Defining parameters
Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 28 \) |
Character orbit: | \([\chi]\) | \(=\) | 10.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{28}(\Gamma_0(10))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 43 | 9 | 34 |
Cusp forms | 39 | 9 | 30 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(5\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{28}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
10.28.a.a | $2$ | $46.186$ | \(\mathbb{Q}[x]/(x^{2} - \cdots)\) | None | \(-16384\) | \(-3340644\) | \(2441406250\) | \(-58706842292\) | $+$ | $-$ | \(q-2^{13}q^{2}+(-1670322-\beta )q^{3}+2^{26}q^{4}+\cdots\) | |
10.28.a.b | $2$ | $46.186$ | \(\Q(\sqrt{12929}) \) | None | \(-16384\) | \(-2245644\) | \(-2441406250\) | \(-120196732292\) | $+$ | $+$ | \(q-2^{13}q^{2}+(-1122822-3\beta )q^{3}+\cdots\) | |
10.28.a.c | $2$ | $46.186$ | \(\Q(\sqrt{711649}) \) | None | \(16384\) | \(-4702956\) | \(-2441406250\) | \(-57185041508\) | $-$ | $+$ | \(q+2^{13}q^{2}+(-2351478-31\beta )q^{3}+\cdots\) | |
10.28.a.d | $3$ | $46.186$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(24576\) | \(4703716\) | \(3662109375\) | \(209206779288\) | $-$ | $-$ | \(q+2^{13}q^{2}+(1567905-\beta _{1})q^{3}+2^{26}q^{4}+\cdots\) |
Decomposition of \(S_{28}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces
\( S_{28}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{28}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{28}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{28}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)