Properties

Label 10.26.b.a.9.7
Level $10$
Weight $26$
Character 10.9
Analytic conductor $39.600$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,26,Mod(9,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.9");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5996779952\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 1406300109694 x^{10} + \cdots + 56\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{8}\cdot 5^{29} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 9.7
Root \(-543485. i\) of defining polynomial
Character \(\chi\) \(=\) 10.9
Dual form 10.26.b.a.9.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4096.00i q^{2} -1.08697e6i q^{3} -1.67772e7 q^{4} +(-2.09490e8 - 5.04120e8i) q^{5} +4.45223e9 q^{6} -4.89841e10i q^{7} -6.87195e10i q^{8} -3.34213e11 q^{9} +(2.06488e12 - 8.58070e11i) q^{10} +1.14584e13 q^{11} +1.82363e13i q^{12} -1.28077e14i q^{13} +2.00639e14 q^{14} +(-5.47963e14 + 2.27709e14i) q^{15} +2.81475e14 q^{16} -3.78822e15i q^{17} -1.36894e15i q^{18} +1.02229e16 q^{19} +(3.51465e15 + 8.45774e15i) q^{20} -5.32442e16 q^{21} +4.69335e16i q^{22} +1.81999e17i q^{23} -7.46959e16 q^{24} +(-2.10251e17 + 2.11216e17i) q^{25} +5.24604e17 q^{26} -5.57697e17i q^{27} +8.21816e17i q^{28} -2.19149e18 q^{29} +(-9.32695e17 - 2.24446e18i) q^{30} +2.89689e18 q^{31} +1.15292e18i q^{32} -1.24549e19i q^{33} +1.55166e19 q^{34} +(-2.46939e19 + 1.02617e19i) q^{35} +5.60717e18 q^{36} -4.56681e19i q^{37} +4.18730e19i q^{38} -1.39216e20 q^{39} +(-3.46429e19 + 1.43960e19i) q^{40} -4.22120e18 q^{41} -2.18088e20i q^{42} -1.22773e19i q^{43} -1.92240e20 q^{44} +(7.00142e19 + 1.68484e20i) q^{45} -7.45466e20 q^{46} -4.60132e20i q^{47} -3.05955e20i q^{48} -1.05837e21 q^{49} +(-8.65141e20 - 8.61190e20i) q^{50} -4.11768e21 q^{51} +2.14878e21i q^{52} +2.54574e21i q^{53} +2.28433e21 q^{54} +(-2.40041e21 - 5.77640e21i) q^{55} -3.36616e21 q^{56} -1.11120e22i q^{57} -8.97634e21i q^{58} +2.20173e21 q^{59} +(9.19330e21 - 3.82032e21i) q^{60} +7.41676e21 q^{61} +1.18656e22i q^{62} +1.63711e22i q^{63} -4.72237e21 q^{64} +(-6.45663e22 + 2.68309e22i) q^{65} +5.10153e22 q^{66} +6.01134e22i q^{67} +6.35558e22i q^{68} +1.97827e23 q^{69} +(-4.20317e22 - 1.01146e23i) q^{70} +3.59036e22 q^{71} +2.29670e22i q^{72} +1.98356e23i q^{73} +1.87057e23 q^{74} +(2.29585e23 + 2.28537e23i) q^{75} -1.71512e23 q^{76} -5.61278e23i q^{77} -5.70229e23i q^{78} +7.84538e23 q^{79} +(-5.89661e22 - 1.41897e23i) q^{80} -8.89375e23 q^{81} -1.72901e22i q^{82} +4.60438e23i q^{83} +8.93289e23 q^{84} +(-1.90972e24 + 7.93593e23i) q^{85} +5.02877e22 q^{86} +2.38208e24i q^{87} -7.87413e23i q^{88} -5.94026e23 q^{89} +(-6.90109e23 + 2.86778e23i) q^{90} -6.27374e24 q^{91} -3.05343e24i q^{92} -3.14882e24i q^{93} +1.88470e24 q^{94} +(-2.14159e24 - 5.15357e24i) q^{95} +1.25319e24 q^{96} +8.71039e24i q^{97} -4.33508e24i q^{98} -3.82954e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 201326592 q^{4} - 490295340 q^{5} - 6565199872 q^{6} - 1082937564236 q^{9} + 1636528619520 q^{10} + 19723089228624 q^{11} + 278591122243584 q^{14} - 449884766537680 q^{15} + 33\!\cdots\!72 q^{16}+ \cdots + 41\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00i 0.707107i
\(3\) 1.08697e6i 1.18087i −0.807086 0.590434i \(-0.798957\pi\)
0.807086 0.590434i \(-0.201043\pi\)
\(4\) −1.67772e7 −0.500000
\(5\) −2.09490e8 5.04120e8i −0.383740 0.923441i
\(6\) 4.45223e9 0.835000
\(7\) 4.89841e10i 1.33761i −0.743438 0.668805i \(-0.766806\pi\)
0.743438 0.668805i \(-0.233194\pi\)
\(8\) 6.87195e10i 0.353553i
\(9\) −3.34213e11 −0.394450
\(10\) 2.06488e12 8.58070e11i 0.652971 0.271345i
\(11\) 1.14584e13 1.10082 0.550408 0.834896i \(-0.314472\pi\)
0.550408 + 0.834896i \(0.314472\pi\)
\(12\) 1.82363e13i 0.590434i
\(13\) 1.28077e14i 1.52468i −0.647174 0.762342i \(-0.724049\pi\)
0.647174 0.762342i \(-0.275951\pi\)
\(14\) 2.00639e14 0.945833
\(15\) −5.47963e14 + 2.27709e14i −1.09046 + 0.453147i
\(16\) 2.81475e14 0.250000
\(17\) 3.78822e15i 1.57697i −0.615053 0.788486i \(-0.710866\pi\)
0.615053 0.788486i \(-0.289134\pi\)
\(18\) 1.36894e15i 0.278918i
\(19\) 1.02229e16 1.05963 0.529815 0.848113i \(-0.322261\pi\)
0.529815 + 0.848113i \(0.322261\pi\)
\(20\) 3.51465e15 + 8.45774e15i 0.191870 + 0.461720i
\(21\) −5.32442e16 −1.57954
\(22\) 4.69335e16i 0.778394i
\(23\) 1.81999e17i 1.73169i 0.500312 + 0.865845i \(0.333218\pi\)
−0.500312 + 0.865845i \(0.666782\pi\)
\(24\) −7.46959e16 −0.417500
\(25\) −2.10251e17 + 2.11216e17i −0.705487 + 0.708723i
\(26\) 5.24604e17 1.07811
\(27\) 5.57697e17i 0.715075i
\(28\) 8.21816e17i 0.668805i
\(29\) −2.19149e18 −1.15018 −0.575088 0.818092i \(-0.695032\pi\)
−0.575088 + 0.818092i \(0.695032\pi\)
\(30\) −9.32695e17 2.24446e18i −0.320423 0.771073i
\(31\) 2.89689e18 0.660557 0.330278 0.943884i \(-0.392857\pi\)
0.330278 + 0.943884i \(0.392857\pi\)
\(32\) 1.15292e18i 0.176777i
\(33\) 1.24549e19i 1.29992i
\(34\) 1.55166e19 1.11509
\(35\) −2.46939e19 + 1.02617e19i −1.23520 + 0.513295i
\(36\) 5.60717e18 0.197225
\(37\) 4.56681e19i 1.14049i −0.821475 0.570245i \(-0.806848\pi\)
0.821475 0.570245i \(-0.193152\pi\)
\(38\) 4.18730e19i 0.749271i
\(39\) −1.39216e20 −1.80045
\(40\) −3.46429e19 + 1.43960e19i −0.326486 + 0.135673i
\(41\) −4.22120e18 −0.0292172 −0.0146086 0.999893i \(-0.504650\pi\)
−0.0146086 + 0.999893i \(0.504650\pi\)
\(42\) 2.18088e20i 1.11690i
\(43\) 1.22773e19i 0.0468540i −0.999726 0.0234270i \(-0.992542\pi\)
0.999726 0.0234270i \(-0.00745772\pi\)
\(44\) −1.92240e20 −0.550408
\(45\) 7.00142e19 + 1.68484e20i 0.151367 + 0.364252i
\(46\) −7.45466e20 −1.22449
\(47\) 4.60132e20i 0.577642i −0.957383 0.288821i \(-0.906737\pi\)
0.957383 0.288821i \(-0.0932633\pi\)
\(48\) 3.05955e20i 0.295217i
\(49\) −1.05837e21 −0.789199
\(50\) −8.65141e20 8.61190e20i −0.501143 0.498854i
\(51\) −4.11768e21 −1.86220
\(52\) 2.14878e21i 0.762342i
\(53\) 2.54574e21i 0.711814i 0.934521 + 0.355907i \(0.115828\pi\)
−0.934521 + 0.355907i \(0.884172\pi\)
\(54\) 2.28433e21 0.505634
\(55\) −2.40041e21 5.77640e21i −0.422427 1.01654i
\(56\) −3.36616e21 −0.472916
\(57\) 1.11120e22i 1.25128i
\(58\) 8.97634e21i 0.813297i
\(59\) 2.20173e21 0.161107 0.0805536 0.996750i \(-0.474331\pi\)
0.0805536 + 0.996750i \(0.474331\pi\)
\(60\) 9.19330e21 3.82032e21i 0.545231 0.226574i
\(61\) 7.41676e21 0.357760 0.178880 0.983871i \(-0.442753\pi\)
0.178880 + 0.983871i \(0.442753\pi\)
\(62\) 1.18656e22i 0.467084i
\(63\) 1.63711e22i 0.527620i
\(64\) −4.72237e21 −0.125000
\(65\) −6.45663e22 + 2.68309e22i −1.40796 + 0.585083i
\(66\) 5.10153e22 0.919181
\(67\) 6.01134e22i 0.897503i 0.893656 + 0.448752i \(0.148131\pi\)
−0.893656 + 0.448752i \(0.851869\pi\)
\(68\) 6.35558e22i 0.788486i
\(69\) 1.97827e23 2.04490
\(70\) −4.20317e22 1.01146e23i −0.362954 0.873421i
\(71\) 3.59036e22 0.259662 0.129831 0.991536i \(-0.458557\pi\)
0.129831 + 0.991536i \(0.458557\pi\)
\(72\) 2.29670e22i 0.139459i
\(73\) 1.98356e23i 1.01370i 0.862034 + 0.506851i \(0.169190\pi\)
−0.862034 + 0.506851i \(0.830810\pi\)
\(74\) 1.87057e23 0.806448
\(75\) 2.29585e23 + 2.28537e23i 0.836909 + 0.833087i
\(76\) −1.71512e23 −0.529815
\(77\) 5.61278e23i 1.47246i
\(78\) 5.70229e23i 1.27311i
\(79\) 7.84538e23 1.49374 0.746870 0.664970i \(-0.231556\pi\)
0.746870 + 0.664970i \(0.231556\pi\)
\(80\) −5.89661e22 1.41897e23i −0.0959351 0.230860i
\(81\) −8.89375e23 −1.23886
\(82\) 1.72901e22i 0.0206597i
\(83\) 4.60438e23i 0.472819i 0.971654 + 0.236409i \(0.0759706\pi\)
−0.971654 + 0.236409i \(0.924029\pi\)
\(84\) 8.93289e23 0.789770
\(85\) −1.90972e24 + 7.93593e23i −1.45624 + 0.605148i
\(86\) 5.02877e22 0.0331308
\(87\) 2.38208e24i 1.35821i
\(88\) 7.87413e23i 0.389197i
\(89\) −5.94026e23 −0.254936 −0.127468 0.991843i \(-0.540685\pi\)
−0.127468 + 0.991843i \(0.540685\pi\)
\(90\) −6.90109e23 + 2.86778e23i −0.257565 + 0.107032i
\(91\) −6.27374e24 −2.03943
\(92\) 3.05343e24i 0.865845i
\(93\) 3.14882e24i 0.780031i
\(94\) 1.88470e24 0.408455
\(95\) −2.14159e24 5.15357e24i −0.406623 0.978505i
\(96\) 1.25319e24 0.208750
\(97\) 8.71039e24i 1.27465i 0.770595 + 0.637325i \(0.219959\pi\)
−0.770595 + 0.637325i \(0.780041\pi\)
\(98\) 4.33508e24i 0.558048i
\(99\) −3.82954e24 −0.434217
\(100\) 3.52743e24 3.54362e24i 0.352743 0.354362i
\(101\) 7.81456e24 0.690061 0.345031 0.938591i \(-0.387869\pi\)
0.345031 + 0.938591i \(0.387869\pi\)
\(102\) 1.68660e25i 1.31677i
\(103\) 1.05677e25i 0.730321i 0.930945 + 0.365161i \(0.118986\pi\)
−0.930945 + 0.365161i \(0.881014\pi\)
\(104\) −8.80140e24 −0.539057
\(105\) 1.11541e25 + 2.68415e25i 0.606134 + 1.45861i
\(106\) −1.04274e25 −0.503328
\(107\) 4.46639e24i 0.191716i 0.995395 + 0.0958582i \(0.0305595\pi\)
−0.995395 + 0.0958582i \(0.969440\pi\)
\(108\) 9.35660e24i 0.357537i
\(109\) 4.49825e25 1.53184 0.765918 0.642939i \(-0.222285\pi\)
0.765918 + 0.642939i \(0.222285\pi\)
\(110\) 2.36601e25 9.83208e24i 0.718801 0.298701i
\(111\) −4.96398e25 −1.34677
\(112\) 1.37878e25i 0.334402i
\(113\) 2.79039e25i 0.605598i 0.953054 + 0.302799i \(0.0979211\pi\)
−0.953054 + 0.302799i \(0.902079\pi\)
\(114\) 4.55146e25 0.884791
\(115\) 9.17492e25 3.81268e25i 1.59911 0.664519i
\(116\) 3.67671e25 0.575088
\(117\) 4.28051e25i 0.601412i
\(118\) 9.01830e24i 0.113920i
\(119\) −1.85562e26 −2.10937
\(120\) 1.56480e25 + 3.76557e25i 0.160212 + 0.385537i
\(121\) 2.29472e25 0.211794
\(122\) 3.03790e25i 0.252974i
\(123\) 4.58832e24i 0.0345016i
\(124\) −4.86017e25 −0.330278
\(125\) 1.50524e26 + 6.17444e25i 0.925188 + 0.379509i
\(126\) −6.70561e25 −0.373084
\(127\) 1.91643e26i 0.965930i −0.875640 0.482965i \(-0.839560\pi\)
0.875640 0.482965i \(-0.160440\pi\)
\(128\) 1.93428e25i 0.0883883i
\(129\) −1.33450e25 −0.0553284
\(130\) −1.09899e26 2.64464e26i −0.413716 0.995575i
\(131\) −2.22743e26 −0.761925 −0.380963 0.924590i \(-0.624407\pi\)
−0.380963 + 0.924590i \(0.624407\pi\)
\(132\) 2.08958e26i 0.649959i
\(133\) 5.00759e26i 1.41737i
\(134\) −2.46224e26 −0.634631
\(135\) −2.81146e26 + 1.16832e26i −0.660329 + 0.274403i
\(136\) −2.60325e26 −0.557543
\(137\) 3.59939e26i 0.703432i −0.936107 0.351716i \(-0.885598\pi\)
0.936107 0.351716i \(-0.114402\pi\)
\(138\) 8.10299e26i 1.44596i
\(139\) 5.18148e26 0.844829 0.422414 0.906403i \(-0.361183\pi\)
0.422414 + 0.906403i \(0.361183\pi\)
\(140\) 4.14294e26 1.72162e26i 0.617602 0.256647i
\(141\) −5.00149e26 −0.682119
\(142\) 1.47061e26i 0.183609i
\(143\) 1.46756e27i 1.67840i
\(144\) −9.40727e25 −0.0986126
\(145\) 4.59094e26 + 1.10477e27i 0.441369 + 1.06212i
\(146\) −8.12467e26 −0.716795
\(147\) 1.15042e27i 0.931940i
\(148\) 7.66184e26i 0.570245i
\(149\) 1.91990e27 1.31356 0.656780 0.754082i \(-0.271918\pi\)
0.656780 + 0.754082i \(0.271918\pi\)
\(150\) −9.36086e26 + 9.40381e26i −0.589081 + 0.591784i
\(151\) −1.20411e27 −0.697356 −0.348678 0.937243i \(-0.613369\pi\)
−0.348678 + 0.937243i \(0.613369\pi\)
\(152\) 7.02512e26i 0.374636i
\(153\) 1.26607e27i 0.622037i
\(154\) 2.29899e27 1.04119
\(155\) −6.06868e26 1.46038e27i −0.253482 0.609985i
\(156\) 2.33566e27 0.900226
\(157\) 4.32983e27i 1.54073i −0.637606 0.770363i \(-0.720075\pi\)
0.637606 0.770363i \(-0.279925\pi\)
\(158\) 3.21347e27i 1.05623i
\(159\) 2.76715e27 0.840559
\(160\) 5.81211e26 2.41525e26i 0.163243 0.0678364i
\(161\) 8.91503e27 2.31632
\(162\) 3.64288e27i 0.876006i
\(163\) 5.02220e27i 1.11828i −0.829075 0.559138i \(-0.811132\pi\)
0.829075 0.559138i \(-0.188868\pi\)
\(164\) 7.08201e25 0.0146086
\(165\) −6.27877e27 + 2.60917e27i −1.20040 + 0.498831i
\(166\) −1.88595e27 −0.334333
\(167\) 1.18728e28i 1.95253i 0.216580 + 0.976265i \(0.430510\pi\)
−0.216580 + 0.976265i \(0.569490\pi\)
\(168\) 3.65891e27i 0.558452i
\(169\) −9.34736e27 −1.32466
\(170\) −3.25056e27 7.82221e27i −0.427904 1.02972i
\(171\) −3.41663e27 −0.417971
\(172\) 2.05979e26i 0.0234270i
\(173\) 4.16222e27i 0.440300i 0.975466 + 0.220150i \(0.0706547\pi\)
−0.975466 + 0.220150i \(0.929345\pi\)
\(174\) −9.75700e27 −0.960397
\(175\) 1.03462e28 + 1.02990e28i 0.947995 + 0.943665i
\(176\) 3.22524e27 0.275204
\(177\) 2.39322e27i 0.190246i
\(178\) 2.43313e27i 0.180267i
\(179\) −1.09350e28 −0.755363 −0.377681 0.925936i \(-0.623279\pi\)
−0.377681 + 0.925936i \(0.623279\pi\)
\(180\) −1.17464e27 2.82669e27i −0.0756833 0.182126i
\(181\) −8.64913e27 −0.519984 −0.259992 0.965611i \(-0.583720\pi\)
−0.259992 + 0.965611i \(0.583720\pi\)
\(182\) 2.56972e28i 1.44210i
\(183\) 8.06179e27i 0.422467i
\(184\) 1.25068e28 0.612245
\(185\) −2.30222e28 + 9.56700e27i −1.05318 + 0.437652i
\(186\) 1.28976e28 0.551565
\(187\) 4.34068e28i 1.73595i
\(188\) 7.71973e27i 0.288821i
\(189\) −2.73183e28 −0.956490
\(190\) 2.11090e28 8.77196e27i 0.691908 0.287526i
\(191\) 1.76410e28 0.541511 0.270755 0.962648i \(-0.412727\pi\)
0.270755 + 0.962648i \(0.412727\pi\)
\(192\) 5.13307e27i 0.147609i
\(193\) 5.06807e27i 0.136577i 0.997666 + 0.0682883i \(0.0217538\pi\)
−0.997666 + 0.0682883i \(0.978246\pi\)
\(194\) −3.56778e28 −0.901314
\(195\) 2.91643e28 + 7.01816e28i 0.690906 + 1.66261i
\(196\) 1.77565e28 0.394599
\(197\) 5.65172e27i 0.117856i −0.998262 0.0589282i \(-0.981232\pi\)
0.998262 0.0589282i \(-0.0187683\pi\)
\(198\) 1.56858e28i 0.307038i
\(199\) −2.19231e28 −0.402938 −0.201469 0.979495i \(-0.564572\pi\)
−0.201469 + 0.979495i \(0.564572\pi\)
\(200\) 1.45147e28 + 1.44484e28i 0.250572 + 0.249427i
\(201\) 6.53414e28 1.05983
\(202\) 3.20085e28i 0.487947i
\(203\) 1.07348e29i 1.53849i
\(204\) 6.90832e28 0.931098
\(205\) 8.84299e26 + 2.12799e27i 0.0112118 + 0.0269803i
\(206\) −4.32852e28 −0.516415
\(207\) 6.08263e28i 0.683066i
\(208\) 3.60505e28i 0.381171i
\(209\) 1.17138e29 1.16646
\(210\) −1.09943e29 + 4.56872e28i −1.03139 + 0.428601i
\(211\) 9.10994e28 0.805350 0.402675 0.915343i \(-0.368080\pi\)
0.402675 + 0.915343i \(0.368080\pi\)
\(212\) 4.27105e28i 0.355907i
\(213\) 3.90261e28i 0.306627i
\(214\) −1.82943e28 −0.135564
\(215\) −6.18922e27 + 2.57196e27i −0.0432669 + 0.0179798i
\(216\) −3.83247e28 −0.252817
\(217\) 1.41901e29i 0.883567i
\(218\) 1.84248e29i 1.08317i
\(219\) 2.15607e29 1.19705
\(220\) 4.02722e28 + 9.69119e28i 0.211214 + 0.508269i
\(221\) −4.85185e29 −2.40438
\(222\) 2.03325e29i 0.952309i
\(223\) 1.06006e29i 0.469374i −0.972071 0.234687i \(-0.924594\pi\)
0.972071 0.234687i \(-0.0754064\pi\)
\(224\) 5.64748e28 0.236458
\(225\) 7.02688e28 7.05912e28i 0.278279 0.279556i
\(226\) −1.14294e29 −0.428223
\(227\) 5.01045e29i 1.77645i −0.459407 0.888226i \(-0.651938\pi\)
0.459407 0.888226i \(-0.348062\pi\)
\(228\) 1.86428e29i 0.625641i
\(229\) 3.20108e28 0.101708 0.0508538 0.998706i \(-0.483806\pi\)
0.0508538 + 0.998706i \(0.483806\pi\)
\(230\) 1.56167e29 + 3.75805e29i 0.469886 + 1.13074i
\(231\) −6.10091e29 −1.73878
\(232\) 1.50598e29i 0.406648i
\(233\) 6.19627e29i 1.58556i 0.609510 + 0.792778i \(0.291366\pi\)
−0.609510 + 0.792778i \(0.708634\pi\)
\(234\) −1.75330e29 −0.425263
\(235\) −2.31962e29 + 9.63928e28i −0.533418 + 0.221665i
\(236\) −3.69390e28 −0.0805536
\(237\) 8.52768e29i 1.76391i
\(238\) 7.60064e29i 1.49155i
\(239\) −2.16736e29 −0.403605 −0.201803 0.979426i \(-0.564680\pi\)
−0.201803 + 0.979426i \(0.564680\pi\)
\(240\) −1.54238e29 + 6.40943e28i −0.272616 + 0.113287i
\(241\) 7.46346e29 1.25236 0.626178 0.779681i \(-0.284619\pi\)
0.626178 + 0.779681i \(0.284619\pi\)
\(242\) 9.39918e28i 0.149761i
\(243\) 4.94192e29i 0.747855i
\(244\) −1.24433e29 −0.178880
\(245\) 2.21718e29 + 5.33546e29i 0.302848 + 0.728779i
\(246\) −1.87938e28 −0.0243963
\(247\) 1.30932e30i 1.61560i
\(248\) 1.99072e29i 0.233542i
\(249\) 5.00481e29 0.558337
\(250\) −2.52905e29 + 6.16545e29i −0.268354 + 0.654207i
\(251\) 7.46681e29 0.753726 0.376863 0.926269i \(-0.377003\pi\)
0.376863 + 0.926269i \(0.377003\pi\)
\(252\) 2.74662e29i 0.263810i
\(253\) 2.08541e30i 1.90627i
\(254\) 7.84968e29 0.683016
\(255\) 8.62611e29 + 2.07581e30i 0.714600 + 1.71963i
\(256\) 7.92282e28 0.0625000
\(257\) 2.03309e29i 0.152754i −0.997079 0.0763769i \(-0.975665\pi\)
0.997079 0.0763769i \(-0.0243352\pi\)
\(258\) 5.46612e28i 0.0391231i
\(259\) −2.23701e30 −1.52553
\(260\) 1.08324e30 4.50147e29i 0.703978 0.292542i
\(261\) 7.32424e29 0.453687
\(262\) 9.12354e29i 0.538763i
\(263\) 3.18718e30i 1.79457i −0.441454 0.897284i \(-0.645537\pi\)
0.441454 0.897284i \(-0.354463\pi\)
\(264\) −8.55894e29 −0.459590
\(265\) 1.28336e30 5.33307e29i 0.657318 0.273152i
\(266\) 2.05111e30 1.00223
\(267\) 6.45688e29i 0.301046i
\(268\) 1.00854e30i 0.448752i
\(269\) −1.08398e29 −0.0460382 −0.0230191 0.999735i \(-0.507328\pi\)
−0.0230191 + 0.999735i \(0.507328\pi\)
\(270\) −4.78543e29 1.15158e30i −0.194032 0.466923i
\(271\) 8.40525e29 0.325413 0.162706 0.986675i \(-0.447978\pi\)
0.162706 + 0.986675i \(0.447978\pi\)
\(272\) 1.06629e30i 0.394243i
\(273\) 6.81936e30i 2.40830i
\(274\) 1.47431e30 0.497402
\(275\) −2.40914e30 + 2.42019e30i −0.776610 + 0.780173i
\(276\) −3.31898e30 −1.02245
\(277\) 5.28289e30i 1.55551i −0.628564 0.777757i \(-0.716357\pi\)
0.628564 0.777757i \(-0.283643\pi\)
\(278\) 2.12233e30i 0.597384i
\(279\) −9.68177e29 −0.260557
\(280\) 7.05176e29 + 1.69695e30i 0.181477 + 0.436710i
\(281\) −5.89709e30 −1.45147 −0.725736 0.687973i \(-0.758501\pi\)
−0.725736 + 0.687973i \(0.758501\pi\)
\(282\) 2.04861e30i 0.482331i
\(283\) 1.58325e30i 0.356631i −0.983973 0.178315i \(-0.942935\pi\)
0.983973 0.178315i \(-0.0570648\pi\)
\(284\) −6.02362e29 −0.129831
\(285\) −5.60177e30 + 2.32784e30i −1.15549 + 0.480168i
\(286\) 6.01111e30 1.18680
\(287\) 2.06772e29i 0.0390812i
\(288\) 3.85322e29i 0.0697296i
\(289\) −8.57999e30 −1.48684
\(290\) −4.52515e30 + 1.88045e30i −0.751032 + 0.312095i
\(291\) 9.46793e30 1.50519
\(292\) 3.32787e30i 0.506851i
\(293\) 4.96361e30i 0.724357i −0.932109 0.362179i \(-0.882033\pi\)
0.932109 0.362179i \(-0.117967\pi\)
\(294\) −4.71210e30 −0.658981
\(295\) −4.61241e29 1.10994e30i −0.0618233 0.148773i
\(296\) −3.13829e30 −0.403224
\(297\) 6.39030e30i 0.787165i
\(298\) 7.86391e30i 0.928828i
\(299\) 2.33099e31 2.64028
\(300\) −3.85180e30 3.83421e30i −0.418455 0.416543i
\(301\) −6.01391e29 −0.0626723
\(302\) 4.93203e30i 0.493105i
\(303\) 8.49419e30i 0.814871i
\(304\) 2.87749e30 0.264907
\(305\) −1.55373e30 3.73894e30i −0.137287 0.330370i
\(306\) −5.18584e30 −0.439846
\(307\) 1.29347e31i 1.05323i 0.850102 + 0.526617i \(0.176540\pi\)
−0.850102 + 0.526617i \(0.823460\pi\)
\(308\) 9.41668e30i 0.736230i
\(309\) 1.14867e31 0.862413
\(310\) 5.98171e30 2.48573e30i 0.431325 0.179239i
\(311\) −1.68637e30 −0.116801 −0.0584007 0.998293i \(-0.518600\pi\)
−0.0584007 + 0.998293i \(0.518600\pi\)
\(312\) 9.56685e30i 0.636556i
\(313\) 2.70375e30i 0.172847i −0.996258 0.0864236i \(-0.972456\pi\)
0.996258 0.0864236i \(-0.0275438\pi\)
\(314\) 1.77350e31 1.08946
\(315\) 8.25302e30 3.42958e30i 0.487226 0.202469i
\(316\) −1.31624e31 −0.746870
\(317\) 3.29106e31i 1.79513i 0.440887 + 0.897563i \(0.354664\pi\)
−0.440887 + 0.897563i \(0.645336\pi\)
\(318\) 1.13342e31i 0.594365i
\(319\) −2.51109e31 −1.26613
\(320\) 9.89287e29 + 2.38064e30i 0.0479676 + 0.115430i
\(321\) 4.85483e30 0.226392
\(322\) 3.65160e31i 1.63789i
\(323\) 3.87266e31i 1.67100i
\(324\) 1.49212e31 0.619430
\(325\) 2.70520e31 + 2.69284e31i 1.08058 + 1.07564i
\(326\) 2.05709e31 0.790740
\(327\) 4.88946e31i 1.80890i
\(328\) 2.90079e29i 0.0103298i
\(329\) −2.25391e31 −0.772659
\(330\) −1.06872e31 2.57178e31i −0.352727 0.848809i
\(331\) −3.10367e31 −0.986337 −0.493168 0.869934i \(-0.664161\pi\)
−0.493168 + 0.869934i \(0.664161\pi\)
\(332\) 7.72486e30i 0.236409i
\(333\) 1.52629e31i 0.449867i
\(334\) −4.86310e31 −1.38065
\(335\) 3.03044e31 1.25931e31i 0.828791 0.344408i
\(336\) −1.49869e31 −0.394885
\(337\) 3.19922e31i 0.812214i 0.913825 + 0.406107i \(0.133114\pi\)
−0.913825 + 0.406107i \(0.866886\pi\)
\(338\) 3.82868e31i 0.936678i
\(339\) 3.03307e31 0.715132
\(340\) 3.20398e31 1.33143e31i 0.728120 0.302574i
\(341\) 3.31936e31 0.727151
\(342\) 1.39945e31i 0.295550i
\(343\) 1.38477e31i 0.281970i
\(344\) −8.43688e29 −0.0165654
\(345\) −4.14427e31 9.97285e31i −0.784710 1.88834i
\(346\) −1.70484e31 −0.311339
\(347\) 4.34215e31i 0.764867i 0.923983 + 0.382434i \(0.124914\pi\)
−0.923983 + 0.382434i \(0.875086\pi\)
\(348\) 3.99647e31i 0.679103i
\(349\) −9.72186e31 −1.59379 −0.796896 0.604117i \(-0.793526\pi\)
−0.796896 + 0.604117i \(0.793526\pi\)
\(350\) −4.21846e31 + 4.23781e31i −0.667272 + 0.670334i
\(351\) −7.14283e31 −1.09026
\(352\) 1.32106e31i 0.194598i
\(353\) 1.03434e32i 1.47055i 0.677767 + 0.735277i \(0.262948\pi\)
−0.677767 + 0.735277i \(0.737052\pi\)
\(354\) 9.80262e30 0.134524
\(355\) −7.52143e30 1.80997e31i −0.0996428 0.239783i
\(356\) 9.96611e30 0.127468
\(357\) 2.01701e32i 2.49089i
\(358\) 4.47897e31i 0.534122i
\(359\) −4.33845e31 −0.499636 −0.249818 0.968293i \(-0.580371\pi\)
−0.249818 + 0.968293i \(0.580371\pi\)
\(360\) 1.15781e31 4.81134e30i 0.128782 0.0535162i
\(361\) 1.14311e31 0.122814
\(362\) 3.54268e31i 0.367684i
\(363\) 2.49429e31i 0.250100i
\(364\) 1.05256e32 1.01972
\(365\) 9.99954e31 4.15536e31i 0.936093 0.388998i
\(366\) 3.30211e31 0.298729
\(367\) 4.71466e31i 0.412216i −0.978529 0.206108i \(-0.933920\pi\)
0.978529 0.206108i \(-0.0660799\pi\)
\(368\) 5.12281e31i 0.432922i
\(369\) 1.41078e30 0.0115247
\(370\) −3.91864e31 9.42990e31i −0.309467 0.744707i
\(371\) 1.24701e32 0.952129
\(372\) 5.28285e31i 0.390015i
\(373\) 9.92589e31i 0.708613i −0.935129 0.354306i \(-0.884717\pi\)
0.935129 0.354306i \(-0.115283\pi\)
\(374\) 1.77794e32 1.22750
\(375\) 6.71143e31 1.63615e32i 0.448151 1.09253i
\(376\) −3.16200e31 −0.204227
\(377\) 2.80680e32i 1.75365i
\(378\) 1.11896e32i 0.676341i
\(379\) 6.28833e31 0.367743 0.183872 0.982950i \(-0.441137\pi\)
0.183872 + 0.982950i \(0.441137\pi\)
\(380\) 3.59299e31 + 8.64626e31i 0.203311 + 0.489253i
\(381\) −2.08310e32 −1.14064
\(382\) 7.22577e31i 0.382906i
\(383\) 4.95371e31i 0.254065i 0.991899 + 0.127033i \(0.0405453\pi\)
−0.991899 + 0.127033i \(0.959455\pi\)
\(384\) −2.10250e31 −0.104375
\(385\) −2.82951e32 + 1.17582e32i −1.35973 + 0.565043i
\(386\) −2.07588e31 −0.0965742
\(387\) 4.10323e30i 0.0184816i
\(388\) 1.46136e32i 0.637325i
\(389\) 4.10071e32 1.73177 0.865883 0.500246i \(-0.166757\pi\)
0.865883 + 0.500246i \(0.166757\pi\)
\(390\) −2.87464e32 + 1.19457e32i −1.17564 + 0.488544i
\(391\) 6.89451e32 2.73082
\(392\) 7.27306e31i 0.279024i
\(393\) 2.42114e32i 0.899734i
\(394\) 2.31495e31 0.0833370
\(395\) −1.64353e32 3.95501e32i −0.573209 1.37938i
\(396\) 6.42490e31 0.217108
\(397\) 1.81115e32i 0.593026i −0.955029 0.296513i \(-0.904176\pi\)
0.955029 0.296513i \(-0.0958239\pi\)
\(398\) 8.97970e31i 0.284920i
\(399\) −5.44310e32 −1.67373
\(400\) −5.91805e31 + 5.94520e31i −0.176372 + 0.177181i
\(401\) 1.30258e32 0.376271 0.188136 0.982143i \(-0.439756\pi\)
0.188136 + 0.982143i \(0.439756\pi\)
\(402\) 2.67638e32i 0.749415i
\(403\) 3.71025e32i 1.00714i
\(404\) −1.31107e32 −0.345031
\(405\) 1.86315e32 + 4.48352e32i 0.475400 + 1.14401i
\(406\) −4.39697e32 −1.08787
\(407\) 5.23282e32i 1.25547i
\(408\) 2.82965e32i 0.658385i
\(409\) −8.59252e32 −1.93901 −0.969503 0.245081i \(-0.921186\pi\)
−0.969503 + 0.245081i \(0.921186\pi\)
\(410\) −8.71627e30 + 3.62209e30i −0.0190780 + 0.00792795i
\(411\) −3.91243e32 −0.830661
\(412\) 1.77296e32i 0.365161i
\(413\) 1.07850e32i 0.215498i
\(414\) 2.49145e32 0.483000
\(415\) 2.32116e32 9.64569e31i 0.436620 0.181440i
\(416\) 1.47663e32 0.269529
\(417\) 5.63211e32i 0.997631i
\(418\) 4.79796e32i 0.824809i
\(419\) 4.67029e32 0.779235 0.389618 0.920977i \(-0.372607\pi\)
0.389618 + 0.920977i \(0.372607\pi\)
\(420\) −1.87135e32 4.50325e32i −0.303067 0.729306i
\(421\) −7.42072e32 −1.16659 −0.583297 0.812259i \(-0.698238\pi\)
−0.583297 + 0.812259i \(0.698238\pi\)
\(422\) 3.73143e32i 0.569468i
\(423\) 1.53782e32i 0.227851i
\(424\) 1.74942e32 0.251664
\(425\) 8.00133e32 + 7.96479e32i 1.11764 + 1.11253i
\(426\) 1.59851e32 0.216818
\(427\) 3.63303e32i 0.478543i
\(428\) 7.49336e31i 0.0958582i
\(429\) −1.59519e33 −1.98196
\(430\) −1.05348e31 2.53511e31i −0.0127136 0.0305943i
\(431\) 1.06420e33 1.24755 0.623774 0.781605i \(-0.285599\pi\)
0.623774 + 0.781605i \(0.285599\pi\)
\(432\) 1.56978e32i 0.178769i
\(433\) 9.20340e32i 1.01824i −0.860696 0.509119i \(-0.829971\pi\)
0.860696 0.509119i \(-0.170029\pi\)
\(434\) 5.81227e32 0.624776
\(435\) 1.20085e33 4.99021e32i 1.25422 0.521199i
\(436\) −7.54681e32 −0.765918
\(437\) 1.86055e33i 1.83495i
\(438\) 8.83127e32i 0.846441i
\(439\) 3.84917e32 0.358559 0.179279 0.983798i \(-0.442623\pi\)
0.179279 + 0.983798i \(0.442623\pi\)
\(440\) −3.96951e32 + 1.64955e32i −0.359400 + 0.149351i
\(441\) 3.53721e32 0.311300
\(442\) 1.98732e33i 1.70016i
\(443\) 8.53492e32i 0.709827i 0.934899 + 0.354914i \(0.115490\pi\)
−0.934899 + 0.354914i \(0.884510\pi\)
\(444\) 8.32818e32 0.673384
\(445\) 1.24442e32 + 2.99461e32i 0.0978292 + 0.235418i
\(446\) 4.34200e32 0.331897
\(447\) 2.08687e33i 1.55114i
\(448\) 2.31321e32i 0.167201i
\(449\) −3.42652e32 −0.240865 −0.120432 0.992722i \(-0.538428\pi\)
−0.120432 + 0.992722i \(0.538428\pi\)
\(450\) 2.89142e32 + 2.87821e32i 0.197676 + 0.196773i
\(451\) −4.83681e31 −0.0321627
\(452\) 4.68150e32i 0.302799i
\(453\) 1.30883e33i 0.823485i
\(454\) 2.05228e33 1.25614
\(455\) 1.31428e33 + 3.16272e33i 0.782613 + 1.88330i
\(456\) −7.63609e32 −0.442395
\(457\) 4.52087e32i 0.254841i 0.991849 + 0.127421i \(0.0406698\pi\)
−0.991849 + 0.127421i \(0.959330\pi\)
\(458\) 1.31116e32i 0.0719181i
\(459\) −2.11268e33 −1.12765
\(460\) −1.53930e33 + 6.39662e32i −0.799557 + 0.332260i
\(461\) 2.47159e33 1.24944 0.624718 0.780850i \(-0.285214\pi\)
0.624718 + 0.780850i \(0.285214\pi\)
\(462\) 2.49893e33i 1.22950i
\(463\) 1.72628e33i 0.826703i 0.910572 + 0.413351i \(0.135642\pi\)
−0.910572 + 0.413351i \(0.864358\pi\)
\(464\) −6.16849e32 −0.287544
\(465\) −1.58739e33 + 6.59646e32i −0.720312 + 0.299329i
\(466\) −2.53799e33 −1.12116
\(467\) 1.88292e33i 0.809787i −0.914364 0.404893i \(-0.867309\pi\)
0.914364 0.404893i \(-0.132691\pi\)
\(468\) 7.18150e32i 0.300706i
\(469\) 2.94460e33 1.20051
\(470\) −3.94825e32 9.50115e32i −0.156741 0.377184i
\(471\) −4.70639e33 −1.81939
\(472\) 1.51302e32i 0.0569600i
\(473\) 1.40678e32i 0.0515775i
\(474\) 3.49294e33 1.24727
\(475\) −2.14938e33 + 2.15924e33i −0.747554 + 0.750984i
\(476\) 3.11322e33 1.05469
\(477\) 8.50822e32i 0.280775i
\(478\) 8.87749e32i 0.285392i
\(479\) −1.07303e33 −0.336061 −0.168030 0.985782i \(-0.553741\pi\)
−0.168030 + 0.985782i \(0.553741\pi\)
\(480\) −2.62530e32 6.31759e32i −0.0801058 0.192768i
\(481\) −5.84904e33 −1.73889
\(482\) 3.05704e33i 0.885549i
\(483\) 9.69036e33i 2.73527i
\(484\) −3.84991e32 −0.105897
\(485\) 4.39109e33 1.82474e33i 1.17706 0.489135i
\(486\) −2.02421e33 −0.528814
\(487\) 6.26292e33i 1.59465i −0.603552 0.797324i \(-0.706248\pi\)
0.603552 0.797324i \(-0.293752\pi\)
\(488\) 5.09676e32i 0.126487i
\(489\) −5.45897e33 −1.32054
\(490\) −2.18540e33 + 9.08155e32i −0.515324 + 0.214146i
\(491\) 3.10431e33 0.713586 0.356793 0.934183i \(-0.383870\pi\)
0.356793 + 0.934183i \(0.383870\pi\)
\(492\) 7.69792e31i 0.0172508i
\(493\) 8.30184e33i 1.81379i
\(494\) 5.36298e33 1.14240
\(495\) 8.02249e32 + 1.93055e33i 0.166627 + 0.400974i
\(496\) 8.15401e32 0.165139
\(497\) 1.75870e33i 0.347326i
\(498\) 2.04997e33i 0.394804i
\(499\) −7.12443e33 −1.33811 −0.669057 0.743211i \(-0.733302\pi\)
−0.669057 + 0.743211i \(0.733302\pi\)
\(500\) −2.52537e33 1.03590e33i −0.462594 0.189755i
\(501\) 1.29054e34 2.30568
\(502\) 3.05840e33i 0.532965i
\(503\) 1.03191e34i 1.75406i 0.480439 + 0.877028i \(0.340477\pi\)
−0.480439 + 0.877028i \(0.659523\pi\)
\(504\) 1.12501e33 0.186542
\(505\) −1.63707e33 3.93948e33i −0.264804 0.637231i
\(506\) −8.54183e33 −1.34794
\(507\) 1.01603e34i 1.56425i
\(508\) 3.21523e33i 0.482965i
\(509\) 4.04421e32 0.0592736 0.0296368 0.999561i \(-0.490565\pi\)
0.0296368 + 0.999561i \(0.490565\pi\)
\(510\) −8.50250e33 + 3.53326e33i −1.21596 + 0.505298i
\(511\) 9.71629e33 1.35594
\(512\) 3.24519e32i 0.0441942i
\(513\) 5.70128e33i 0.757714i
\(514\) 8.32753e32 0.108013
\(515\) 5.32738e33 2.21382e33i 0.674409 0.280254i
\(516\) 2.23892e32 0.0276642
\(517\) 5.27236e33i 0.635877i
\(518\) 9.16279e33i 1.07871i
\(519\) 4.52420e33 0.519936
\(520\) 1.84380e33 + 4.43696e33i 0.206858 + 0.497788i
\(521\) 9.14369e33 1.00150 0.500749 0.865593i \(-0.333058\pi\)
0.500749 + 0.865593i \(0.333058\pi\)
\(522\) 3.00001e33i 0.320805i
\(523\) 1.50595e33i 0.157231i −0.996905 0.0786156i \(-0.974950\pi\)
0.996905 0.0786156i \(-0.0250500\pi\)
\(524\) 3.73700e33 0.380963
\(525\) 1.11947e34 1.12460e34i 1.11434 1.11946i
\(526\) 1.30547e34 1.26895
\(527\) 1.09740e34i 1.04168i
\(528\) 3.50574e33i 0.324979i
\(529\) −2.20777e34 −1.99875
\(530\) 2.18443e33 + 5.25665e33i 0.193147 + 0.464794i
\(531\) −7.35849e32 −0.0635487
\(532\) 8.40134e33i 0.708685i
\(533\) 5.40640e32i 0.0445470i
\(534\) −2.64474e33 −0.212871
\(535\) 2.25160e33 9.35662e32i 0.177039 0.0735693i
\(536\) 4.13096e33 0.317315
\(537\) 1.18860e34i 0.891984i
\(538\) 4.43999e32i 0.0325539i
\(539\) −1.21272e34 −0.868762
\(540\) 4.71685e33 1.96011e33i 0.330165 0.137202i
\(541\) 7.92779e32 0.0542234 0.0271117 0.999632i \(-0.491369\pi\)
0.0271117 + 0.999632i \(0.491369\pi\)
\(542\) 3.44279e33i 0.230102i
\(543\) 9.40134e33i 0.614033i
\(544\) 4.36752e33 0.278772
\(545\) −9.42336e33 2.26766e34i −0.587827 1.41456i
\(546\) −2.79321e34 −1.70293
\(547\) 2.56023e34i 1.52559i 0.646641 + 0.762794i \(0.276173\pi\)
−0.646641 + 0.762794i \(0.723827\pi\)
\(548\) 6.03878e33i 0.351716i
\(549\) −2.47878e33 −0.141118
\(550\) −9.91310e33 9.86783e33i −0.551666 0.549146i
\(551\) −2.24034e34 −1.21876
\(552\) 1.35946e34i 0.722981i
\(553\) 3.84298e34i 1.99804i
\(554\) 2.16387e34 1.09992
\(555\) 1.03990e34 + 2.50244e34i 0.516810 + 1.24366i
\(556\) −8.69308e33 −0.422414
\(557\) 2.77017e34i 1.31618i 0.752938 + 0.658091i \(0.228636\pi\)
−0.752938 + 0.658091i \(0.771364\pi\)
\(558\) 3.96565e33i 0.184241i
\(559\) −1.57244e33 −0.0714375
\(560\) −6.95070e33 + 2.88840e33i −0.308801 + 0.128324i
\(561\) −4.71819e34 −2.04993
\(562\) 2.41545e34i 1.02635i
\(563\) 1.80222e33i 0.0748951i 0.999299 + 0.0374476i \(0.0119227\pi\)
−0.999299 + 0.0374476i \(0.988077\pi\)
\(564\) 8.39110e33 0.341060
\(565\) 1.40669e34 5.84558e33i 0.559234 0.232393i
\(566\) 6.48499e33 0.252176
\(567\) 4.35652e34i 1.65711i
\(568\) 2.46728e33i 0.0918044i
\(569\) 2.00804e34 0.730920 0.365460 0.930827i \(-0.380912\pi\)
0.365460 + 0.930827i \(0.380912\pi\)
\(570\) −9.53485e33 2.29449e34i −0.339530 0.817052i
\(571\) 3.27237e34 1.14002 0.570008 0.821639i \(-0.306940\pi\)
0.570008 + 0.821639i \(0.306940\pi\)
\(572\) 2.46215e34i 0.839198i
\(573\) 1.91753e34i 0.639453i
\(574\) −8.46937e32 −0.0276346
\(575\) −3.84410e34 3.82655e34i −1.22729 1.22168i
\(576\) 1.57828e33 0.0493063
\(577\) 1.86866e34i 0.571257i −0.958340 0.285629i \(-0.907798\pi\)
0.958340 0.285629i \(-0.0922024\pi\)
\(578\) 3.51436e34i 1.05135i
\(579\) 5.50883e33 0.161279
\(580\) −7.70232e33 1.85350e34i −0.220684 0.531060i
\(581\) 2.25541e34 0.632447
\(582\) 3.87806e34i 1.06433i
\(583\) 2.91701e34i 0.783575i
\(584\) 1.36309e34 0.358398
\(585\) 2.15789e34 8.96723e33i 0.555369 0.230786i
\(586\) 2.03310e34 0.512198
\(587\) 2.44688e33i 0.0603443i 0.999545 + 0.0301721i \(0.00960555\pi\)
−0.999545 + 0.0301721i \(0.990394\pi\)
\(588\) 1.93008e34i 0.465970i
\(589\) 2.96146e34 0.699945
\(590\) 4.54631e33 1.88924e33i 0.105198 0.0437157i
\(591\) −6.14325e33 −0.139173
\(592\) 1.28544e34i 0.285122i
\(593\) 3.48844e34i 0.757613i 0.925476 + 0.378806i \(0.123665\pi\)
−0.925476 + 0.378806i \(0.876335\pi\)
\(594\) 2.61747e34 0.556610
\(595\) 3.88734e34 + 9.35458e34i 0.809451 + 1.94788i
\(596\) −3.22106e34 −0.656780
\(597\) 2.38297e34i 0.475817i
\(598\) 9.54772e34i 1.86696i
\(599\) −6.48903e34 −1.24264 −0.621319 0.783558i \(-0.713403\pi\)
−0.621319 + 0.783558i \(0.713403\pi\)
\(600\) 1.57049e34 1.57770e34i 0.294541 0.295892i
\(601\) −2.18034e34 −0.400492 −0.200246 0.979746i \(-0.564174\pi\)
−0.200246 + 0.979746i \(0.564174\pi\)
\(602\) 2.46330e33i 0.0443160i
\(603\) 2.00907e34i 0.354020i
\(604\) 2.02016e34 0.348678
\(605\) −4.80721e33 1.15682e34i −0.0812738 0.195579i
\(606\) 3.47922e34 0.576201
\(607\) 7.37348e34i 1.19623i −0.801411 0.598114i \(-0.795917\pi\)
0.801411 0.598114i \(-0.204083\pi\)
\(608\) 1.17862e34i 0.187318i
\(609\) 1.16684e35 1.81675
\(610\) 1.53147e34 6.36410e33i 0.233607 0.0970764i
\(611\) −5.89324e34 −0.880722
\(612\) 2.12412e34i 0.311018i
\(613\) 1.05162e35i 1.50870i −0.656473 0.754349i \(-0.727953\pi\)
0.656473 0.754349i \(-0.272047\pi\)
\(614\) −5.29804e34 −0.744750
\(615\) 2.31306e33 9.61205e32i 0.0318602 0.0132397i
\(616\) −3.85707e34 −0.520593
\(617\) 8.12769e34i 1.07499i 0.843268 + 0.537493i \(0.180628\pi\)
−0.843268 + 0.537493i \(0.819372\pi\)
\(618\) 4.70496e34i 0.609818i
\(619\) −4.81305e34 −0.611346 −0.305673 0.952137i \(-0.598881\pi\)
−0.305673 + 0.952137i \(0.598881\pi\)
\(620\) 1.01815e34 + 2.45011e34i 0.126741 + 0.304993i
\(621\) 1.01500e35 1.23829
\(622\) 6.90737e33i 0.0825910i
\(623\) 2.90978e34i 0.341004i
\(624\) −3.91858e34 −0.450113
\(625\) −4.06568e32 8.88169e34i −0.00457755 0.999990i
\(626\) 1.10746e34 0.122221
\(627\) 1.27325e35i 1.37743i
\(628\) 7.26425e34i 0.770363i
\(629\) −1.73001e35 −1.79852
\(630\) 1.40476e34 + 3.38044e34i 0.143167 + 0.344521i
\(631\) 6.11675e34 0.611158 0.305579 0.952167i \(-0.401150\pi\)
0.305579 + 0.952167i \(0.401150\pi\)
\(632\) 5.39130e34i 0.528117i
\(633\) 9.90222e34i 0.951012i
\(634\) −1.34802e35 −1.26935
\(635\) −9.66110e34 + 4.01472e34i −0.891979 + 0.370666i
\(636\) −4.64250e34 −0.420279
\(637\) 1.35553e35i 1.20328i
\(638\) 1.02854e35i 0.895289i
\(639\) −1.19995e34 −0.102424
\(640\) −9.75111e33 + 4.05212e33i −0.0816214 + 0.0339182i
\(641\) 9.15866e34 0.751807 0.375904 0.926659i \(-0.377332\pi\)
0.375904 + 0.926659i \(0.377332\pi\)
\(642\) 1.98854e34i 0.160083i
\(643\) 5.09730e34i 0.402442i 0.979546 + 0.201221i \(0.0644909\pi\)
−0.979546 + 0.201221i \(0.935509\pi\)
\(644\) −1.49569e35 −1.15816
\(645\) 2.79564e33 + 6.72750e33i 0.0212317 + 0.0510925i
\(646\) 1.58624e35 1.18158
\(647\) 2.28658e35i 1.67064i −0.549765 0.835320i \(-0.685283\pi\)
0.549765 0.835320i \(-0.314717\pi\)
\(648\) 6.11174e34i 0.438003i
\(649\) 2.52283e34 0.177349
\(650\) −1.10299e35 + 1.10805e35i −0.760595 + 0.764085i
\(651\) −1.54242e35 −1.04338
\(652\) 8.42585e34i 0.559138i
\(653\) 1.93736e35i 1.26124i −0.776093 0.630618i \(-0.782801\pi\)
0.776093 0.630618i \(-0.217199\pi\)
\(654\) 2.00272e35 1.27908
\(655\) 4.66623e34 + 1.12289e35i 0.292382 + 0.703593i
\(656\) −1.18816e33 −0.00730429
\(657\) 6.62933e34i 0.399855i
\(658\) 9.23202e34i 0.546353i
\(659\) 2.14078e35 1.24310 0.621548 0.783376i \(-0.286504\pi\)
0.621548 + 0.783376i \(0.286504\pi\)
\(660\) 1.05340e35 4.37746e34i 0.600199 0.249416i
\(661\) 1.52863e35 0.854641 0.427320 0.904100i \(-0.359458\pi\)
0.427320 + 0.904100i \(0.359458\pi\)
\(662\) 1.27126e35i 0.697445i
\(663\) 5.27381e35i 2.83926i
\(664\) 3.16410e34 0.167167
\(665\) −2.52443e35 + 1.04904e35i −1.30886 + 0.543902i
\(666\) −6.25168e34 −0.318104
\(667\) 3.98848e35i 1.99175i
\(668\) 1.99193e35i 0.976265i
\(669\) −1.15225e35 −0.554268
\(670\) 5.15815e34 + 1.24127e35i 0.243534 + 0.586044i
\(671\) 8.49840e34 0.393827
\(672\) 6.13863e34i 0.279226i
\(673\) 2.04386e35i 0.912564i 0.889835 + 0.456282i \(0.150819\pi\)
−0.889835 + 0.456282i \(0.849181\pi\)
\(674\) −1.31040e35 −0.574322
\(675\) 1.17795e35 + 1.17257e35i 0.506790 + 0.504475i
\(676\) 1.56823e35 0.662331
\(677\) 4.21908e34i 0.174928i 0.996168 + 0.0874640i \(0.0278763\pi\)
−0.996168 + 0.0874640i \(0.972124\pi\)
\(678\) 1.24235e35i 0.505675i
\(679\) 4.26671e35 1.70498
\(680\) 5.45353e34 + 1.31235e35i 0.213952 + 0.514858i
\(681\) −5.44620e35 −2.09776
\(682\) 1.35961e35i 0.514173i
\(683\) 2.99380e35i 1.11164i 0.831303 + 0.555820i \(0.187595\pi\)
−0.831303 + 0.555820i \(0.812405\pi\)
\(684\) 5.73215e34 0.208986
\(685\) −1.81453e35 + 7.54036e34i −0.649578 + 0.269935i
\(686\) 5.67203e34 0.199383
\(687\) 3.47948e34i 0.120103i
\(688\) 3.45575e33i 0.0117135i
\(689\) 3.26052e35 1.08529
\(690\) 4.08488e35 1.69749e35i 1.33526 0.554874i
\(691\) 8.03613e34 0.257971 0.128986 0.991646i \(-0.458828\pi\)
0.128986 + 0.991646i \(0.458828\pi\)
\(692\) 6.98304e34i 0.220150i
\(693\) 1.87586e35i 0.580812i
\(694\) −1.77854e35 −0.540843
\(695\) −1.08547e35 2.61209e35i −0.324195 0.780149i
\(696\) 1.63695e35 0.480198
\(697\) 1.59909e34i 0.0460746i
\(698\) 3.98207e35i 1.12698i
\(699\) 6.73516e35 1.87233
\(700\) −1.73581e35 1.72788e35i −0.473998 0.471833i
\(701\) −4.53710e35 −1.21704 −0.608518 0.793540i \(-0.708235\pi\)
−0.608518 + 0.793540i \(0.708235\pi\)
\(702\) 2.92570e35i 0.770932i
\(703\) 4.66860e35i 1.20850i
\(704\) −5.41106e34 −0.137602
\(705\) 1.04776e35 + 2.52135e35i 0.261757 + 0.629897i
\(706\) −4.23667e35 −1.03984
\(707\) 3.82789e35i 0.923032i
\(708\) 4.01515e34i 0.0951232i
\(709\) 1.72814e35 0.402255 0.201128 0.979565i \(-0.435539\pi\)
0.201128 + 0.979565i \(0.435539\pi\)
\(710\) 7.41365e34 3.08078e34i 0.169552 0.0704581i
\(711\) −2.62203e35 −0.589206
\(712\) 4.08212e34i 0.0901334i
\(713\) 5.27229e35i 1.14388i
\(714\) −8.26166e35 −1.76133
\(715\) −7.39825e35 + 3.07438e35i −1.54990 + 0.644068i
\(716\) 1.83459e35 0.377681
\(717\) 2.35585e35i 0.476604i
\(718\) 1.77703e35i 0.353296i
\(719\) −9.50282e35 −1.85670 −0.928349 0.371709i \(-0.878772\pi\)
−0.928349 + 0.371709i \(0.878772\pi\)
\(720\) 1.97073e34 + 4.74239e34i 0.0378416 + 0.0910629i
\(721\) 5.17647e35 0.976884
\(722\) 4.68219e34i 0.0868429i
\(723\) 8.11256e35i 1.47887i
\(724\) 1.45108e35 0.259992
\(725\) 4.60763e35 4.62877e35i 0.811433 0.815156i
\(726\) 1.02166e35 0.176848
\(727\) 1.71833e35i 0.292367i 0.989258 + 0.146183i \(0.0466989\pi\)
−0.989258 + 0.146183i \(0.953301\pi\)
\(728\) 4.31128e35i 0.721048i
\(729\) −2.16385e35 −0.355741
\(730\) 1.70203e35 + 4.09581e35i 0.275063 + 0.661918i
\(731\) −4.65090e34 −0.0738873
\(732\) 1.35254e35i 0.211233i
\(733\) 5.57098e35i 0.855327i 0.903938 + 0.427664i \(0.140663\pi\)
−0.903938 + 0.427664i \(0.859337\pi\)
\(734\) 1.93113e35 0.291481
\(735\) 5.79948e35 2.41000e35i 0.860592 0.357623i
\(736\) −2.09830e35 −0.306122
\(737\) 6.88801e35i 0.987985i
\(738\) 5.77856e33i 0.00814921i
\(739\) −6.81418e35 −0.944839 −0.472420 0.881374i \(-0.656619\pi\)
−0.472420 + 0.881374i \(0.656619\pi\)
\(740\) 3.86249e35 1.60508e35i 0.526588 0.218826i
\(741\) −1.42319e36 −1.90781
\(742\) 5.10775e35i 0.673257i
\(743\) 7.94423e35i 1.02965i −0.857294 0.514827i \(-0.827856\pi\)
0.857294 0.514827i \(-0.172144\pi\)
\(744\) −2.16386e35 −0.275782
\(745\) −4.02199e35 9.67861e35i −0.504066 1.21300i
\(746\) 4.06564e35 0.501065
\(747\) 1.53884e35i 0.186503i
\(748\) 7.28246e35i 0.867977i
\(749\) 2.18782e35 0.256442
\(750\) 6.70166e35 + 2.74900e35i 0.772532 + 0.316890i
\(751\) 9.09984e35 1.03166 0.515828 0.856692i \(-0.327484\pi\)
0.515828 + 0.856692i \(0.327484\pi\)
\(752\) 1.29516e35i 0.144411i
\(753\) 8.11619e35i 0.890051i
\(754\) −1.14966e36 −1.24002
\(755\) 2.52249e35 + 6.07016e35i 0.267604 + 0.643967i
\(756\) 4.58325e35 0.478245
\(757\) 9.30502e35i 0.955034i 0.878623 + 0.477517i \(0.158463\pi\)
−0.878623 + 0.477517i \(0.841537\pi\)
\(758\) 2.57570e35i 0.260034i
\(759\) 2.26677e36 2.25105
\(760\) −3.54151e35 + 1.47169e35i −0.345954 + 0.143763i
\(761\) 1.13441e36 1.09009 0.545045 0.838407i \(-0.316513\pi\)
0.545045 + 0.838407i \(0.316513\pi\)
\(762\) 8.53236e35i 0.806552i
\(763\) 2.20342e36i 2.04900i
\(764\) −2.95967e35 −0.270755
\(765\) 6.38253e35 2.65229e35i 0.574414 0.238701i
\(766\) −2.02904e35 −0.179651
\(767\) 2.81992e35i 0.245637i
\(768\) 8.61186e34i 0.0738043i
\(769\) 2.29001e36 1.93090 0.965448 0.260597i \(-0.0839193\pi\)
0.965448 + 0.260597i \(0.0839193\pi\)
\(770\) −4.81615e35 1.15897e36i −0.399546 0.961475i
\(771\) −2.20990e35 −0.180382
\(772\) 8.50281e34i 0.0682883i
\(773\) 3.21550e35i 0.254100i 0.991896 + 0.127050i \(0.0405509\pi\)
−0.991896 + 0.127050i \(0.959449\pi\)
\(774\) −1.68068e34 −0.0130684
\(775\) −6.09074e35 + 6.11869e35i −0.466014 + 0.468152i
\(776\) 5.98574e35 0.450657
\(777\) 2.43156e36i 1.80145i
\(778\) 1.67965e36i 1.22454i
\(779\) −4.31529e34 −0.0309594
\(780\) −4.89296e35 1.17745e36i −0.345453 0.831305i
\(781\) 4.11397e35 0.285840
\(782\) 2.82399e36i 1.93098i
\(783\) 1.22219e36i 0.822461i
\(784\) −2.97905e35 −0.197300
\(785\) −2.18276e36 + 9.07055e35i −1.42277 + 0.591239i
\(786\) −9.91701e35 −0.636208
\(787\) 3.25977e35i 0.205827i −0.994690 0.102914i \(-0.967183\pi\)
0.994690 0.102914i \(-0.0328166\pi\)
\(788\) 9.48202e34i 0.0589282i
\(789\) −3.46437e36 −2.11915
\(790\) 1.61997e36 6.73188e35i 0.975370 0.405320i
\(791\) 1.36685e36 0.810054
\(792\) 2.63164e35i 0.153519i
\(793\) 9.49918e35i 0.545470i
\(794\) 7.41849e35 0.419333
\(795\) −5.79688e35 1.39497e36i −0.322556 0.776206i
\(796\) 3.67809e35 0.201469
\(797\) 8.54851e35i 0.460958i 0.973077 + 0.230479i \(0.0740293\pi\)
−0.973077 + 0.230479i \(0.925971\pi\)
\(798\) 2.22949e36i 1.18350i
\(799\) −1.74308e36 −0.910925
\(800\) −2.43515e35 2.42403e35i −0.125286 0.124714i
\(801\) 1.98532e35 0.100559
\(802\) 5.33538e35i 0.266064i
\(803\) 2.27284e36i 1.11590i
\(804\) −1.09625e36 −0.529917
\(805\) −1.86761e36 4.49425e36i −0.888867 2.13899i
\(806\) 1.51972e36 0.712156
\(807\) 1.17825e35i 0.0543651i
\(808\) 5.37013e35i 0.243973i
\(809\) 3.81958e36 1.70867 0.854336 0.519721i \(-0.173964\pi\)
0.854336 + 0.519721i \(0.173964\pi\)
\(810\) −1.83645e36 + 7.63145e35i −0.808940 + 0.336159i
\(811\) −2.53614e36 −1.10005 −0.550025 0.835148i \(-0.685382\pi\)
−0.550025 + 0.835148i \(0.685382\pi\)
\(812\) 1.80100e36i 0.769243i
\(813\) 9.13625e35i 0.384270i
\(814\) 2.14336e36 0.887750
\(815\) −2.53179e36 + 1.05210e36i −1.03266 + 0.429128i
\(816\) −1.15902e36 −0.465549
\(817\) 1.25509e35i 0.0496478i
\(818\) 3.51949e36i 1.37108i
\(819\) 2.09677e36 0.804455
\(820\) −1.48361e34 3.57018e34i −0.00560591 0.0134902i
\(821\) −6.03536e35 −0.224602 −0.112301 0.993674i \(-0.535822\pi\)
−0.112301 + 0.993674i \(0.535822\pi\)
\(822\) 1.60253e36i 0.587366i
\(823\) 3.78844e36i 1.36761i −0.729665 0.683804i \(-0.760324\pi\)
0.729665 0.683804i \(-0.239676\pi\)
\(824\) 7.26205e35 0.258208
\(825\) 2.63067e36 + 2.61866e36i 0.921282 + 0.917074i
\(826\) 4.41753e35 0.152380
\(827\) 3.11766e36i 1.05928i 0.848223 + 0.529639i \(0.177672\pi\)
−0.848223 + 0.529639i \(0.822328\pi\)
\(828\) 1.02050e36i 0.341533i
\(829\) −5.42365e36 −1.78797 −0.893984 0.448099i \(-0.852101\pi\)
−0.893984 + 0.448099i \(0.852101\pi\)
\(830\) 3.95088e35 + 9.50747e35i 0.128297 + 0.308737i
\(831\) −5.74233e36 −1.83686
\(832\) 6.04827e35i 0.190586i
\(833\) 4.00934e36i 1.24454i
\(834\) 2.30691e36 0.705432
\(835\) 5.98532e36 2.48723e36i 1.80305 0.749265i
\(836\) −1.96525e36 −0.583228
\(837\) 1.61558e36i 0.472347i
\(838\) 1.91295e36i 0.551003i
\(839\) 3.97800e35 0.112886 0.0564431 0.998406i \(-0.482024\pi\)
0.0564431 + 0.998406i \(0.482024\pi\)
\(840\) 1.84453e36 7.66504e35i 0.515697 0.214301i
\(841\) 1.17226e36 0.322904
\(842\) 3.03953e36i 0.824907i
\(843\) 6.40996e36i 1.71400i
\(844\) −1.52839e36 −0.402675
\(845\) 1.95818e36 + 4.71219e36i 0.508326 + 1.22325i
\(846\) −6.29891e35 −0.161115
\(847\) 1.12405e36i 0.283297i
\(848\) 7.16563e35i 0.177953i
\(849\) −1.72094e36 −0.421134
\(850\) −3.26238e36 + 3.27734e36i −0.786679 + 0.790288i
\(851\) 8.31153e36 1.97497
\(852\) 6.54749e35i 0.153313i
\(853\) 2.49788e36i 0.576379i −0.957573 0.288189i \(-0.906947\pi\)
0.957573 0.288189i \(-0.0930533\pi\)
\(854\) 1.48809e36 0.338381
\(855\) 7.15748e35 + 1.72239e36i 0.160392 + 0.385972i
\(856\) 3.06928e35 0.0677820
\(857\) 5.58799e36i 1.21617i −0.793871 0.608086i \(-0.791938\pi\)
0.793871 0.608086i \(-0.208062\pi\)
\(858\) 6.53389e36i 1.40146i
\(859\) −4.00214e36 −0.846015 −0.423007 0.906126i \(-0.639026\pi\)
−0.423007 + 0.906126i \(0.639026\pi\)
\(860\) 1.03838e35 4.31504e34i 0.0216334 0.00898988i
\(861\) 2.24755e35 0.0461497
\(862\) 4.35896e36i 0.882149i
\(863\) 1.01320e36i 0.202097i −0.994882 0.101048i \(-0.967780\pi\)
0.994882 0.101048i \(-0.0322197\pi\)
\(864\) 6.42981e35 0.126409
\(865\) 2.09826e36 8.71942e35i 0.406591 0.168961i
\(866\) 3.76971e36 0.720003
\(867\) 9.32618e36i 1.75576i
\(868\) 2.38071e36i 0.441783i
\(869\) 8.98952e36 1.64433
\(870\) 2.04399e36 + 4.91870e36i 0.368543 + 0.886870i
\(871\) 7.69915e36 1.36841
\(872\) 3.09117e36i 0.541586i
\(873\) 2.91113e36i 0.502786i
\(874\) −7.62083e36 −1.29751
\(875\) 3.02449e36 7.37327e36i 0.507635 1.23754i
\(876\) −3.61729e36 −0.598524
\(877\) 1.04808e37i 1.70962i −0.518944 0.854808i \(-0.673675\pi\)
0.518944 0.854808i \(-0.326325\pi\)
\(878\) 1.57662e36i 0.253539i
\(879\) −5.39529e36 −0.855370
\(880\) −6.75656e35 1.62591e36i −0.105607 0.254134i
\(881\) −7.82632e36 −1.20603 −0.603016 0.797729i \(-0.706035\pi\)
−0.603016 + 0.797729i \(0.706035\pi\)
\(882\) 1.44884e36i 0.220122i
\(883\) 1.14075e37i 1.70876i 0.519651 + 0.854379i \(0.326062\pi\)
−0.519651 + 0.854379i \(0.673938\pi\)
\(884\) 8.14005e36 1.20219
\(885\) −1.20647e36 + 5.01354e35i −0.175681 + 0.0730052i
\(886\) −3.49590e36 −0.501924
\(887\) 2.08825e35i 0.0295622i −0.999891 0.0147811i \(-0.995295\pi\)
0.999891 0.0147811i \(-0.00470514\pi\)
\(888\) 3.41122e36i 0.476155i
\(889\) −9.38744e36 −1.29204
\(890\) −1.22659e36 + 5.09716e35i −0.166466 + 0.0691757i
\(891\) −1.01908e37 −1.36375
\(892\) 1.77848e36i 0.234687i
\(893\) 4.70388e36i 0.612086i
\(894\) 8.54783e36 1.09682
\(895\) 2.29077e36 + 5.51255e36i 0.289863 + 0.697533i
\(896\) −9.47490e35 −0.118229
\(897\) 2.53371e37i 3.11782i
\(898\) 1.40350e36i 0.170317i
\(899\) −6.34849e36 −0.759756
\(900\) −1.17891e36 + 1.18432e36i −0.139140 + 0.139778i
\(901\) 9.64384e36 1.12251
\(902\) 1.98116e35i 0.0227425i
\(903\) 6.53693e35i 0.0740077i
\(904\) 1.91754e36 0.214111
\(905\) 1.81190e36 + 4.36020e36i 0.199539 + 0.480175i
\(906\) −5.36097e36 −0.582292
\(907\) 1.26800e37i 1.35841i −0.733950 0.679203i \(-0.762326\pi\)
0.733950 0.679203i \(-0.237674\pi\)
\(908\) 8.40614e36i 0.888226i
\(909\) −2.61173e36 −0.272195
\(910\) −1.29545e37 + 5.38331e36i −1.33169 + 0.553391i
\(911\) −9.78070e36 −0.991722 −0.495861 0.868402i \(-0.665148\pi\)
−0.495861 + 0.868402i \(0.665148\pi\)
\(912\) 3.12774e36i 0.312821i
\(913\) 5.27586e36i 0.520486i
\(914\) −1.85175e36 −0.180200
\(915\) −4.06411e36 + 1.68886e36i −0.390123 + 0.162118i
\(916\) −5.37053e35 −0.0508538
\(917\) 1.09108e37i 1.01916i
\(918\) 8.65354e36i 0.797370i
\(919\) 7.03823e36 0.639764 0.319882 0.947457i \(-0.396357\pi\)
0.319882 + 0.947457i \(0.396357\pi\)
\(920\) −2.62006e36 6.30496e36i −0.234943 0.565372i
\(921\) 1.40596e37 1.24373
\(922\) 1.01236e37i 0.883485i
\(923\) 4.59843e36i 0.395903i
\(924\) 1.02356e37 0.869391
\(925\) 9.64584e36 + 9.60178e36i 0.808292 + 0.804600i
\(926\) −7.07085e36 −0.584567
\(927\) 3.53185e36i 0.288075i
\(928\) 2.52661e36i 0.203324i
\(929\) −2.91517e36 −0.231455 −0.115728 0.993281i \(-0.536920\pi\)
−0.115728 + 0.993281i \(0.536920\pi\)
\(930\) −2.70191e36 6.50194e36i −0.211658 0.509338i
\(931\) −1.08196e37 −0.836258
\(932\) 1.03956e37i 0.792778i
\(933\) 1.83303e36i 0.137927i
\(934\) 7.71244e36 0.572606
\(935\) −2.18823e37 + 9.09328e36i −1.60305 + 0.666156i
\(936\) 2.94154e36 0.212631
\(937\) 1.15106e37i 0.821016i −0.911857 0.410508i \(-0.865351\pi\)
0.911857 0.410508i \(-0.134649\pi\)
\(938\) 1.20611e37i 0.848888i
\(939\) −2.93889e36 −0.204110
\(940\) 3.89167e36 1.61720e36i 0.266709 0.110832i
\(941\) 1.44936e37 0.980179 0.490090 0.871672i \(-0.336964\pi\)
0.490090 + 0.871672i \(0.336964\pi\)
\(942\) 1.92774e37i 1.28651i
\(943\) 7.68253e35i 0.0505951i
\(944\) 6.19733e35 0.0402768
\(945\) 5.72290e36 + 1.37717e37i 0.367044 + 0.883262i
\(946\) 5.76215e35 0.0364708
\(947\) 2.53109e37i 1.58100i 0.612459 + 0.790502i \(0.290180\pi\)
−0.612459 + 0.790502i \(0.709820\pi\)
\(948\) 1.43071e37i 0.881956i
\(949\) 2.54049e37 1.54557
\(950\) −8.84425e36 8.80385e36i −0.531026 0.528601i
\(951\) 3.57728e37 2.11981
\(952\) 1.27518e37i 0.745775i
\(953\) 8.20660e36i 0.473698i −0.971546 0.236849i \(-0.923885\pi\)
0.971546 0.236849i \(-0.0761147\pi\)
\(954\) 3.48496e36 0.198538
\(955\) −3.69562e36 8.89320e36i −0.207800 0.500053i
\(956\) 3.63622e36 0.201803
\(957\) 2.72948e37i 1.49513i
\(958\) 4.39513e36i 0.237631i
\(959\) −1.76313e37 −0.940917
\(960\) 2.58768e36 1.07532e36i 0.136308 0.0566434i
\(961\) −1.08408e37 −0.563665
\(962\) 2.39577e37i 1.22958i
\(963\) 1.49273e36i 0.0756226i
\(964\) −1.25216e37 −0.626178
\(965\) 2.55492e36 1.06171e36i 0.126120 0.0524099i
\(966\) 3.96917e37 1.93413
\(967\) 2.92106e37i 1.40511i 0.711630 + 0.702555i \(0.247957\pi\)
−0.711630 + 0.702555i \(0.752043\pi\)
\(968\) 1.57692e36i 0.0748804i
\(969\) −4.20946e37 −1.97324
\(970\) 7.47413e36 + 1.79859e37i 0.345871 + 0.832310i
\(971\) 9.97325e36 0.455613 0.227807 0.973706i \(-0.426845\pi\)
0.227807 + 0.973706i \(0.426845\pi\)
\(972\) 8.29117e36i 0.373928i
\(973\) 2.53810e37i 1.13005i
\(974\) 2.56529e37 1.12759
\(975\) 2.92703e37 2.94046e37i 1.27019 1.27602i
\(976\) 2.08763e36 0.0894399
\(977\) 3.07257e37i 1.29963i −0.760092 0.649816i \(-0.774846\pi\)
0.760092 0.649816i \(-0.225154\pi\)
\(978\) 2.23600e37i 0.933760i
\(979\) −6.80658e36 −0.280637
\(980\) −3.71980e36 8.95141e36i −0.151424 0.364389i
\(981\) −1.50337e37 −0.604233
\(982\) 1.27153e37i 0.504582i
\(983\) 5.34152e36i 0.209289i −0.994510 0.104644i \(-0.966630\pi\)
0.994510 0.104644i \(-0.0333704\pi\)
\(984\) 3.15307e35 0.0121982
\(985\) −2.84915e36 + 1.18398e36i −0.108833 + 0.0452263i
\(986\) −3.40043e37 −1.28255
\(987\) 2.44993e37i 0.912409i
\(988\) 2.19667e37i 0.807800i
\(989\) 2.23445e36 0.0811365
\(990\) −7.90753e36 + 3.28601e36i −0.283531 + 0.117823i
\(991\) −4.37784e36 −0.155003 −0.0775013 0.996992i \(-0.524694\pi\)
−0.0775013 + 0.996992i \(0.524694\pi\)
\(992\) 3.33988e36i 0.116771i
\(993\) 3.37359e37i 1.16473i
\(994\) 7.20365e36 0.245597
\(995\) 4.59266e36 + 1.10519e37i 0.154624 + 0.372090i
\(996\) −8.39668e36 −0.279168
\(997\) 2.23560e37i 0.734015i 0.930218 + 0.367008i \(0.119618\pi\)
−0.930218 + 0.367008i \(0.880382\pi\)
\(998\) 2.91817e37i 0.946190i
\(999\) −2.54690e37 −0.815535
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.26.b.a.9.7 yes 12
5.2 odd 4 50.26.a.k.1.1 6
5.3 odd 4 50.26.a.l.1.6 6
5.4 even 2 inner 10.26.b.a.9.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.b.a.9.6 12 5.4 even 2 inner
10.26.b.a.9.7 yes 12 1.1 even 1 trivial
50.26.a.k.1.1 6 5.2 odd 4
50.26.a.l.1.6 6 5.3 odd 4