Properties

Label 10.28.a
Level $10$
Weight $28$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $4$
Sturm bound $42$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(42\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{28}(\Gamma_0(10))\).

Total New Old
Modular forms 43 9 34
Cusp forms 39 9 30
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(5\)
Minus space\(-\)\(4\)

Trace form

\( 9 q + 8192 q^{2} - 5585528 q^{3} + 603979776 q^{4} + 1220703125 q^{5} + 45769097216 q^{6} - 26881836804 q^{7} + 549755813888 q^{8} + 20176277678173 q^{9} + 10000000000000 q^{10} + 143740288335468 q^{11}+ \cdots - 23\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{28}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.28.a.a 10.a 1.a $2$ $46.186$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.28.a.a \(-16384\) \(-3340644\) \(2441406250\) \(-58706842292\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{13}q^{2}+(-1670322-\beta )q^{3}+2^{26}q^{4}+\cdots\)
10.28.a.b 10.a 1.a $2$ $46.186$ \(\Q(\sqrt{12929}) \) None 10.28.a.b \(-16384\) \(-2245644\) \(-2441406250\) \(-120196732292\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{13}q^{2}+(-1122822-3\beta )q^{3}+\cdots\)
10.28.a.c 10.a 1.a $2$ $46.186$ \(\Q(\sqrt{711649}) \) None 10.28.a.c \(16384\) \(-4702956\) \(-2441406250\) \(-57185041508\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{13}q^{2}+(-2351478-31\beta )q^{3}+\cdots\)
10.28.a.d 10.a 1.a $3$ $46.186$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 10.28.a.d \(24576\) \(4703716\) \(3662109375\) \(209206779288\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{13}q^{2}+(1567905-\beta _{1})q^{3}+2^{26}q^{4}+\cdots\)

Decomposition of \(S_{28}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{28}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{28}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{28}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{28}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)