Properties

Label 10.28
Level 10
Weight 28
Dimension 23
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 168
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 28 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(168\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{28}(\Gamma_1(10))\).

Total New Old
Modular forms 85 23 62
Cusp forms 77 23 54
Eisenstein series 8 0 8

Trace form

\( 23 q + 8192 q^{2} - 5585528 q^{3} - 335544320 q^{4} + 1147059535 q^{5} + 61841047552 q^{6} - 26881836804 q^{7} + 549755813888 q^{8} - 19906295436385 q^{9} - 23017385943040 q^{10} - 14464521837404 q^{11}+ \cdots - 63\!\cdots\!20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{28}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.28.a \(\chi_{10}(1, \cdot)\) 10.28.a.a 2 1
10.28.a.b 2
10.28.a.c 2
10.28.a.d 3
10.28.b \(\chi_{10}(9, \cdot)\) 10.28.b.a 14 1

Decomposition of \(S_{28}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{28}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{28}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{28}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{28}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{28}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)