-0.522056\pi\)
−0.0692366 + 0.997600i \(0.522056\pi\)
\(410\) 6.73990e33 0.0359808
\(411\) 1.48344e35 0.766314
\(412\) 2.33393e33 0.0116675
\(413\) −3.75683e35 −1.81759
\(414\) −8.60667e33 −0.0403024
\(415\) 1.18164e35 0.535593
\(416\) 3.76882e33 0.0165366
\(417\) −6.49363e34 −0.275836
\(418\) 2.19345e32 0.000902085 0
\(419\) 4.06859e35 1.62015 0.810073 0.586329i \(-0.199427\pi\)
0.810073 + 0.586329i \(0.199427\pi\)
\(420\) 4.08013e34 0.157329
\(421\) −2.35168e35 −0.878153 −0.439076 0.898450i \(-0.644694\pi\)
−0.439076 + 0.898450i \(0.644694\pi\)
\(422\) 1.14934e35 0.415652
\(423\) −2.68962e35 −0.942099
\(424\) −5.36161e33 −0.0181910
\(425\) 2.43392e34 0.0799936
\(426\) 1.64684e35 0.524349
\(427\) −3.38249e35 −1.04342
\(428\) 3.25457e35 0.972754
\(429\) −1.79610e33 −0.00520185
\(430\) −1.21806e34 −0.0341856
\(431\) 5.93896e35 1.61535 0.807676 0.589626i \(-0.200725\pi\)
0.807676 + 0.589626i \(0.200725\pi\)
\(432\) −8.61058e34 −0.226987
\(433\) −5.11209e35 −1.30621 −0.653104 0.757269i \(-0.726533\pi\)
−0.653104 + 0.757269i \(0.726533\pi\)
\(434\) 1.26291e35 0.312796
\(435\) 1.15916e35 0.278316
\(436\) −1.18175e35 −0.275079
\(437\) 4.23129e32 0.000954933 0
\(438\) 2.71405e35 0.593905
\(439\) 6.22583e35 1.32107 0.660536 0.750794i \(-0.270329\pi\)
0.660536 + 0.750794i \(0.270329\pi\)
\(440\) 8.10376e33 0.0166754
\(441\) −2.82435e35 −0.563635
\(442\) 1.36688e34 0.0264564
\(443\) 7.89880e35 1.48290 0.741448 0.671010i \(-0.234139\pi\)
0.741448 + 0.671010i \(0.234139\pi\)
\(444\) 2.45545e35 0.447157
\(445\) −3.95956e35 −0.699499
\(446\) −1.55238e35 −0.266059
\(447\) −8.13607e34 −0.135289
\(448\) −1.03384e35 −0.166802
\(449\) 8.32672e35 1.30361 0.651806 0.758385i \(-0.274011\pi\)
0.651806 + 0.758385i \(0.274011\pi\)
\(450\) 6.72069e34 0.102105
\(451\) 8.13879e33 0.0119999
\(452\) 2.35967e35 0.337662
\(453\) −3.90500e35 −0.542369
\(454\) −2.15152e35 −0.290063
\(455\) −4.26561e34 −0.0558249
\(456\) 1.77488e33 0.00225499
\(457\) −3.61787e35 −0.446257 −0.223128 0.974789i \(-0.571627\pi\)
−0.223128 + 0.974789i \(0.571627\pi\)
\(458\) 9.59074e35 1.14860
\(459\) −3.12290e35 −0.363151
\(460\) 1.56326e34 0.0176523
\(461\) −4.32462e35 −0.474226 −0.237113 0.971482i \(-0.576201\pi\)
−0.237113 + 0.971482i \(0.576201\pi\)
\(462\) 4.92698e34 0.0524704
\(463\) −5.74369e35 −0.594084 −0.297042 0.954864i \(-0.596000\pi\)
−0.297042 + 0.954864i \(0.596000\pi\)
\(464\) −2.93714e35 −0.295075
\(465\) −8.01026e34 −0.0781685
\(466\) −3.88504e35 −0.368286
\(467\) 8.79293e35 0.809759 0.404879 0.914370i \(-0.367314\pi\)
0.404879 + 0.914370i \(0.367314\pi\)
\(468\) 3.77433e34 0.0337692
\(469\) −2.78393e36 −2.42006
\(470\) 4.88526e35 0.412635
\(471\) −5.77171e34 −0.0473721
\(472\) −6.03776e35 −0.481569
\(473\) −1.47087e34 −0.0114012
\(474\) −3.04739e34 −0.0229572
\(475\) −3.30408e33 −0.00241929
\(476\) −3.74957e35 −0.266862
\(477\) −5.36944e34 −0.0371476
\(478\) 3.64835e35 0.245369
\(479\) −1.32449e36 −0.866001 −0.433000 0.901394i \(-0.642545\pi\)
−0.433000 + 0.901394i \(0.642545\pi\)
\(480\) 6.55735e34 0.0416842
\(481\) −2.56707e35 −0.158664
\(482\) −1.32790e36 −0.798050
\(483\) 9.50442e34 0.0555443
\(484\) −8.70011e35 −0.494439
\(485\) −6.00342e35 −0.331807
\(486\) −1.36308e36 −0.732711
\(487\) 2.77661e36 1.45169 0.725844 0.687859i \(-0.241449\pi\)
0.725844 + 0.687859i \(0.241449\pi\)
\(488\) −5.43615e35 −0.276454
\(489\) −1.05308e36 −0.520944
\(490\) 5.12997e35 0.246870
\(491\) 3.83404e36 1.79497 0.897485 0.441046i \(-0.145392\pi\)
0.897485 + 0.441046i \(0.145392\pi\)
\(492\) 6.58570e34 0.0299967
\(493\) −1.06525e36 −0.472082
\(494\) −1.85557e33 −0.000800135 0
\(495\) 8.11560e34 0.0340526
\(496\) 2.02968e35 0.0828752
\(497\) 4.72288e36 1.87670
\(498\) 1.15460e36 0.446515
\(499\) −1.37412e35 −0.0517210 −0.0258605 0.999666i \(-0.508233\pi\)
−0.0258605 + 0.999666i \(0.508233\pi\)
\(500\) −1.22070e35 −0.0447214
\(501\) −1.40558e35 −0.0501241
\(502\) −5.36591e35 −0.186270
\(503\) 4.60357e36 1.55570 0.777852 0.628447i \(-0.216309\pi\)
0.777852 + 0.628447i \(0.216309\pi\)
\(504\) −1.03535e36 −0.340625
\(505\) −2.58928e36 −0.829365
\(506\) 1.88772e34 0.00588716
\(507\) −1.72116e36 −0.522654
\(508\) 5.88839e35 0.174115
\(509\) 1.03517e36 0.298071 0.149035 0.988832i \(-0.452383\pi\)
0.149035 + 0.988832i \(0.452383\pi\)
\(510\) 2.37823e35 0.0666895
\(511\) 7.78349e36 2.12565
\(512\) −1.66153e35 −0.0441942
\(513\) 4.23939e34 0.0109830
\(514\) −3.08021e36 −0.777281
\(515\) −4.24540e34 −0.0104357
\(516\) −1.19019e35 −0.0285000
\(517\) 5.89921e35 0.137617
\(518\) 7.04185e36 1.60042
\(519\) −8.79106e35 −0.194662
\(520\) −6.85545e34 −0.0147908
\(521\) 5.78940e36 1.21709 0.608547 0.793518i \(-0.291753\pi\)
0.608547 + 0.793518i \(0.291753\pi\)
\(522\) −2.94143e36 −0.602569
\(523\) −5.79695e36 −1.15725 −0.578625 0.815594i \(-0.696410\pi\)
−0.578625 + 0.815594i \(0.696410\pi\)
\(524\) −2.27153e36 −0.441923
\(525\) −7.42171e35 −0.140719
\(526\) −1.20529e36 −0.222733
\(527\) 7.36128e35 0.132590
\(528\) 7.91836e34 0.0139020
\(529\) −5.80680e36 −0.993768
\(530\) 9.75271e34 0.0162705
\(531\) −6.04658e36 −0.983408
\(532\) 5.09010e34 0.00807085
\(533\) −6.88509e34 −0.0106437
\(534\) −3.86898e36 −0.583162
\(535\) −5.92003e36 −0.870057
\(536\) −4.47418e36 −0.641193
\(537\) −4.59439e36 −0.642059
\(538\) 8.98384e36 1.22434
\(539\) 6.19472e35 0.0823329
\(540\) 1.56626e36 0.203024
\(541\) 4.55675e35 0.0576093 0.0288046 0.999585i \(-0.490830\pi\)
0.0288046 + 0.999585i \(0.490830\pi\)
\(542\) 6.53163e36 0.805436
\(543\) −3.51722e36 −0.423060
\(544\) −6.02609e35 −0.0707051
\(545\) 2.14959e36 0.246038
\(546\) −4.16802e35 −0.0465403
\(547\) 7.34964e36 0.800640 0.400320 0.916375i \(-0.368899\pi\)
0.400320 + 0.916375i \(0.368899\pi\)
\(548\) 6.83726e36 0.726683
\(549\) −5.44409e36 −0.564545
\(550\) −1.47407e35 −0.0149149
\(551\) 1.44609e35 0.0142774
\(552\) 1.52750e35 0.0147164
\(553\) −8.73945e35 −0.0821665
\(554\) 1.12838e37 1.03532
\(555\) −4.46643e36 −0.399949
\(556\) −2.99294e36 −0.261571
\(557\) −1.11649e37 −0.952381 −0.476191 0.879342i \(-0.657983\pi\)
−0.476191 + 0.879342i \(0.657983\pi\)
\(558\) 2.03264e36 0.169239
\(559\) 1.24430e35 0.0101126
\(560\) 1.88055e36 0.149192
\(561\) 2.87185e35 0.0222414
\(562\) −1.59625e37 −1.20687
\(563\) −1.14995e37 −0.848820 −0.424410 0.905470i \(-0.639518\pi\)
−0.424410 + 0.905470i \(0.639518\pi\)
\(564\) 4.77349e36 0.344008
\(565\) −4.29221e36 −0.302014
\(566\) −1.69890e37 −1.16720
\(567\) −4.83865e36 −0.324603
\(568\) 7.59034e36 0.497232
\(569\) 4.14930e36 0.265436 0.132718 0.991154i \(-0.457630\pi\)
0.132718 + 0.991154i \(0.457630\pi\)
\(570\) −3.22849e34 −0.00201692
\(571\) 1.01000e37 0.616220 0.308110 0.951351i \(-0.400304\pi\)
0.308110 + 0.951351i \(0.400304\pi\)
\(572\) −8.27833e34 −0.00493283
\(573\) 1.80150e36 0.104845
\(574\) 1.88868e36 0.107361
\(575\) −2.84355e35 −0.0157887
\(576\) −1.66396e36 −0.0902485
\(577\) −1.31282e37 −0.695557 −0.347779 0.937577i \(-0.613064\pi\)
−0.347779 + 0.937577i \(0.613064\pi\)
\(578\) 1.14763e37 0.593988
\(579\) 1.39058e37 0.703130
\(580\) 5.34263e36 0.263923
\(581\) 3.31123e37 1.59813
\(582\) −5.86607e36 −0.276622
\(583\) 1.17769e35 0.00542633
\(584\) 1.25092e37 0.563190
\(585\) −6.86547e35 −0.0302041
\(586\) −1.32830e37 −0.571056
\(587\) 9.82196e36 0.412652 0.206326 0.978483i \(-0.433849\pi\)
0.206326 + 0.978483i \(0.433849\pi\)
\(588\) 5.01261e36 0.205812
\(589\) −9.99306e34 −0.00400998
\(590\) 1.09826e37 0.430729
\(591\) −7.30149e36 −0.279886
\(592\) 1.13173e37 0.424032
\(593\) −1.06673e37 −0.390676 −0.195338 0.980736i \(-0.562580\pi\)
−0.195338 + 0.980736i \(0.562580\pi\)
\(594\) 1.89134e36 0.0677099
\(595\) 6.82042e36 0.238689
\(596\) −3.74995e36 −0.128292
\(597\) 2.39459e37 0.800900
\(598\) −1.59694e35 −0.00522182
\(599\) 1.34901e37 0.431274 0.215637 0.976474i \(-0.430817\pi\)
0.215637 + 0.976474i \(0.430817\pi\)
\(600\) −1.19278e36 −0.0372835
\(601\) 3.52554e37 1.07751 0.538754 0.842463i \(-0.318895\pi\)
0.538754 + 0.842463i \(0.318895\pi\)
\(602\) −3.41329e36 −0.102005
\(603\) −4.48071e37 −1.30937
\(604\) −1.79983e37 −0.514320
\(605\) 1.58254e37 0.442239
\(606\) −2.53004e37 −0.691429
\(607\) 2.43922e37 0.651934 0.325967 0.945381i \(-0.394310\pi\)
0.325967 + 0.945381i \(0.394310\pi\)
\(608\) 8.18051e34 0.00213837
\(609\) 3.24825e37 0.830454
\(610\) 9.88829e36 0.247268
\(611\) −4.99050e36 −0.122064
\(612\) −6.03489e36 −0.144386
\(613\) −5.62323e37 −1.31604 −0.658020 0.753000i \(-0.728606\pi\)
−0.658020 + 0.753000i \(0.728606\pi\)
\(614\) −3.50993e37 −0.803573
\(615\) −1.19793e36 −0.0268298
\(616\) 2.27087e36 0.0497568
\(617\) 4.80049e37 1.02905 0.514525 0.857476i \(-0.327968\pi\)
0.514525 + 0.857476i \(0.327968\pi\)
\(618\) −4.14827e35 −0.00870007
\(619\) 2.24910e37 0.461513 0.230757 0.973011i \(-0.425880\pi\)
0.230757 + 0.973011i \(0.425880\pi\)
\(620\) −3.69197e36 −0.0741259
\(621\) 3.64850e36 0.0716766
\(622\) −1.53630e37 −0.295329
\(623\) −1.10956e38 −2.08720
\(624\) −6.69861e35 −0.0123308
\(625\) 2.22045e36 0.0400000
\(626\) −6.32158e37 −1.11448
\(627\) −3.89858e34 −0.000672658 0
\(628\) −2.66021e36 −0.0449222
\(629\) 4.10457e37 0.678397
\(630\) 1.88330e37 0.304664
\(631\) −1.02822e38 −1.62814 −0.814068 0.580770i \(-0.802751\pi\)
−0.814068 + 0.580770i \(0.802751\pi\)
\(632\) −1.40455e36 −0.0217700
\(633\) −2.04280e37 −0.309939
\(634\) 2.51117e36 0.0372967
\(635\) −1.07109e37 −0.155733
\(636\) 9.52958e35 0.0135645
\(637\) −5.24048e36 −0.0730279
\(638\) 6.45151e36 0.0880202
\(639\) 7.60143e37 1.01539
\(640\) 3.02231e36 0.0395285
\(641\) 6.67226e37 0.854456 0.427228 0.904144i \(-0.359490\pi\)
0.427228 + 0.904144i \(0.359490\pi\)
\(642\) −5.78459e37 −0.725353
\(643\) −2.92763e37 −0.359474 −0.179737 0.983715i \(-0.557525\pi\)
−0.179737 + 0.983715i \(0.557525\pi\)
\(644\) 4.38063e36 0.0526717
\(645\) 2.16494e36 0.0254912
\(646\) 2.96693e35 0.00342112
\(647\) −6.89266e37 −0.778357 −0.389179 0.921162i \(-0.627241\pi\)
−0.389179 + 0.921162i \(0.627241\pi\)
\(648\) −7.77640e36 −0.0860035
\(649\) 1.32621e37 0.143651
\(650\) 1.24700e36 0.0132293
\(651\) −2.24467e37 −0.233243
\(652\) −4.85369e37 −0.494003
\(653\) −6.00351e37 −0.598518 −0.299259 0.954172i \(-0.596740\pi\)
−0.299259 + 0.954172i \(0.596740\pi\)
\(654\) 2.10041e37 0.205118
\(655\) 4.13189e37 0.395268
\(656\) 3.03538e36 0.0284454
\(657\) 1.25274e38 1.15009
\(658\) 1.36897e38 1.23124
\(659\) −3.15651e37 −0.278134 −0.139067 0.990283i \(-0.544410\pi\)
−0.139067 + 0.990283i \(0.544410\pi\)
\(660\) −1.44034e36 −0.0124343
\(661\) −5.72052e37 −0.483855 −0.241928 0.970294i \(-0.577780\pi\)
−0.241928 + 0.970294i \(0.577780\pi\)
\(662\) 8.92363e37 0.739535
\(663\) −2.42947e36 −0.0197278
\(664\) 5.32162e37 0.423423
\(665\) −9.25883e35 −0.00721879
\(666\) 1.13338e38 0.865911
\(667\) 1.24453e37 0.0931768
\(668\) −6.47839e36 −0.0475318
\(669\) 2.75916e37 0.198392
\(670\) 8.13848e37 0.573500
\(671\) 1.19407e37 0.0824658
\(672\) 1.83753e37 0.124379
\(673\) 2.84152e38 1.88516 0.942578 0.333987i \(-0.108394\pi\)
0.942578 + 0.333987i \(0.108394\pi\)
\(674\) 1.75873e38 1.14365
\(675\) −2.84900e37 −0.181590
\(676\) −7.93292e37 −0.495625
\(677\) 1.71997e37 0.105336 0.0526678 0.998612i \(-0.483228\pi\)
0.0526678 + 0.998612i \(0.483228\pi\)
\(678\) −4.19401e37 −0.251784
\(679\) −1.68230e38 −0.990062
\(680\) 1.09614e37 0.0632405
\(681\) 3.82406e37 0.216291
\(682\) −4.45825e36 −0.0247215
\(683\) −7.22090e37 −0.392565 −0.196283 0.980547i \(-0.562887\pi\)
−0.196283 + 0.980547i \(0.562887\pi\)
\(684\) 8.19247e35 0.00436674
\(685\) −1.24369e38 −0.649965
\(686\) −4.03876e37 −0.206953
\(687\) −1.70463e38 −0.856475
\(688\) −5.48564e36 −0.0270261
\(689\) −9.96280e35 −0.00481307
\(690\) −2.77850e36 −0.0131628
\(691\) 8.09519e37 0.376074 0.188037 0.982162i \(-0.439787\pi\)
0.188037 + 0.982162i \(0.439787\pi\)
\(692\) −4.05184e37 −0.184595
\(693\) 2.27419e37 0.101608
\(694\) −2.36741e38 −1.03734
\(695\) 5.44413e37 0.233956
\(696\) 5.22040e37 0.220028
\(697\) 1.10088e37 0.0455089
\(698\) 3.80714e37 0.154366
\(699\) 6.90517e37 0.274620
\(700\) −3.42070e37 −0.133442
\(701\) 5.38842e37 0.206190 0.103095 0.994671i \(-0.467125\pi\)
0.103095 + 0.994671i \(0.467125\pi\)
\(702\) −1.60000e37 −0.0600576
\(703\) −5.57202e36 −0.0205171
\(704\) 3.64961e36 0.0131830
\(705\) −8.68293e37 −0.307690
\(706\) 1.92180e38 0.668106
\(707\) −7.25579e38 −2.47470
\(708\) 1.07314e38 0.359092
\(709\) −6.64239e37 −0.218072 −0.109036 0.994038i \(-0.534776\pi\)
−0.109036 + 0.994038i \(0.534776\pi\)
\(710\) −1.38068e38 −0.444738
\(711\) −1.40661e37 −0.0444563
\(712\) −1.78323e38 −0.553003
\(713\) −8.60021e36 −0.0261698
\(714\) 6.66438e37 0.198991
\(715\) 1.50582e36 0.00441206
\(716\) −2.11758e38 −0.608854
\(717\) −6.48448e37 −0.182964
\(718\) −1.73633e38 −0.480788
\(719\) −2.15626e38 −0.585950 −0.292975 0.956120i \(-0.594645\pi\)
−0.292975 + 0.956120i \(0.594645\pi\)
\(720\) 3.02673e37 0.0807207
\(721\) −1.18966e37 −0.0311385
\(722\) 2.75216e38 0.707003
\(723\) 2.36017e38 0.595082
\(724\) −1.62111e38 −0.401181
\(725\) −9.71818e37 −0.236060
\(726\) 1.54633e38 0.368688
\(727\) 7.29285e38 1.70680 0.853401 0.521255i \(-0.174536\pi\)
0.853401 + 0.521255i \(0.174536\pi\)
\(728\) −1.92106e37 −0.0441334
\(729\) 1.34405e38 0.303106
\(730\) −2.27541e38 −0.503733
\(731\) −1.98954e37 −0.0432383
\(732\) 9.66207e37 0.206144
\(733\) 8.53218e38 1.78713 0.893566 0.448932i \(-0.148195\pi\)
0.893566 + 0.448932i \(0.148195\pi\)
\(734\) −4.24060e38 −0.872029
\(735\) −9.11788e37 −0.184084
\(736\) 7.04030e36 0.0139553
\(737\) 9.82766e37 0.191267
\(738\) 3.03981e37 0.0580880
\(739\) 6.54496e37 0.122802 0.0614012 0.998113i \(-0.480443\pi\)
0.0614012 + 0.998113i \(0.480443\pi\)
\(740\) −2.05860e38 −0.379265
\(741\) 3.29804e35 0.000596637 0
\(742\) 2.73294e37 0.0485487
\(743\) −1.95541e38 −0.341105 −0.170553 0.985349i \(-0.554555\pi\)
−0.170553 + 0.985349i \(0.554555\pi\)
\(744\) −3.60750e37 −0.0617976
\(745\) 6.82112e37 0.114748
\(746\) −2.12762e38 −0.351495
\(747\) 5.32939e38 0.864668
\(748\) 1.32365e37 0.0210912
\(749\) −1.65893e39 −2.59612
\(750\) 2.16965e37 0.0333474
\(751\) 9.02110e38 1.36182 0.680911 0.732366i \(-0.261584\pi\)
0.680911 + 0.732366i \(0.261584\pi\)
\(752\) 2.20012e38 0.326217
\(753\) 9.53724e37 0.138896
\(754\) −5.45772e37 −0.0780724
\(755\) 3.27388e38 0.460022
\(756\) 4.38902e38 0.605792
\(757\) 7.72330e38 1.04715 0.523575 0.851980i \(-0.324598\pi\)
0.523575 + 0.851980i \(0.324598\pi\)
\(758\) −5.15825e38 −0.687018
\(759\) −3.35519e36 −0.00438988
\(760\) −1.48803e36 −0.00191261
\(761\) −6.10975e38 −0.771490 −0.385745 0.922605i \(-0.626056\pi\)
−0.385745 + 0.922605i \(0.626056\pi\)
\(762\) −1.04659e38 −0.129832
\(763\) 6.02366e38 0.734141
\(764\) 8.30321e37 0.0994227
\(765\) 1.09774e38 0.129143
\(766\) 4.46695e38 0.516325
\(767\) −1.12192e38 −0.127416
\(768\) 2.95317e37 0.0329543
\(769\) −7.47622e38 −0.819741 −0.409870 0.912144i \(-0.634426\pi\)
−0.409870 + 0.912144i \(0.634426\pi\)
\(770\) −4.13068e37 −0.0445038
\(771\) 5.47468e38 0.579595
\(772\) 6.40925e38 0.666766
\(773\) 1.33482e39 1.36458 0.682288 0.731083i \(-0.260985\pi\)
0.682288 + 0.731083i \(0.260985\pi\)
\(774\) −5.49366e37 −0.0551898
\(775\) 6.71565e37 0.0663002
\(776\) −2.70370e38 −0.262316
\(777\) −1.25160e39 −1.19339
\(778\) −9.45491e38 −0.885998
\(779\) −1.49446e36 −0.00137635
\(780\) 1.21847e37 0.0110290
\(781\) −1.66724e38 −0.148323
\(782\) 2.55339e37 0.0223268
\(783\) 1.24692e39 1.07165
\(784\) 2.31033e38 0.195168
\(785\) 4.83889e37 0.0401796
\(786\) 4.03736e38 0.329529
\(787\) −1.55203e38 −0.124521 −0.0622603 0.998060i \(-0.519831\pi\)
−0.0622603 + 0.998060i \(0.519831\pi\)
\(788\) −3.36529e38 −0.265411
\(789\) 2.14225e38 0.166085
\(790\) 2.55487e37 0.0194717
\(791\) −1.20278e39 −0.901164
\(792\) 3.65494e37 0.0269209
\(793\) −1.01013e38 −0.0731458
\(794\) 4.63068e38 0.329661
\(795\) −1.73342e37 −0.0121324
\(796\) 1.10368e39 0.759481
\(797\) −1.19576e39 −0.809019 −0.404509 0.914534i \(-0.632558\pi\)
−0.404509 + 0.914534i \(0.632558\pi\)
\(798\) −9.04701e36 −0.00601819
\(799\) 7.97946e38 0.521905
\(800\) −5.49756e37 −0.0353553
\(801\) −1.78583e39 −1.12928
\(802\) 3.20585e37 0.0199337
\(803\) −2.74767e38 −0.167999
\(804\) 7.95229e38 0.478118
\(805\) −7.96832e37 −0.0471110
\(806\) 3.77150e37 0.0219276
\(807\) −1.59676e39 −0.912952
\(808\) −1.16611e39 −0.655671
\(809\) −2.75200e39 −1.52175 −0.760874 0.648899i \(-0.775230\pi\)
−0.760874 + 0.648899i \(0.775230\pi\)
\(810\) 1.41452e38 0.0769239
\(811\) −2.91604e39 −1.55960 −0.779798 0.626032i \(-0.784678\pi\)
−0.779798 + 0.626032i \(0.784678\pi\)
\(812\) 1.49713e39 0.787506
\(813\) −1.16092e39 −0.600590
\(814\) −2.48587e38 −0.126488
\(815\) 8.82881e38 0.441849
\(816\) 1.07106e38 0.0527226
\(817\) 2.70084e36 0.00130768
\(818\) 2.05599e38 0.0979154
\(819\) −1.92387e38 −0.0901245
\(820\) −5.52132e37 −0.0254423
\(821\) 2.55103e38 0.115633 0.0578165 0.998327i \(-0.481586\pi\)
0.0578165 + 0.998327i \(0.481586\pi\)
\(822\) −1.21524e39 −0.541866
\(823\) −2.16576e39 −0.949977 −0.474989 0.879992i \(-0.657548\pi\)
−0.474989 + 0.879992i \(0.657548\pi\)
\(824\) −1.91196e37 −0.00825014
\(825\) 2.61996e37 0.0111216
\(826\) 3.07759e39 1.28523
\(827\) 1.43961e39 0.591453 0.295727 0.955273i \(-0.404438\pi\)
0.295727 + 0.955273i \(0.404438\pi\)
\(828\) 7.05059e37 0.0284981
\(829\) 3.12334e39 1.24203 0.621016 0.783798i \(-0.286720\pi\)
0.621016 + 0.783798i \(0.286720\pi\)
\(830\) −9.67997e38 −0.378721
\(831\) −2.00555e39 −0.772006
\(832\) −3.08742e37 −0.0116931
\(833\) 8.37917e38 0.312244
\(834\) 5.31958e38 0.195045
\(835\) 1.17841e38 0.0425138
\(836\) −1.79687e36 −0.000637871 0
\(837\) −8.61669e38 −0.300986
\(838\) −3.33299e39 −1.14562
\(839\) 5.81719e39 1.96755 0.983777 0.179397i \(-0.0574145\pi\)
0.983777 + 0.179397i \(0.0574145\pi\)
\(840\) −3.34244e38 −0.111248
\(841\) 1.20020e39 0.393105
\(842\) 1.92650e39 0.620948
\(843\) 2.83714e39 0.899928
\(844\) −9.41537e38 −0.293910
\(845\) 1.44299e39 0.443300
\(846\) 2.20334e39 0.666164
\(847\) 4.43466e39 1.31958
\(848\) 4.39223e37 0.0128630
\(849\) 3.01958e39 0.870347
\(850\) −1.99387e38 −0.0565640
\(851\) −4.79538e38 −0.133898
\(852\) −1.34909e39 −0.370771
\(853\) −1.88847e39 −0.510854 −0.255427 0.966828i \(-0.582216\pi\)
−0.255427 + 0.966828i \(0.582216\pi\)
\(854\) 2.77094e39 0.737812
\(855\) −1.49020e37 −0.00390573
\(856\) −2.66614e39 −0.687841
\(857\) −4.20096e39 −1.06686 −0.533429 0.845845i \(-0.679097\pi\)
−0.533429 + 0.845845i \(0.679097\pi\)
\(858\) 1.47137e37 0.00367826
\(859\) 7.26089e39 1.78683 0.893413 0.449236i \(-0.148304\pi\)
0.893413 + 0.449236i \(0.148304\pi\)
\(860\) 9.97833e37 0.0241729
\(861\) −3.35689e38 −0.0800562
\(862\) −4.86520e39 −1.14223
\(863\) 9.99655e38 0.231049 0.115525 0.993305i \(-0.463145\pi\)
0.115525 + 0.993305i \(0.463145\pi\)
\(864\) 7.05379e38 0.160504
\(865\) 7.37025e38 0.165107
\(866\) 4.18783e39 0.923628
\(867\) −2.03977e39 −0.442919
\(868\) −1.03458e39 −0.221180
\(869\) 3.08514e37 0.00649394
\(870\) −9.49584e38 −0.196799
\(871\) −8.31380e38 −0.169650
\(872\) 9.68089e38 0.194510
\(873\) −2.70765e39 −0.535674
\(874\) −3.46627e36 −0.000675240 0
\(875\) 6.22222e38 0.119354
\(876\) −2.22335e39 −0.419954
\(877\) −4.39906e39 −0.818211 −0.409105 0.912487i \(-0.634159\pi\)
−0.409105 + 0.912487i \(0.634159\pi\)
\(878\) −5.10020e39 −0.934139
\(879\) 2.36089e39 0.425820
\(880\) −6.63860e37 −0.0117913
\(881\) −2.21444e39 −0.387338 −0.193669 0.981067i \(-0.562039\pi\)
−0.193669 + 0.981067i \(0.562039\pi\)
\(882\) 2.31371e39 0.398550
\(883\) 3.04198e38 0.0516044 0.0258022 0.999667i \(-0.491786\pi\)
0.0258022 + 0.999667i \(0.491786\pi\)
\(884\) −1.11975e38 −0.0187075
\(885\) −1.95202e39 −0.321181
\(886\) −6.47069e39 −1.04857
\(887\) 3.06989e39 0.489953 0.244977 0.969529i \(-0.421220\pi\)
0.244977 + 0.969529i \(0.421220\pi\)
\(888\) −2.01150e39 −0.316188
\(889\) −3.00145e39 −0.464684
\(890\) 3.24368e39 0.494621
\(891\) 1.70811e38 0.0256547
\(892\) 1.27171e39 0.188132
\(893\) −1.08322e38 −0.0157842
\(894\) 6.66506e38 0.0956639
\(895\) 3.85185e39 0.544576
\(896\) 8.46925e38 0.117947
\(897\) 2.83835e37 0.00389375
\(898\) −6.82125e39 −0.921793
\(899\) −2.93922e39 −0.391270
\(900\) −5.50559e38 −0.0721988
\(901\) 1.59298e38 0.0205791
\(902\) −6.66730e37 −0.00848519
\(903\) 6.06669e38 0.0760619
\(904\) −1.93304e39 −0.238763
\(905\) 2.94877e39 0.358827
\(906\) 3.19898e39 0.383513
\(907\) −6.69307e39 −0.790546 −0.395273 0.918564i \(-0.629350\pi\)
−0.395273 + 0.918564i \(0.629350\pi\)
\(908\) 1.76253e39 0.205106
\(909\) −1.16781e40 −1.33894
\(910\) 3.49439e38 0.0394741
\(911\) −2.24684e39 −0.250077 −0.125039 0.992152i \(-0.539905\pi\)
−0.125039 + 0.992152i \(0.539905\pi\)
\(912\) −1.45398e37 −0.00159452
\(913\) −1.16891e39 −0.126306
\(914\) 2.96376e39 0.315551
\(915\) −1.75752e39 −0.184381
\(916\) −7.85673e39 −0.812182
\(917\) 1.15786e40 1.17942
\(918\) 2.55828e39 0.256787
\(919\) −1.71198e40 −1.69332 −0.846662 0.532131i \(-0.821391\pi\)
−0.846662 + 0.532131i \(0.821391\pi\)
\(920\) −1.28062e38 −0.0124820
\(921\) 6.23845e39 0.599200
\(922\) 3.54273e39 0.335328
\(923\) 1.41042e39 0.131560
\(924\) −4.03618e38 −0.0371021
\(925\) 3.74457e39 0.339225
\(926\) 4.70523e39 0.420081
\(927\) −1.91475e38 −0.0168475
\(928\) 2.40610e39 0.208649
\(929\) 1.02221e40 0.873632 0.436816 0.899551i \(-0.356106\pi\)
0.436816 + 0.899551i \(0.356106\pi\)
\(930\) 6.56200e38 0.0552735
\(931\) −1.13749e38 −0.00944333
\(932\) 3.18262e39 0.260418
\(933\) 2.73058e39 0.220218
\(934\) −7.20317e39 −0.572586
\(935\) −2.40770e38 −0.0188645
\(936\) −3.09193e38 −0.0238784
\(937\) 9.74565e39 0.741868 0.370934 0.928659i \(-0.379038\pi\)
0.370934 + 0.928659i \(0.379038\pi\)
\(938\) 2.28060e40 1.71124
\(939\) 1.12358e40 0.831034
\(940\) −4.00200e39 −0.291777
\(941\) 2.57094e39 0.184771 0.0923853 0.995723i \(-0.470551\pi\)
0.0923853 + 0.995723i \(0.470551\pi\)
\(942\) 4.72819e38 0.0334971
\(943\) −1.28616e38 −0.00898229
\(944\) 4.94613e39 0.340521
\(945\) −7.98359e39 −0.541837
\(946\) 1.20494e38 0.00806183
\(947\) −1.22271e39 −0.0806490 −0.0403245 0.999187i \(-0.512839\pi\)
−0.0403245 + 0.999187i \(0.512839\pi\)
\(948\) 2.49642e38 0.0162332
\(949\) 2.32442e39 0.149012
\(950\) 2.70671e37 0.00171069
\(951\) −4.46328e38 −0.0278111
\(952\) 3.07165e39 0.188700
\(953\) 7.65794e39 0.463829 0.231914 0.972736i \(-0.425501\pi\)
0.231914 + 0.972736i \(0.425501\pi\)
\(954\) 4.39865e38 0.0262673
\(955\) −1.51035e39 −0.0889264
\(956\) −2.98873e39 −0.173502
\(957\) −1.14667e39 −0.0656340
\(958\) 1.08502e40 0.612355
\(959\) −3.48512e40 −1.93940
\(960\) −5.37178e38 −0.0294752
\(961\) −1.64516e40 −0.890107
\(962\) 2.10294e39 0.112193
\(963\) −2.67004e40 −1.40463
\(964\) 1.08781e40 0.564307
\(965\) −1.16584e40 −0.596374
\(966\) −7.78602e38 −0.0392757
\(967\) −2.57889e37 −0.00128285 −0.000641425 1.00000i \(-0.500204\pi\)
−0.000641425 1.00000i \(0.500204\pi\)
\(968\) 7.12713e39 0.349621
\(969\) −5.27334e37 −0.00255102
\(970\) 4.91800e39 0.234623
\(971\) 3.64031e40 1.71269 0.856345 0.516404i \(-0.172730\pi\)
0.856345 + 0.516404i \(0.172730\pi\)
\(972\) 1.11664e40 0.518105
\(973\) 1.52558e40 0.698089
\(974\) −2.27460e40 −1.02650
\(975\) −2.21638e38 −0.00986467
\(976\) 4.45329e39 0.195483
\(977\) 9.13450e39 0.395465 0.197733 0.980256i \(-0.436642\pi\)
0.197733 + 0.980256i \(0.436642\pi\)
\(978\) 8.62682e39 0.368363
\(979\) 3.91691e39 0.164960
\(980\) −4.20247e39 −0.174563
\(981\) 9.69503e39 0.397208
\(982\) −3.14085e40 −1.26923
\(983\) −1.10897e40 −0.442025 −0.221012 0.975271i \(-0.570936\pi\)
−0.221012 + 0.975271i \(0.570936\pi\)
\(984\) −5.39501e38 −0.0212108
\(985\) 6.12143e39 0.237391
\(986\) 8.72651e39 0.333812
\(987\) −2.43317e40 −0.918100
\(988\) 1.52008e37 0.000565781 0
\(989\) 2.32439e38 0.00853413
\(990\) −6.64830e38 −0.0240788
\(991\) 4.45006e40 1.58991 0.794954 0.606670i \(-0.207495\pi\)
0.794954 + 0.606670i \(0.207495\pi\)
\(992\) −1.66271e39 −0.0586017
\(993\) −1.58606e40 −0.551449
\(994\) −3.86898e40 −1.32703
\(995\) −2.00758e40 −0.679300
\(996\) −9.45850e39 −0.315734
\(997\) 2.41234e40 0.794427 0.397213 0.917726i \(-0.369977\pi\)
0.397213 + 0.917726i \(0.369977\pi\)
\(998\) 1.12568e39 0.0365723
\(999\) −4.80457e40 −1.54000
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.28.a.b.1.2 2
5.2 odd 4 50.28.b.d.49.1 4
5.3 odd 4 50.28.b.d.49.4 4
5.4 even 2 50.28.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.28.a.b.1.2 2 1.1 even 1 trivial
50.28.a.d.1.1 2 5.4 even 2
50.28.b.d.49.1 4 5.2 odd 4
50.28.b.d.49.4 4 5.3 odd 4