Properties

Label 10.28.a.b
Level $10$
Weight $28$
Character orbit 10.a
Self dual yes
Analytic conductor $46.186$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,28,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.1855574838\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{12929}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3232 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3}\cdot 5\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 7560\sqrt{12929}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8192 q^{2} + ( - 3 \beta - 1122822) q^{3} + 67108864 q^{4} - 1220703125 q^{5} + (24576 \beta + 9198157824) q^{6} + (328021 \beta - 60098366146) q^{7} - 549755813888 q^{8} + (6736932 \beta + 285581808297) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 8192 q^{2} + ( - 3 \beta - 1122822) q^{3} + 67108864 q^{4} - 1220703125 q^{5} + (24576 \beta + 9198157824) q^{6} + (328021 \beta - 60098366146) q^{7} - 549755813888 q^{8} + (6736932 \beta + 285581808297) q^{9} + 10000000000000 q^{10} + ( - 9910802 \beta + 3556061366352) q^{11} + ( - 201326592 \beta - 75351308894208) q^{12} + ( - 69104516 \beta - 161557495177702) q^{13} + ( - 2687148032 \beta + 492325815468032) q^{14} + (3662109375 \beta + 13\!\cdots\!50) q^{15}+ \cdots + (21\!\cdots\!70 \beta - 48\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16384 q^{2} - 2245644 q^{3} + 134217728 q^{4} - 2441406250 q^{5} + 18396315648 q^{6} - 120196732292 q^{7} - 1099511627776 q^{8} + 571163616594 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 16384 q^{2} - 2245644 q^{3} + 134217728 q^{4} - 2441406250 q^{5} + 18396315648 q^{6} - 120196732292 q^{7} - 1099511627776 q^{8} + 571163616594 q^{9} + 20000000000000 q^{10} + 7112122732704 q^{11} - 150702617788416 q^{12} - 323114990355404 q^{13} + 984651630936064 q^{14} + 27\!\cdots\!00 q^{15}+ \cdots - 96\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
57.3529
−56.3529
−8192.00 −3.70167e6 6.71089e7 −1.22070e9 3.03241e10 2.21874e11 −5.49756e11 6.07675e12 1.00000e13
1.2 −8192.00 1.45602e6 6.71089e7 −1.22070e9 −1.19278e10 −3.42070e11 −5.49756e11 −5.50559e12 1.00000e13
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.28.a.b 2
5.b even 2 1 50.28.a.d 2
5.c odd 4 2 50.28.b.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.28.a.b 2 1.a even 1 1 trivial
50.28.a.d 2 5.b even 2 1
50.28.b.d 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 2245644T_{3} - 5389720805916 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8192)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 5389720805916 \) Copy content Toggle raw display
$5$ \( (T + 1220703125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 75\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 59\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 22\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 46\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 68\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 19\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 96\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 37\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 41\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 20\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 20\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 24\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 30\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 46\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 13\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 20\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 99\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 48\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 25\!\cdots\!84 \) Copy content Toggle raw display
show more
show less