Properties

Label 10.26.b.a.9.5
Level $10$
Weight $26$
Character 10.9
Analytic conductor $39.600$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,26,Mod(9,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.9");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5996779952\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 1406300109694 x^{10} + \cdots + 56\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{8}\cdot 5^{29} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 9.5
Root \(508420. i\) of defining polynomial
Character \(\chi\) \(=\) 10.9
Dual form 10.26.b.a.9.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4096.00i q^{2} +1.01684e6i q^{3} -1.67772e7 q^{4} +(-2.64029e8 - 4.77820e8i) q^{5} +4.16497e9 q^{6} +1.16326e10i q^{7} +6.87195e10i q^{8} -1.86674e11 q^{9} +(-1.95715e12 + 1.08146e12i) q^{10} -5.94667e12 q^{11} -1.70597e13i q^{12} -8.19186e13i q^{13} +4.76472e13 q^{14} +(4.85866e14 - 2.68475e14i) q^{15} +2.81475e14 q^{16} -1.37679e15i q^{17} +7.64617e14i q^{18} -4.66320e15 q^{19} +(4.42968e15 + 8.01649e15i) q^{20} -1.18285e16 q^{21} +2.43576e16i q^{22} +9.70196e16i q^{23} -6.98767e16 q^{24} +(-1.58600e17 + 2.52317e17i) q^{25} -3.35539e17 q^{26} +6.71739e17i q^{27} -1.95163e17i q^{28} +1.92842e18 q^{29} +(-1.09968e18 - 1.99011e18i) q^{30} +5.14163e18 q^{31} -1.15292e18i q^{32} -6.04681e18i q^{33} -5.63933e18 q^{34} +(5.55829e18 - 3.07135e18i) q^{35} +3.13187e18 q^{36} +4.77086e19i q^{37} +1.91005e19i q^{38} +8.32981e19 q^{39} +(3.28355e19 - 1.81440e19i) q^{40} +1.13507e20 q^{41} +4.84495e19i q^{42} +9.41611e18i q^{43} +9.97685e19 q^{44} +(4.92874e19 + 8.91965e19i) q^{45} +3.97392e20 q^{46} +1.09883e21i q^{47} +2.86215e20i q^{48} +1.20575e21 q^{49} +(1.03349e21 + 6.49627e20i) q^{50} +1.39998e21 q^{51} +1.37437e21i q^{52} +6.11805e20i q^{53} +2.75144e21 q^{54} +(1.57009e21 + 2.84144e21i) q^{55} -7.99387e20 q^{56} -4.74172e21i q^{57} -7.89879e21i q^{58} +1.74642e22 q^{59} +(-8.15148e21 + 4.50427e21i) q^{60} +2.94578e21 q^{61} -2.10601e22i q^{62} -2.17151e21i q^{63} -4.72237e21 q^{64} +(-3.91423e22 + 2.16289e22i) q^{65} -2.47677e22 q^{66} +5.85392e22i q^{67} +2.30987e22i q^{68} -9.86533e22 q^{69} +(-1.25802e22 - 2.27668e22i) q^{70} -2.27224e23 q^{71} -1.28281e22i q^{72} -2.69974e23i q^{73} +1.95415e23 q^{74} +(-2.56566e23 - 1.61271e23i) q^{75} +7.82355e22 q^{76} -6.91753e22i q^{77} -3.41189e23i q^{78} +9.35155e23 q^{79} +(-7.43176e22 - 1.34494e23i) q^{80} -8.41218e23 q^{81} -4.64926e23i q^{82} +1.71255e24i q^{83} +1.98449e23 q^{84} +(-6.57858e23 + 3.63513e23i) q^{85} +3.85684e22 q^{86} +1.96089e24i q^{87} -4.08652e23i q^{88} +2.89830e24 q^{89} +(3.65349e23 - 2.01881e23i) q^{90} +9.52927e23 q^{91} -1.62772e24i q^{92} +5.22821e24i q^{93} +4.50081e24 q^{94} +(1.23122e24 + 2.22817e24i) q^{95} +1.17234e24 q^{96} -1.13099e24i q^{97} -4.93876e24i q^{98} +1.11009e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 201326592 q^{4} - 490295340 q^{5} - 6565199872 q^{6} - 1082937564236 q^{9} + 1636528619520 q^{10} + 19723089228624 q^{11} + 278591122243584 q^{14} - 449884766537680 q^{15} + 33\!\cdots\!72 q^{16}+ \cdots + 41\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00i 0.707107i
\(3\) 1.01684e6i 1.10468i 0.833619 + 0.552340i \(0.186265\pi\)
−0.833619 + 0.552340i \(0.813735\pi\)
\(4\) −1.67772e7 −0.500000
\(5\) −2.64029e8 4.77820e8i −0.483645 0.875264i
\(6\) 4.16497e9 0.781127
\(7\) 1.16326e10i 0.317652i 0.987307 + 0.158826i \(0.0507709\pi\)
−0.987307 + 0.158826i \(0.949229\pi\)
\(8\) 6.87195e10i 0.353553i
\(9\) −1.86674e11 −0.220319
\(10\) −1.95715e12 + 1.08146e12i −0.618905 + 0.341989i
\(11\) −5.94667e12 −0.571301 −0.285651 0.958334i \(-0.592210\pi\)
−0.285651 + 0.958334i \(0.592210\pi\)
\(12\) 1.70597e13i 0.552340i
\(13\) 8.19186e13i 0.975193i −0.873069 0.487597i \(-0.837874\pi\)
0.873069 0.487597i \(-0.162126\pi\)
\(14\) 4.76472e13 0.224614
\(15\) 4.85866e14 2.68475e14i 0.966887 0.534274i
\(16\) 2.81475e14 0.250000
\(17\) 1.37679e15i 0.573134i −0.958060 0.286567i \(-0.907486\pi\)
0.958060 0.286567i \(-0.0925141\pi\)
\(18\) 7.64617e14i 0.155789i
\(19\) −4.66320e15 −0.483352 −0.241676 0.970357i \(-0.577697\pi\)
−0.241676 + 0.970357i \(0.577697\pi\)
\(20\) 4.42968e15 + 8.01649e15i 0.241823 + 0.437632i
\(21\) −1.18285e16 −0.350904
\(22\) 2.43576e16i 0.403971i
\(23\) 9.70196e16i 0.923127i 0.887107 + 0.461563i \(0.152711\pi\)
−0.887107 + 0.461563i \(0.847289\pi\)
\(24\) −6.98767e16 −0.390564
\(25\) −1.58600e17 + 2.52317e17i −0.532174 + 0.846635i
\(26\) −3.35539e17 −0.689566
\(27\) 6.71739e17i 0.861298i
\(28\) 1.95163e17i 0.158826i
\(29\) 1.92842e18 1.01211 0.506053 0.862503i \(-0.331104\pi\)
0.506053 + 0.862503i \(0.331104\pi\)
\(30\) −1.09968e18 1.99011e18i −0.377788 0.683693i
\(31\) 5.14163e18 1.17241 0.586205 0.810163i \(-0.300621\pi\)
0.586205 + 0.810163i \(0.300621\pi\)
\(32\) 1.15292e18i 0.176777i
\(33\) 6.04681e18i 0.631105i
\(34\) −5.63933e18 −0.405267
\(35\) 5.55829e18 3.07135e18i 0.278029 0.153631i
\(36\) 3.13187e18 0.110160
\(37\) 4.77086e19i 1.19145i 0.803189 + 0.595725i \(0.203135\pi\)
−0.803189 + 0.595725i \(0.796865\pi\)
\(38\) 1.91005e19i 0.341782i
\(39\) 8.32981e19 1.07728
\(40\) 3.28355e19 1.81440e19i 0.309453 0.170994i
\(41\) 1.13507e20 0.785644 0.392822 0.919615i \(-0.371499\pi\)
0.392822 + 0.919615i \(0.371499\pi\)
\(42\) 4.84495e19i 0.248127i
\(43\) 9.41611e18i 0.0359348i 0.999839 + 0.0179674i \(0.00571951\pi\)
−0.999839 + 0.0179674i \(0.994280\pi\)
\(44\) 9.97685e19 0.285651
\(45\) 4.92874e19 + 8.91965e19i 0.106556 + 0.192838i
\(46\) 3.97392e20 0.652749
\(47\) 1.09883e21i 1.37946i 0.724069 + 0.689728i \(0.242270\pi\)
−0.724069 + 0.689728i \(0.757730\pi\)
\(48\) 2.86215e20i 0.276170i
\(49\) 1.20575e21 0.899097
\(50\) 1.03349e21 + 6.49627e20i 0.598661 + 0.376304i
\(51\) 1.39998e21 0.633130
\(52\) 1.37437e21i 0.487597i
\(53\) 6.11805e20i 0.171066i 0.996335 + 0.0855331i \(0.0272594\pi\)
−0.996335 + 0.0855331i \(0.972741\pi\)
\(54\) 2.75144e21 0.609030
\(55\) 1.57009e21 + 2.84144e21i 0.276307 + 0.500039i
\(56\) −7.99387e20 −0.112307
\(57\) 4.74172e21i 0.533950i
\(58\) 7.89879e21i 0.715667i
\(59\) 1.74642e22 1.27791 0.638954 0.769245i \(-0.279368\pi\)
0.638954 + 0.769245i \(0.279368\pi\)
\(60\) −8.15148e21 + 4.50427e21i −0.483444 + 0.267137i
\(61\) 2.94578e21 0.142095 0.0710473 0.997473i \(-0.477366\pi\)
0.0710473 + 0.997473i \(0.477366\pi\)
\(62\) 2.10601e22i 0.829019i
\(63\) 2.17151e21i 0.0699849i
\(64\) −4.72237e21 −0.125000
\(65\) −3.91423e22 + 2.16289e22i −0.853552 + 0.471648i
\(66\) −2.47677e22 −0.446259
\(67\) 5.85392e22i 0.874001i 0.899461 + 0.437000i \(0.143959\pi\)
−0.899461 + 0.437000i \(0.856041\pi\)
\(68\) 2.30987e22i 0.286567i
\(69\) −9.86533e22 −1.01976
\(70\) −1.25802e22 2.27668e22i −0.108633 0.196597i
\(71\) −2.27224e23 −1.64333 −0.821665 0.569970i \(-0.806955\pi\)
−0.821665 + 0.569970i \(0.806955\pi\)
\(72\) 1.28281e22i 0.0778946i
\(73\) 2.69974e23i 1.37971i −0.723949 0.689853i \(-0.757675\pi\)
0.723949 0.689853i \(-0.242325\pi\)
\(74\) 1.95415e23 0.842482
\(75\) −2.56566e23 1.61271e23i −0.935261 0.587883i
\(76\) 7.82355e22 0.241676
\(77\) 6.91753e22i 0.181475i
\(78\) 3.41189e23i 0.761750i
\(79\) 9.35155e23 1.78051 0.890257 0.455459i \(-0.150525\pi\)
0.890257 + 0.455459i \(0.150525\pi\)
\(80\) −7.43176e22 1.34494e23i −0.120911 0.218816i
\(81\) −8.41218e23 −1.17178
\(82\) 4.64926e23i 0.555534i
\(83\) 1.71255e24i 1.75860i 0.476264 + 0.879302i \(0.341991\pi\)
−0.476264 + 0.879302i \(0.658009\pi\)
\(84\) 1.98449e23 0.175452
\(85\) −6.57858e23 + 3.63513e23i −0.501644 + 0.277194i
\(86\) 3.85684e22 0.0254098
\(87\) 1.96089e24i 1.11805i
\(88\) 4.08652e23i 0.201985i
\(89\) 2.89830e24 1.24385 0.621926 0.783076i \(-0.286350\pi\)
0.621926 + 0.783076i \(0.286350\pi\)
\(90\) 3.65349e23 2.01881e23i 0.136357 0.0753467i
\(91\) 9.52927e23 0.309772
\(92\) 1.62772e24i 0.461563i
\(93\) 5.22821e24i 1.29514i
\(94\) 4.50081e24 0.975422
\(95\) 1.23122e24 + 2.22817e24i 0.233771 + 0.423061i
\(96\) 1.17234e24 0.195282
\(97\) 1.13099e24i 0.165506i −0.996570 0.0827529i \(-0.973629\pi\)
0.996570 0.0827529i \(-0.0263712\pi\)
\(98\) 4.93876e24i 0.635758i
\(99\) 1.11009e24 0.125869
\(100\) 2.66087e24 4.23317e24i 0.266087 0.423317i
\(101\) −1.20834e25 −1.06702 −0.533510 0.845794i \(-0.679127\pi\)
−0.533510 + 0.845794i \(0.679127\pi\)
\(102\) 5.73430e24i 0.447691i
\(103\) 1.70464e23i 0.0117806i 0.999983 + 0.00589030i \(0.00187495\pi\)
−0.999983 + 0.00589030i \(0.998125\pi\)
\(104\) 5.62940e24 0.344783
\(105\) 3.12307e24 + 5.65189e24i 0.169713 + 0.307134i
\(106\) 2.50595e24 0.120962
\(107\) 1.25315e25i 0.537906i 0.963153 + 0.268953i \(0.0866776\pi\)
−0.963153 + 0.268953i \(0.913322\pi\)
\(108\) 1.12699e25i 0.430649i
\(109\) −5.31922e25 −1.81141 −0.905704 0.423910i \(-0.860657\pi\)
−0.905704 + 0.423910i \(0.860657\pi\)
\(110\) 1.16385e25 6.43111e24i 0.353581 0.195379i
\(111\) −4.85120e25 −1.31617
\(112\) 3.27429e24i 0.0794130i
\(113\) 1.81999e25i 0.394991i −0.980304 0.197496i \(-0.936719\pi\)
0.980304 0.197496i \(-0.0632808\pi\)
\(114\) −1.94221e25 −0.377560
\(115\) 4.63579e25 2.56160e25i 0.807980 0.446466i
\(116\) −3.23535e25 −0.506053
\(117\) 1.52921e25i 0.214854i
\(118\) 7.15335e25i 0.903617i
\(119\) 1.60157e25 0.182057
\(120\) 1.84495e25 + 3.33885e25i 0.188894 + 0.341846i
\(121\) −7.29842e25 −0.673615
\(122\) 1.20659e25i 0.100476i
\(123\) 1.15419e26i 0.867886i
\(124\) −8.62622e25 −0.586205
\(125\) 1.62437e26 + 9.16337e24i 0.998413 + 0.0563223i
\(126\) −8.89449e24 −0.0494868
\(127\) 4.54166e25i 0.228912i −0.993428 0.114456i \(-0.963488\pi\)
0.993428 0.114456i \(-0.0365125\pi\)
\(128\) 1.93428e25i 0.0883883i
\(129\) −9.57467e24 −0.0396965
\(130\) 8.85920e25 + 1.60327e26i 0.333505 + 0.603552i
\(131\) 3.22369e26 1.10271 0.551356 0.834270i \(-0.314110\pi\)
0.551356 + 0.834270i \(0.314110\pi\)
\(132\) 1.01449e26i 0.315553i
\(133\) 5.42452e25i 0.153538i
\(134\) 2.39777e26 0.618012
\(135\) 3.20970e26 1.77359e26i 0.753863 0.416563i
\(136\) 9.46123e25 0.202634
\(137\) 5.61602e26i 1.09754i −0.835973 0.548771i \(-0.815096\pi\)
0.835973 0.548771i \(-0.184904\pi\)
\(138\) 4.04084e26i 0.721079i
\(139\) 7.44482e26 1.21386 0.606931 0.794755i \(-0.292400\pi\)
0.606931 + 0.794755i \(0.292400\pi\)
\(140\) −9.32527e25 + 5.15287e25i −0.139015 + 0.0768155i
\(141\) −1.11733e27 −1.52386
\(142\) 9.30710e26i 1.16201i
\(143\) 4.87143e26i 0.557129i
\(144\) −5.25441e25 −0.0550798
\(145\) −5.09158e26 9.21435e26i −0.489500 0.885860i
\(146\) −1.10581e27 −0.975600
\(147\) 1.22606e27i 0.993215i
\(148\) 8.00418e26i 0.595725i
\(149\) 9.58450e26 0.655754 0.327877 0.944720i \(-0.393667\pi\)
0.327877 + 0.944720i \(0.393667\pi\)
\(150\) −6.60566e26 + 1.05089e27i −0.415696 + 0.661329i
\(151\) 8.90889e26 0.515955 0.257978 0.966151i \(-0.416944\pi\)
0.257978 + 0.966151i \(0.416944\pi\)
\(152\) 3.20452e26i 0.170891i
\(153\) 2.57011e26i 0.126273i
\(154\) −2.83342e26 −0.128322
\(155\) −1.35754e27 2.45677e27i −0.567031 1.02617i
\(156\) −1.39751e27 −0.538639
\(157\) 4.44904e27i 1.58314i −0.611076 0.791572i \(-0.709263\pi\)
0.611076 0.791572i \(-0.290737\pi\)
\(158\) 3.83040e27i 1.25901i
\(159\) −6.22107e26 −0.188974
\(160\) −5.50889e26 + 3.04405e26i −0.154726 + 0.0854972i
\(161\) −1.12859e27 −0.293233
\(162\) 3.44563e27i 0.828573i
\(163\) 1.89357e27i 0.421634i −0.977526 0.210817i \(-0.932388\pi\)
0.977526 0.210817i \(-0.0676124\pi\)
\(164\) −1.90434e27 −0.392822
\(165\) −2.88928e27 + 1.59653e27i −0.552384 + 0.305231i
\(166\) 7.01462e27 1.24352
\(167\) 2.78772e27i 0.458451i 0.973373 + 0.229226i \(0.0736194\pi\)
−0.973373 + 0.229226i \(0.926381\pi\)
\(168\) 8.12848e26i 0.124063i
\(169\) 3.45751e26 0.0489982
\(170\) 1.48895e27 + 2.69459e27i 0.196006 + 0.354716i
\(171\) 8.70498e26 0.106492
\(172\) 1.57976e26i 0.0179674i
\(173\) 1.54571e28i 1.63513i 0.575836 + 0.817565i \(0.304677\pi\)
−0.575836 + 0.817565i \(0.695323\pi\)
\(174\) 8.03180e27 0.790583
\(175\) −2.93510e27 1.84494e27i −0.268935 0.169046i
\(176\) −1.67384e27 −0.142825
\(177\) 1.77583e28i 1.41168i
\(178\) 1.18715e28i 0.879536i
\(179\) −1.48885e28 −1.02846 −0.514232 0.857651i \(-0.671923\pi\)
−0.514232 + 0.857651i \(0.671923\pi\)
\(180\) −8.26905e26 1.49647e27i −0.0532782 0.0964188i
\(181\) 2.99166e28 1.79858 0.899291 0.437351i \(-0.144083\pi\)
0.899291 + 0.437351i \(0.144083\pi\)
\(182\) 3.90319e27i 0.219042i
\(183\) 2.99539e27i 0.156969i
\(184\) −6.66713e27 −0.326375
\(185\) 2.27961e28 1.25965e28i 1.04283 0.576239i
\(186\) 2.14148e28 0.915802
\(187\) 8.18732e27i 0.327432i
\(188\) 1.84353e28i 0.689728i
\(189\) −7.81408e27 −0.273593
\(190\) 9.12658e27 5.04308e27i 0.299149 0.165301i
\(191\) 1.13139e28 0.347292 0.173646 0.984808i \(-0.444445\pi\)
0.173646 + 0.984808i \(0.444445\pi\)
\(192\) 4.80189e27i 0.138085i
\(193\) 6.86928e26i 0.0185116i 0.999957 + 0.00925582i \(0.00294626\pi\)
−0.999957 + 0.00925582i \(0.997054\pi\)
\(194\) −4.63255e27 −0.117030
\(195\) −2.19931e28 3.98015e28i −0.521020 0.942902i
\(196\) −2.02291e28 −0.449549
\(197\) 7.22234e28i 1.50609i 0.657970 + 0.753044i \(0.271415\pi\)
−0.657970 + 0.753044i \(0.728585\pi\)
\(198\) 4.54692e27i 0.0890026i
\(199\) −6.41046e28 −1.17822 −0.589110 0.808053i \(-0.700521\pi\)
−0.589110 + 0.808053i \(0.700521\pi\)
\(200\) −1.73391e28 1.08989e28i −0.299331 0.188152i
\(201\) −5.95250e28 −0.965492
\(202\) 4.94936e28i 0.754497i
\(203\) 2.24325e28i 0.321497i
\(204\) −2.34877e28 −0.316565
\(205\) −2.99693e28 5.42361e28i −0.379973 0.687646i
\(206\) 6.98220e26 0.00833014
\(207\) 1.81110e28i 0.203383i
\(208\) 2.30580e28i 0.243798i
\(209\) 2.77305e28 0.276140
\(210\) 2.31501e28 1.27921e28i 0.217176 0.120005i
\(211\) −2.74461e28 −0.242633 −0.121317 0.992614i \(-0.538712\pi\)
−0.121317 + 0.992614i \(0.538712\pi\)
\(212\) 1.02644e28i 0.0855331i
\(213\) 2.31050e29i 1.81536i
\(214\) 5.13290e28 0.380357
\(215\) 4.49920e27 2.48613e27i 0.0314525 0.0173797i
\(216\) −4.61616e28 −0.304515
\(217\) 5.98106e28i 0.372419i
\(218\) 2.17875e29i 1.28086i
\(219\) 2.74521e29 1.52414
\(220\) −2.63418e28 4.76714e28i −0.138154 0.250020i
\(221\) −1.12785e29 −0.558917
\(222\) 1.98705e29i 0.930673i
\(223\) 2.58596e29i 1.14502i −0.819899 0.572508i \(-0.805971\pi\)
0.819899 0.572508i \(-0.194029\pi\)
\(224\) 1.34115e28 0.0561535
\(225\) 2.96066e28 4.71010e28i 0.117248 0.186530i
\(226\) −7.45466e28 −0.279301
\(227\) 4.86361e29i 1.72439i 0.506578 + 0.862194i \(0.330910\pi\)
−0.506578 + 0.862194i \(0.669090\pi\)
\(228\) 7.95529e28i 0.266975i
\(229\) 4.91096e29 1.56035 0.780176 0.625560i \(-0.215130\pi\)
0.780176 + 0.625560i \(0.215130\pi\)
\(230\) −1.04923e29 1.89882e29i −0.315699 0.571328i
\(231\) 7.03402e28 0.200472
\(232\) 1.32520e29i 0.357833i
\(233\) 2.93368e29i 0.750696i −0.926884 0.375348i \(-0.877523\pi\)
0.926884 0.375348i \(-0.122477\pi\)
\(234\) 6.26363e28 0.151925
\(235\) 5.25043e29 2.90124e29i 1.20739 0.667167i
\(236\) −2.93001e29 −0.638954
\(237\) 9.50903e29i 1.96690i
\(238\) 6.56002e28i 0.128734i
\(239\) 2.65452e28 0.0494324 0.0247162 0.999695i \(-0.492132\pi\)
0.0247162 + 0.999695i \(0.492132\pi\)
\(240\) 1.36759e29 7.55691e28i 0.241722 0.133568i
\(241\) −6.46401e27 −0.0108465 −0.00542324 0.999985i \(-0.501726\pi\)
−0.00542324 + 0.999985i \(0.501726\pi\)
\(242\) 2.98943e29i 0.476318i
\(243\) 2.86226e29i 0.433143i
\(244\) −4.94220e28 −0.0710473
\(245\) −3.18354e29 5.76132e29i −0.434844 0.786947i
\(246\) 4.72755e29 0.613688
\(247\) 3.82003e29i 0.471362i
\(248\) 3.53330e29i 0.414510i
\(249\) −1.74139e30 −1.94270
\(250\) 3.75332e28 6.65342e29i 0.0398259 0.705984i
\(251\) −5.06787e29 −0.511569 −0.255785 0.966734i \(-0.582334\pi\)
−0.255785 + 0.966734i \(0.582334\pi\)
\(252\) 3.64318e28i 0.0349924i
\(253\) 5.76943e29i 0.527383i
\(254\) −1.86026e29 −0.161865
\(255\) −3.69634e29 6.68936e29i −0.306210 0.554156i
\(256\) 7.92282e28 0.0625000
\(257\) 8.16135e29i 0.613194i 0.951839 + 0.306597i \(0.0991904\pi\)
−0.951839 + 0.306597i \(0.900810\pi\)
\(258\) 3.92178e28i 0.0280697i
\(259\) −5.54976e29 −0.378466
\(260\) 6.56699e29 3.62873e29i 0.426776 0.235824i
\(261\) −3.59985e29 −0.222986
\(262\) 1.32042e30i 0.779736i
\(263\) 1.16241e30i 0.654505i −0.944937 0.327253i \(-0.893877\pi\)
0.944937 0.327253i \(-0.106123\pi\)
\(264\) 4.15533e29 0.223129
\(265\) 2.92332e29 1.61534e29i 0.149728 0.0827354i
\(266\) −2.22188e29 −0.108568
\(267\) 2.94711e30i 1.37406i
\(268\) 9.82125e29i 0.437000i
\(269\) −1.07881e30 −0.458184 −0.229092 0.973405i \(-0.573576\pi\)
−0.229092 + 0.973405i \(0.573576\pi\)
\(270\) −7.26461e29 1.31469e30i −0.294554 0.533062i
\(271\) 2.07856e30 0.804723 0.402362 0.915481i \(-0.368189\pi\)
0.402362 + 0.915481i \(0.368189\pi\)
\(272\) 3.87532e29i 0.143284i
\(273\) 9.68974e29i 0.342199i
\(274\) −2.30032e30 −0.776080
\(275\) 9.43144e29 1.50044e30i 0.304032 0.483683i
\(276\) 1.65513e30 0.509880
\(277\) 4.81866e30i 1.41883i 0.704793 + 0.709413i \(0.251040\pi\)
−0.704793 + 0.709413i \(0.748960\pi\)
\(278\) 3.04940e30i 0.858330i
\(279\) −9.59809e29 −0.258305
\(280\) 2.11062e29 + 3.81963e29i 0.0543167 + 0.0982983i
\(281\) 3.81522e30 0.939054 0.469527 0.882918i \(-0.344424\pi\)
0.469527 + 0.882918i \(0.344424\pi\)
\(282\) 4.57660e30i 1.07753i
\(283\) 3.50448e30i 0.789392i 0.918812 + 0.394696i \(0.129150\pi\)
−0.918812 + 0.394696i \(0.870850\pi\)
\(284\) 3.81219e30 0.821665
\(285\) −2.26569e30 + 1.25195e30i −0.467347 + 0.258242i
\(286\) 1.99534e30 0.393950
\(287\) 1.32039e30i 0.249561i
\(288\) 2.15220e29i 0.0389473i
\(289\) 3.87508e30 0.671517
\(290\) −3.77420e30 + 2.08551e30i −0.626397 + 0.346129i
\(291\) 1.15004e30 0.182831
\(292\) 4.52942e30i 0.689853i
\(293\) 1.01157e30i 0.147622i −0.997272 0.0738111i \(-0.976484\pi\)
0.997272 0.0738111i \(-0.0235162\pi\)
\(294\) 5.02192e30 0.702309
\(295\) −4.61107e30 8.34476e30i −0.618054 1.11851i
\(296\) −3.27851e30 −0.421241
\(297\) 3.99461e30i 0.492061i
\(298\) 3.92581e30i 0.463688i
\(299\) 7.94771e30 0.900227
\(300\) 4.30446e30 + 2.70568e30i 0.467630 + 0.293941i
\(301\) −1.09534e29 −0.0114148
\(302\) 3.64908e30i 0.364835i
\(303\) 1.22869e31i 1.17872i
\(304\) −1.31257e30 −0.120838
\(305\) −7.77772e29 1.40755e30i −0.0687234 0.124370i
\(306\) 1.05272e30 0.0892882
\(307\) 1.27764e31i 1.04035i −0.854060 0.520174i \(-0.825867\pi\)
0.854060 0.520174i \(-0.174133\pi\)
\(308\) 1.16057e30i 0.0907375i
\(309\) −1.73334e29 −0.0130138
\(310\) −1.00629e31 + 5.56049e30i −0.725611 + 0.400951i
\(311\) −1.19771e31 −0.829556 −0.414778 0.909923i \(-0.636141\pi\)
−0.414778 + 0.909923i \(0.636141\pi\)
\(312\) 5.72420e30i 0.380875i
\(313\) 2.39996e31i 1.53426i 0.641492 + 0.767130i \(0.278316\pi\)
−0.641492 + 0.767130i \(0.721684\pi\)
\(314\) −1.82233e31 −1.11945
\(315\) −1.03759e30 + 5.73341e29i −0.0612553 + 0.0338479i
\(316\) −1.56893e31 −0.890257
\(317\) 5.21982e30i 0.284718i −0.989815 0.142359i \(-0.954531\pi\)
0.989815 0.142359i \(-0.0454687\pi\)
\(318\) 2.54815e30i 0.133625i
\(319\) −1.14677e31 −0.578217
\(320\) 1.24684e30 + 2.25644e30i 0.0604557 + 0.109408i
\(321\) −1.27425e31 −0.594214
\(322\) 4.62271e30i 0.207347i
\(323\) 6.42025e30i 0.277026i
\(324\) 1.41133e31 0.585889
\(325\) 2.06694e31 + 1.29923e31i 0.825632 + 0.518973i
\(326\) −7.75605e30 −0.298140
\(327\) 5.40879e31i 2.00103i
\(328\) 7.80017e30i 0.277767i
\(329\) −1.27823e31 −0.438187
\(330\) 6.53940e30 + 1.18345e31i 0.215831 + 0.390594i
\(331\) 2.99801e31 0.952759 0.476379 0.879240i \(-0.341949\pi\)
0.476379 + 0.879240i \(0.341949\pi\)
\(332\) 2.87319e31i 0.879302i
\(333\) 8.90596e30i 0.262499i
\(334\) 1.14185e31 0.324174
\(335\) 2.79712e31 1.54561e31i 0.764981 0.422706i
\(336\) −3.32943e30 −0.0877260
\(337\) 2.25223e31i 0.571792i 0.958261 + 0.285896i \(0.0922913\pi\)
−0.958261 + 0.285896i \(0.907709\pi\)
\(338\) 1.41620e30i 0.0346469i
\(339\) 1.85063e31 0.436339
\(340\) 1.10370e31 6.09874e30i 0.250822 0.138597i
\(341\) −3.05756e31 −0.669800
\(342\) 3.56556e30i 0.0753011i
\(343\) 2.96262e31i 0.603252i
\(344\) −6.47070e29 −0.0127049
\(345\) 2.60474e31 + 4.71385e31i 0.493202 + 0.892559i
\(346\) 6.33124e31 1.15621
\(347\) 1.77495e31i 0.312656i −0.987705 0.156328i \(-0.950034\pi\)
0.987705 0.156328i \(-0.0499657\pi\)
\(348\) 3.28983e31i 0.559027i
\(349\) −6.99151e31 −1.14618 −0.573091 0.819492i \(-0.694256\pi\)
−0.573091 + 0.819492i \(0.694256\pi\)
\(350\) −7.55686e30 + 1.20222e31i −0.119534 + 0.190166i
\(351\) 5.50279e31 0.839932
\(352\) 6.85604e30i 0.100993i
\(353\) 5.98918e31i 0.851498i 0.904841 + 0.425749i \(0.139989\pi\)
−0.904841 + 0.425749i \(0.860011\pi\)
\(354\) 7.27381e31 0.998208
\(355\) 5.99938e31 + 1.08572e32i 0.794789 + 1.43835i
\(356\) −4.86255e31 −0.621926
\(357\) 1.62854e31i 0.201115i
\(358\) 6.09835e31i 0.727234i
\(359\) −2.70071e31 −0.311027 −0.155513 0.987834i \(-0.549703\pi\)
−0.155513 + 0.987834i \(0.549703\pi\)
\(360\) −6.12954e30 + 3.38700e30i −0.0681784 + 0.0376734i
\(361\) −7.13311e31 −0.766371
\(362\) 1.22538e32i 1.27179i
\(363\) 7.42132e31i 0.744129i
\(364\) −1.59875e31 −0.154886
\(365\) −1.28999e32 + 7.12811e31i −1.20761 + 0.667289i
\(366\) 1.22691e31 0.110994
\(367\) 1.68905e32i 1.47678i −0.674372 0.738392i \(-0.735585\pi\)
0.674372 0.738392i \(-0.264415\pi\)
\(368\) 2.73086e31i 0.230782i
\(369\) −2.11889e31 −0.173093
\(370\) −5.15952e31 9.33730e31i −0.407462 0.737394i
\(371\) −7.11689e30 −0.0543396
\(372\) 8.77149e31i 0.647570i
\(373\) 5.83575e31i 0.416616i 0.978063 + 0.208308i \(0.0667957\pi\)
−0.978063 + 0.208308i \(0.933204\pi\)
\(374\) 3.35352e31 0.231530
\(375\) −9.31768e30 + 1.65172e32i −0.0622181 + 1.10293i
\(376\) −7.55111e31 −0.487711
\(377\) 1.57973e32i 0.986998i
\(378\) 3.20065e31i 0.193460i
\(379\) 1.51743e32 0.887399 0.443700 0.896176i \(-0.353666\pi\)
0.443700 + 0.896176i \(0.353666\pi\)
\(380\) −2.06564e31 3.73825e31i −0.116886 0.211530i
\(381\) 4.61814e31 0.252874
\(382\) 4.63416e31i 0.245572i
\(383\) 2.03117e32i 1.04174i −0.853635 0.520872i \(-0.825607\pi\)
0.853635 0.520872i \(-0.174393\pi\)
\(384\) −1.96685e31 −0.0976409
\(385\) −3.30533e31 + 1.82643e31i −0.158839 + 0.0877696i
\(386\) 2.81366e30 0.0130897
\(387\) 1.75774e30i 0.00791714i
\(388\) 1.89749e31i 0.0827529i
\(389\) −4.00318e32 −1.69058 −0.845289 0.534310i \(-0.820572\pi\)
−0.845289 + 0.534310i \(0.820572\pi\)
\(390\) −1.63027e32 + 9.00839e31i −0.666732 + 0.368417i
\(391\) 1.33576e32 0.529076
\(392\) 8.28586e31i 0.317879i
\(393\) 3.27798e32i 1.21815i
\(394\) 2.95827e32 1.06496
\(395\) −2.46908e32 4.46836e32i −0.861137 1.55842i
\(396\) −1.86242e31 −0.0629343
\(397\) 9.71109e31i 0.317970i 0.987281 + 0.158985i \(0.0508222\pi\)
−0.987281 + 0.158985i \(0.949178\pi\)
\(398\) 2.62573e32i 0.833127i
\(399\) 5.51586e31 0.169610
\(400\) −4.46420e31 + 7.10209e31i −0.133044 + 0.211659i
\(401\) 1.47073e32 0.424842 0.212421 0.977178i \(-0.431865\pi\)
0.212421 + 0.977178i \(0.431865\pi\)
\(402\) 2.43814e32i 0.682706i
\(403\) 4.21195e32i 1.14333i
\(404\) 2.02726e32 0.533510
\(405\) 2.22106e32 + 4.01950e32i 0.566725 + 1.02562i
\(406\) 9.18836e31 0.227333
\(407\) 2.83708e32i 0.680676i
\(408\) 9.62056e31i 0.223845i
\(409\) 4.55653e32 1.02824 0.514118 0.857720i \(-0.328119\pi\)
0.514118 + 0.857720i \(0.328119\pi\)
\(410\) −2.22151e32 + 1.22754e32i −0.486239 + 0.268681i
\(411\) 5.71059e32 1.21243
\(412\) 2.85991e30i 0.00589030i
\(413\) 2.03155e32i 0.405930i
\(414\) −7.41828e31 −0.143813
\(415\) 8.18292e32 4.52164e32i 1.53924 0.850541i
\(416\) −9.44457e31 −0.172391
\(417\) 7.57019e32i 1.34093i
\(418\) 1.13584e32i 0.195260i
\(419\) −1.07085e33 −1.78670 −0.893350 0.449361i \(-0.851652\pi\)
−0.893350 + 0.449361i \(0.851652\pi\)
\(420\) −5.23964e31 9.48230e31i −0.0848566 0.153567i
\(421\) 4.34132e32 0.682489 0.341244 0.939975i \(-0.389152\pi\)
0.341244 + 0.939975i \(0.389152\pi\)
\(422\) 1.12419e32i 0.171568i
\(423\) 2.05123e32i 0.303921i
\(424\) −4.20429e31 −0.0604811
\(425\) 3.47387e32 + 2.18359e32i 0.485235 + 0.305007i
\(426\) −9.46382e32 −1.28365
\(427\) 3.42671e31i 0.0451366i
\(428\) 2.10244e32i 0.268953i
\(429\) −4.95346e32 −0.615450
\(430\) −1.01832e31 1.84287e31i −0.0122893 0.0222403i
\(431\) −7.49364e32 −0.878470 −0.439235 0.898372i \(-0.644750\pi\)
−0.439235 + 0.898372i \(0.644750\pi\)
\(432\) 1.89078e32i 0.215325i
\(433\) 3.10398e32i 0.343416i 0.985148 + 0.171708i \(0.0549285\pi\)
−0.985148 + 0.171708i \(0.945072\pi\)
\(434\) 2.44984e32 0.263340
\(435\) 9.36952e32 5.17732e32i 0.978592 0.540741i
\(436\) 8.92417e32 0.905704
\(437\) 4.52421e32i 0.446195i
\(438\) 1.12444e33i 1.07773i
\(439\) −3.93993e32 −0.367013 −0.183507 0.983018i \(-0.558745\pi\)
−0.183507 + 0.983018i \(0.558745\pi\)
\(440\) −1.95262e32 + 1.07896e32i −0.176791 + 0.0976893i
\(441\) −2.25082e32 −0.198088
\(442\) 4.61966e32i 0.395214i
\(443\) 1.28865e33i 1.07174i −0.844301 0.535869i \(-0.819984\pi\)
0.844301 0.535869i \(-0.180016\pi\)
\(444\) 8.13897e32 0.658085
\(445\) −7.65237e32 1.38487e33i −0.601583 1.08870i
\(446\) −1.05921e33 −0.809649
\(447\) 9.74590e32i 0.724399i
\(448\) 5.49335e31i 0.0397065i
\(449\) −2.64778e33 −1.86124 −0.930619 0.365990i \(-0.880731\pi\)
−0.930619 + 0.365990i \(0.880731\pi\)
\(450\) −1.92926e32 1.21268e32i −0.131897 0.0829071i
\(451\) −6.74991e32 −0.448839
\(452\) 3.05343e32i 0.197496i
\(453\) 9.05891e32i 0.569966i
\(454\) 1.99213e33 1.21933
\(455\) −2.51601e32 4.55328e32i −0.149820 0.271132i
\(456\) 3.25849e32 0.188780
\(457\) 3.41528e33i 1.92519i 0.270947 + 0.962594i \(0.412663\pi\)
−0.270947 + 0.962594i \(0.587337\pi\)
\(458\) 2.01153e33i 1.10334i
\(459\) 9.24844e32 0.493639
\(460\) −7.77756e32 + 4.29765e32i −0.403990 + 0.223233i
\(461\) −3.55950e33 −1.79940 −0.899700 0.436510i \(-0.856214\pi\)
−0.899700 + 0.436510i \(0.856214\pi\)
\(462\) 2.88113e32i 0.141755i
\(463\) 2.37447e33i 1.13712i 0.822643 + 0.568558i \(0.192499\pi\)
−0.822643 + 0.568558i \(0.807501\pi\)
\(464\) 5.42801e32 0.253026
\(465\) 2.49814e33 1.38040e33i 1.13359 0.626388i
\(466\) −1.20164e33 −0.530822
\(467\) 1.47044e33i 0.632392i 0.948694 + 0.316196i \(0.102406\pi\)
−0.948694 + 0.316196i \(0.897594\pi\)
\(468\) 2.56558e32i 0.107427i
\(469\) −6.80964e32 −0.277628
\(470\) −1.18835e33 2.15058e33i −0.471758 0.853752i
\(471\) 4.52396e33 1.74887
\(472\) 1.20013e33i 0.451808i
\(473\) 5.59945e31i 0.0205296i
\(474\) 3.89490e33 1.39081
\(475\) 7.39585e32 1.17660e33i 0.257228 0.409223i
\(476\) −2.68698e32 −0.0910286
\(477\) 1.14208e32i 0.0376892i
\(478\) 1.08729e32i 0.0349540i
\(479\) 1.56346e33 0.489657 0.244829 0.969566i \(-0.421268\pi\)
0.244829 + 0.969566i \(0.421268\pi\)
\(480\) −3.09531e32 5.60165e32i −0.0944471 0.170923i
\(481\) 3.90823e33 1.16189
\(482\) 2.64766e31i 0.00766962i
\(483\) 1.14760e33i 0.323929i
\(484\) 1.22447e33 0.336807
\(485\) −5.40411e32 + 2.98615e32i −0.144861 + 0.0800461i
\(486\) −1.17238e33 −0.306278
\(487\) 4.18200e33i 1.06481i 0.846490 + 0.532405i \(0.178711\pi\)
−0.846490 + 0.532405i \(0.821289\pi\)
\(488\) 2.02432e32i 0.0502380i
\(489\) 1.92545e33 0.465771
\(490\) −2.35984e33 + 1.30398e33i −0.556456 + 0.307481i
\(491\) 4.13591e32 0.0950719 0.0475360 0.998870i \(-0.484863\pi\)
0.0475360 + 0.998870i \(0.484863\pi\)
\(492\) 1.93641e33i 0.433943i
\(493\) 2.65502e33i 0.580072i
\(494\) 1.56468e33 0.333303
\(495\) −2.93096e32 5.30422e32i −0.0608758 0.110168i
\(496\) 1.44724e33 0.293103
\(497\) 2.64321e33i 0.522007i
\(498\) 7.13275e33i 1.37369i
\(499\) −5.19785e33 −0.976264 −0.488132 0.872770i \(-0.662321\pi\)
−0.488132 + 0.872770i \(0.662321\pi\)
\(500\) −2.72524e33 1.53736e32i −0.499206 0.0281611i
\(501\) −2.83466e33 −0.506442
\(502\) 2.07580e33i 0.361734i
\(503\) 3.59933e33i 0.611817i −0.952061 0.305909i \(-0.901040\pi\)
0.952061 0.305909i \(-0.0989602\pi\)
\(504\) 1.49225e32 0.0247434
\(505\) 3.19037e33 + 5.77369e33i 0.516059 + 0.933924i
\(506\) −2.36316e33 −0.372916
\(507\) 3.51573e32i 0.0541273i
\(508\) 7.61964e32i 0.114456i
\(509\) −1.19327e34 −1.74891 −0.874453 0.485109i \(-0.838780\pi\)
−0.874453 + 0.485109i \(0.838780\pi\)
\(510\) −2.73996e33 + 1.51402e33i −0.391848 + 0.216524i
\(511\) 3.14051e33 0.438267
\(512\) 3.24519e32i 0.0441942i
\(513\) 3.13245e33i 0.416310i
\(514\) 3.34289e33 0.433594
\(515\) 8.14511e31 4.50075e31i 0.0103111 0.00569763i
\(516\) 1.60636e32 0.0198483
\(517\) 6.53438e33i 0.788085i
\(518\) 2.27318e33i 0.267616i
\(519\) −1.57174e34 −1.80630
\(520\) −1.48633e33 2.68984e33i −0.166753 0.301776i
\(521\) 1.63355e34 1.78921 0.894605 0.446859i \(-0.147457\pi\)
0.894605 + 0.446859i \(0.147457\pi\)
\(522\) 1.47450e33i 0.157675i
\(523\) 9.46552e33i 0.988265i −0.869387 0.494133i \(-0.835486\pi\)
0.869387 0.494133i \(-0.164514\pi\)
\(524\) −5.40846e33 −0.551356
\(525\) 1.87600e33 2.98453e33i 0.186742 0.297088i
\(526\) −4.76124e33 −0.462805
\(527\) 7.07895e33i 0.671949i
\(528\) 1.70202e33i 0.157776i
\(529\) 1.63297e33 0.147837
\(530\) −6.61645e32 1.19739e33i −0.0585028 0.105874i
\(531\) −3.26012e33 −0.281548
\(532\) 9.10083e32i 0.0767689i
\(533\) 9.29836e33i 0.766155i
\(534\) 1.20714e34 0.971607
\(535\) 5.98780e33 3.30868e33i 0.470809 0.260156i
\(536\) −4.02278e33 −0.309006
\(537\) 1.51393e34i 1.13612i
\(538\) 4.41879e33i 0.323985i
\(539\) −7.17020e33 −0.513655
\(540\) −5.38499e33 + 2.97559e33i −0.376932 + 0.208281i
\(541\) 1.13679e34 0.777528 0.388764 0.921337i \(-0.372902\pi\)
0.388764 + 0.921337i \(0.372902\pi\)
\(542\) 8.51379e33i 0.569025i
\(543\) 3.04204e34i 1.98686i
\(544\) −1.58733e33 −0.101317
\(545\) 1.40443e34 + 2.54163e34i 0.876079 + 1.58546i
\(546\) 3.96892e33 0.241971
\(547\) 2.60600e34i 1.55286i 0.630204 + 0.776430i \(0.282971\pi\)
−0.630204 + 0.776430i \(0.717029\pi\)
\(548\) 9.42211e33i 0.548771i
\(549\) −5.49901e32 −0.0313062
\(550\) −6.14582e33 3.86312e33i −0.342016 0.214983i
\(551\) −8.99258e33 −0.489203
\(552\) 6.77940e33i 0.360540i
\(553\) 1.08783e34i 0.565584i
\(554\) 1.97372e34 1.00326
\(555\) 1.28086e34 + 2.31800e34i 0.636560 + 1.15200i
\(556\) −1.24903e34 −0.606931
\(557\) 3.30593e34i 1.57074i −0.619029 0.785368i \(-0.712474\pi\)
0.619029 0.785368i \(-0.287526\pi\)
\(558\) 3.93138e33i 0.182649i
\(559\) 7.71354e32 0.0350434
\(560\) 1.56452e33 8.64508e32i 0.0695074 0.0384077i
\(561\) −8.32519e33 −0.361708
\(562\) 1.56271e34i 0.664011i
\(563\) 1.77408e34i 0.737255i 0.929577 + 0.368628i \(0.120172\pi\)
−0.929577 + 0.368628i \(0.879828\pi\)
\(564\) 1.87458e34 0.761929
\(565\) −8.69626e33 + 4.80530e33i −0.345722 + 0.191036i
\(566\) 1.43543e34 0.558184
\(567\) 9.78556e33i 0.372218i
\(568\) 1.56147e34i 0.581005i
\(569\) 3.24647e34 1.18170 0.590851 0.806781i \(-0.298792\pi\)
0.590851 + 0.806781i \(0.298792\pi\)
\(570\) 5.12800e33 + 9.28026e33i 0.182605 + 0.330464i
\(571\) −1.08523e34 −0.378068 −0.189034 0.981971i \(-0.560536\pi\)
−0.189034 + 0.981971i \(0.560536\pi\)
\(572\) 8.17290e33i 0.278565i
\(573\) 1.15044e34i 0.383646i
\(574\) 5.40830e33 0.176467
\(575\) −2.44797e34 1.53873e34i −0.781551 0.491264i
\(576\) 8.81543e32 0.0275399
\(577\) 5.40061e34i 1.65099i −0.564406 0.825497i \(-0.690895\pi\)
0.564406 0.825497i \(-0.309105\pi\)
\(578\) 1.58723e34i 0.474834i
\(579\) −6.98496e32 −0.0204495
\(580\) 8.54226e33 + 1.54591e34i 0.244750 + 0.442930i
\(581\) −1.99215e34 −0.558625
\(582\) 4.71056e33i 0.129281i
\(583\) 3.63820e33i 0.0977304i
\(584\) 1.85525e34 0.487800
\(585\) 7.30686e33 4.03756e33i 0.188054 0.103913i
\(586\) −4.14340e33 −0.104385
\(587\) 5.41910e34i 1.33644i 0.743962 + 0.668222i \(0.232944\pi\)
−0.743962 + 0.668222i \(0.767056\pi\)
\(588\) 2.05698e34i 0.496608i
\(589\) −2.39764e34 −0.566687
\(590\) −3.41801e34 + 1.88869e34i −0.790903 + 0.437030i
\(591\) −7.34396e34 −1.66375
\(592\) 1.34288e34i 0.297862i
\(593\) 3.87147e34i 0.840799i 0.907339 + 0.420400i \(0.138110\pi\)
−0.907339 + 0.420400i \(0.861890\pi\)
\(594\) −1.63619e34 −0.347939
\(595\) −4.22861e33 7.65260e33i −0.0880512 0.159348i
\(596\) −1.60801e34 −0.327877
\(597\) 6.51841e34i 1.30156i
\(598\) 3.25538e34i 0.636557i
\(599\) −9.20898e33 −0.176350 −0.0881751 0.996105i \(-0.528104\pi\)
−0.0881751 + 0.996105i \(0.528104\pi\)
\(600\) 1.10825e34 1.76311e34i 0.207848 0.330665i
\(601\) 3.98144e34 0.731324 0.365662 0.930748i \(-0.380843\pi\)
0.365662 + 0.930748i \(0.380843\pi\)
\(602\) 4.48651e32i 0.00807147i
\(603\) 1.09277e34i 0.192559i
\(604\) −1.49466e34 −0.257978
\(605\) 1.92700e34 + 3.48733e34i 0.325791 + 0.589591i
\(606\) −5.03271e34 −0.833478
\(607\) 3.32966e34i 0.540184i 0.962835 + 0.270092i \(0.0870540\pi\)
−0.962835 + 0.270092i \(0.912946\pi\)
\(608\) 5.37630e33i 0.0854454i
\(609\) −2.28103e34 −0.355152
\(610\) −5.76533e33 + 3.18575e33i −0.0879430 + 0.0485947i
\(611\) 9.00147e34 1.34524
\(612\) 4.31193e33i 0.0631363i
\(613\) 5.68278e34i 0.815277i −0.913143 0.407639i \(-0.866352\pi\)
0.913143 0.407639i \(-0.133648\pi\)
\(614\) −5.23321e34 −0.735637
\(615\) 5.51494e34 3.04739e34i 0.759629 0.419749i
\(616\) 4.75369e33 0.0641611
\(617\) 9.70987e33i 0.128425i 0.997936 + 0.0642124i \(0.0204535\pi\)
−0.997936 + 0.0642124i \(0.979546\pi\)
\(618\) 7.09978e32i 0.00920214i
\(619\) −3.18717e34 −0.404829 −0.202415 0.979300i \(-0.564879\pi\)
−0.202415 + 0.979300i \(0.564879\pi\)
\(620\) 2.27758e34 + 4.12178e34i 0.283515 + 0.513084i
\(621\) −6.51718e34 −0.795087
\(622\) 4.90581e34i 0.586584i
\(623\) 3.37148e34i 0.395112i
\(624\) 2.34463e34 0.269319
\(625\) −3.85097e34 8.00351e34i −0.433581 0.901115i
\(626\) 9.83022e34 1.08489
\(627\) 2.81975e34i 0.305046i
\(628\) 7.46425e34i 0.791572i
\(629\) 6.56848e34 0.682860
\(630\) 2.34841e33 + 4.24996e33i 0.0239341 + 0.0433140i
\(631\) 1.18827e35 1.18726 0.593632 0.804737i \(-0.297693\pi\)
0.593632 + 0.804737i \(0.297693\pi\)
\(632\) 6.42634e34i 0.629506i
\(633\) 2.79083e34i 0.268032i
\(634\) −2.13804e34 −0.201326
\(635\) −2.17010e34 + 1.19913e34i −0.200358 + 0.110712i
\(636\) 1.04372e34 0.0944868
\(637\) 9.87734e34i 0.876793i
\(638\) 4.69715e34i 0.408861i
\(639\) 4.24168e34 0.362057
\(640\) 9.24238e33 5.10707e33i 0.0773631 0.0427486i
\(641\) 1.95210e35 1.60242 0.801212 0.598381i \(-0.204189\pi\)
0.801212 + 0.598381i \(0.204189\pi\)
\(642\) 5.21934e34i 0.420173i
\(643\) 5.50965e34i 0.434998i −0.976061 0.217499i \(-0.930210\pi\)
0.976061 0.217499i \(-0.0697899\pi\)
\(644\) 1.89346e34 0.146617
\(645\) 2.52799e33 + 4.57497e33i 0.0191990 + 0.0347449i
\(646\) 2.62973e34 0.195887
\(647\) 1.62013e35i 1.18371i 0.806045 + 0.591855i \(0.201604\pi\)
−0.806045 + 0.591855i \(0.798396\pi\)
\(648\) 5.78080e34i 0.414286i
\(649\) −1.03854e35 −0.730070
\(650\) 5.32165e34 8.46620e34i 0.366969 0.583810i
\(651\) −6.08178e34 −0.411404
\(652\) 3.17688e34i 0.210817i
\(653\) 6.88298e34i 0.448086i 0.974579 + 0.224043i \(0.0719256\pi\)
−0.974579 + 0.224043i \(0.928074\pi\)
\(654\) −2.21544e35 −1.41494
\(655\) −8.51149e34 1.54034e35i −0.533322 0.965165i
\(656\) 3.19495e34 0.196411
\(657\) 5.03972e34i 0.303976i
\(658\) 5.23562e34i 0.309845i
\(659\) 8.31458e34 0.482806 0.241403 0.970425i \(-0.422392\pi\)
0.241403 + 0.970425i \(0.422392\pi\)
\(660\) 4.84741e34 2.67854e34i 0.276192 0.152616i
\(661\) −9.81505e34 −0.548749 −0.274375 0.961623i \(-0.588471\pi\)
−0.274375 + 0.961623i \(0.588471\pi\)
\(662\) 1.22798e35i 0.673702i
\(663\) 1.14684e35i 0.617424i
\(664\) −1.17686e35 −0.621761
\(665\) −2.59194e34 + 1.43223e34i −0.134386 + 0.0742579i
\(666\) −3.64788e34 −0.185615
\(667\) 1.87094e35i 0.934302i
\(668\) 4.67702e34i 0.229226i
\(669\) 2.62951e35 1.26488
\(670\) −6.33080e34 1.14570e35i −0.298898 0.540923i
\(671\) −1.75176e34 −0.0811788
\(672\) 1.36373e34i 0.0620317i
\(673\) 1.38294e34i 0.0617470i −0.999523 0.0308735i \(-0.990171\pi\)
0.999523 0.0308735i \(-0.00982891\pi\)
\(674\) 9.22512e34 0.404318
\(675\) −1.69491e35 1.06538e35i −0.729205 0.458361i
\(676\) −5.80074e33 −0.0244991
\(677\) 3.23088e35i 1.33956i 0.742559 + 0.669780i \(0.233612\pi\)
−0.742559 + 0.669780i \(0.766388\pi\)
\(678\) 7.58020e34i 0.308538i
\(679\) 1.31564e34 0.0525732
\(680\) −2.49804e34 4.52076e34i −0.0980028 0.177358i
\(681\) −4.94551e35 −1.90490
\(682\) 1.25238e35i 0.473620i
\(683\) 4.94645e35i 1.83669i −0.395785 0.918343i \(-0.629527\pi\)
0.395785 0.918343i \(-0.370473\pi\)
\(684\) −1.46045e34 −0.0532459
\(685\) −2.68344e35 + 1.48279e35i −0.960639 + 0.530821i
\(686\) 1.21349e35 0.426564
\(687\) 4.99365e35i 1.72369i
\(688\) 2.65040e33i 0.00898371i
\(689\) 5.01182e34 0.166823
\(690\) 1.93079e35 1.06690e35i 0.631135 0.348747i
\(691\) −3.23399e35 −1.03816 −0.519079 0.854726i \(-0.673725\pi\)
−0.519079 + 0.854726i \(0.673725\pi\)
\(692\) 2.59328e35i 0.817565i
\(693\) 1.29132e34i 0.0399824i
\(694\) −7.27017e34 −0.221081
\(695\) −1.96565e35 3.55728e35i −0.587079 1.06245i
\(696\) −1.34751e35 −0.395292
\(697\) 1.56276e35i 0.450279i
\(698\) 2.86372e35i 0.810472i
\(699\) 2.98308e35 0.829279
\(700\) 4.92429e34 + 3.09529e34i 0.134468 + 0.0845232i
\(701\) 3.02063e35 0.810256 0.405128 0.914260i \(-0.367227\pi\)
0.405128 + 0.914260i \(0.367227\pi\)
\(702\) 2.25394e35i 0.593922i
\(703\) 2.22475e35i 0.575890i
\(704\) 2.80823e34 0.0714127
\(705\) 2.95009e35 + 5.33885e35i 0.737007 + 1.33378i
\(706\) 2.45317e35 0.602100
\(707\) 1.40562e35i 0.338941i
\(708\) 2.97935e35i 0.705840i
\(709\) 4.34959e35 1.01244 0.506222 0.862403i \(-0.331042\pi\)
0.506222 + 0.862403i \(0.331042\pi\)
\(710\) 4.44712e35 2.45735e35i 1.01707 0.562001i
\(711\) −1.74569e35 −0.392281
\(712\) 1.99170e35i 0.439768i
\(713\) 4.98839e35i 1.08228i
\(714\) 6.67049e34 0.142210
\(715\) 2.32766e35 1.28620e35i 0.487635 0.269453i
\(716\) 2.49788e35 0.514232
\(717\) 2.69922e34i 0.0546071i
\(718\) 1.10621e35i 0.219929i
\(719\) 2.50423e35 0.489286 0.244643 0.969613i \(-0.421329\pi\)
0.244643 + 0.969613i \(0.421329\pi\)
\(720\) 1.38732e34 + 2.51066e34i 0.0266391 + 0.0482094i
\(721\) −1.98294e33 −0.00374213
\(722\) 2.92172e35i 0.541906i
\(723\) 6.57286e33i 0.0119819i
\(724\) −5.01917e35 −0.899291
\(725\) −3.05847e35 + 4.86572e35i −0.538617 + 0.856884i
\(726\) −3.03977e35 −0.526179
\(727\) 6.25077e34i 0.106354i −0.998585 0.0531770i \(-0.983065\pi\)
0.998585 0.0531770i \(-0.0169347\pi\)
\(728\) 6.54847e34i 0.109521i
\(729\) −4.21708e35 −0.693294
\(730\) 2.91967e35 + 5.28380e35i 0.471844 + 0.853908i
\(731\) 1.29640e34 0.0205955
\(732\) 5.02542e34i 0.0784845i
\(733\) 8.87732e35i 1.36296i 0.731838 + 0.681479i \(0.238663\pi\)
−0.731838 + 0.681479i \(0.761337\pi\)
\(734\) −6.91835e35 −1.04424
\(735\) 5.85833e35 3.23714e35i 0.869326 0.480364i
\(736\) 1.11856e35 0.163187
\(737\) 3.48113e35i 0.499318i
\(738\) 8.67896e34i 0.122395i
\(739\) 6.31553e35 0.875698 0.437849 0.899048i \(-0.355740\pi\)
0.437849 + 0.899048i \(0.355740\pi\)
\(740\) −3.82456e35 + 2.11334e35i −0.521416 + 0.288119i
\(741\) −3.88435e35 −0.520704
\(742\) 2.91508e34i 0.0384239i
\(743\) 1.51703e35i 0.196623i 0.995156 + 0.0983113i \(0.0313441\pi\)
−0.995156 + 0.0983113i \(0.968656\pi\)
\(744\) −3.59280e35 −0.457901
\(745\) −2.53059e35 4.57967e35i −0.317153 0.573958i
\(746\) 2.39032e35 0.294592
\(747\) 3.19689e35i 0.387455i
\(748\) 1.37360e35i 0.163716i
\(749\) −1.45774e35 −0.170867
\(750\) 6.76546e35 + 3.81652e34i 0.779887 + 0.0439948i
\(751\) 1.36888e36 1.55191 0.775954 0.630789i \(-0.217269\pi\)
0.775954 + 0.630789i \(0.217269\pi\)
\(752\) 3.09293e35i 0.344864i
\(753\) 5.15322e35i 0.565121i
\(754\) −6.47058e35 −0.697913
\(755\) −2.35221e35 4.25685e35i −0.249539 0.451597i
\(756\) 1.31099e35 0.136797
\(757\) 1.53344e36i 1.57386i −0.617040 0.786931i \(-0.711669\pi\)
0.617040 0.786931i \(-0.288331\pi\)
\(758\) 6.21540e35i 0.627486i
\(759\) 5.86659e35 0.582590
\(760\) −1.53119e35 + 8.46088e34i −0.149575 + 0.0826505i
\(761\) −1.14959e36 −1.10467 −0.552337 0.833621i \(-0.686264\pi\)
−0.552337 + 0.833621i \(0.686264\pi\)
\(762\) 1.89159e35i 0.178809i
\(763\) 6.18764e35i 0.575398i
\(764\) −1.89815e35 −0.173646
\(765\) 1.22805e35 6.78584e34i 0.110522 0.0610711i
\(766\) −8.31967e35 −0.736625
\(767\) 1.43065e36i 1.24621i
\(768\) 8.05623e34i 0.0690425i
\(769\) −1.22160e36 −1.03003 −0.515015 0.857181i \(-0.672214\pi\)
−0.515015 + 0.857181i \(0.672214\pi\)
\(770\) 7.48106e34 + 1.35386e35i 0.0620624 + 0.112316i
\(771\) −8.29879e35 −0.677384
\(772\) 1.15247e34i 0.00925582i
\(773\) 6.78971e35i 0.536547i 0.963343 + 0.268273i \(0.0864530\pi\)
−0.963343 + 0.268273i \(0.913547\pi\)
\(774\) −7.19971e33 −0.00559826
\(775\) −8.15464e35 + 1.29732e36i −0.623927 + 0.992603i
\(776\) 7.77212e34 0.0585151
\(777\) 5.64322e35i 0.418084i
\(778\) 1.63970e36i 1.19542i
\(779\) −5.29307e35 −0.379743
\(780\) 3.68983e35 + 6.67758e35i 0.260510 + 0.471451i
\(781\) 1.35123e36 0.938837
\(782\) 5.47126e35i 0.374113i
\(783\) 1.29539e36i 0.871725i
\(784\) 3.39389e35 0.224774
\(785\) −2.12584e36 + 1.17468e36i −1.38567 + 0.765680i
\(786\) 1.34266e36 0.861359
\(787\) 9.85723e35i 0.622402i −0.950344 0.311201i \(-0.899269\pi\)
0.950344 0.311201i \(-0.100731\pi\)
\(788\) 1.21171e36i 0.753044i
\(789\) 1.18199e36 0.723019
\(790\) −1.83024e36 + 1.01134e36i −1.10197 + 0.608916i
\(791\) 2.11712e35 0.125470
\(792\) 7.62847e34i 0.0445013i
\(793\) 2.41314e35i 0.138570i
\(794\) 3.97766e35 0.224839
\(795\) 1.64254e35 + 2.97255e35i 0.0913962 + 0.165402i
\(796\) 1.07550e36 0.589110
\(797\) 1.15299e36i 0.621722i 0.950455 + 0.310861i \(0.100617\pi\)
−0.950455 + 0.310861i \(0.899383\pi\)
\(798\) 2.25930e35i 0.119933i
\(799\) 1.51286e36 0.790613
\(800\) 2.90901e35 + 1.82854e35i 0.149665 + 0.0940760i
\(801\) −5.41038e35 −0.274045
\(802\) 6.02410e35i 0.300409i
\(803\) 1.60545e36i 0.788228i
\(804\) 9.98663e35 0.482746
\(805\) 2.97981e35 + 5.39263e35i 0.141821 + 0.256656i
\(806\) −1.72522e36 −0.808454
\(807\) 1.09697e36i 0.506147i
\(808\) 8.30366e35i 0.377248i
\(809\) 1.76491e36 0.789526 0.394763 0.918783i \(-0.370827\pi\)
0.394763 + 0.918783i \(0.370827\pi\)
\(810\) 1.64639e36 9.09746e35i 0.725220 0.400735i
\(811\) 3.26639e36 1.41680 0.708398 0.705814i \(-0.249418\pi\)
0.708398 + 0.705814i \(0.249418\pi\)
\(812\) 3.76355e35i 0.160749i
\(813\) 2.11356e36i 0.888962i
\(814\) −1.16207e36 −0.481311
\(815\) −9.04784e35 + 4.99957e35i −0.369041 + 0.203921i
\(816\) 3.94058e35 0.158283
\(817\) 4.39092e34i 0.0173692i
\(818\) 1.86635e36i 0.727072i
\(819\) −1.77887e35 −0.0682488
\(820\) 5.02801e35 + 9.09930e35i 0.189987 + 0.343823i
\(821\) 8.67287e35 0.322755 0.161378 0.986893i \(-0.448406\pi\)
0.161378 + 0.986893i \(0.448406\pi\)
\(822\) 2.33906e36i 0.857320i
\(823\) 1.77728e36i 0.641589i −0.947149 0.320794i \(-0.896050\pi\)
0.947149 0.320794i \(-0.103950\pi\)
\(824\) −1.17142e34 −0.00416507
\(825\) 1.52571e36 + 9.59026e35i 0.534316 + 0.335858i
\(826\) 8.32121e35 0.287036
\(827\) 1.78322e36i 0.605880i 0.953010 + 0.302940i \(0.0979682\pi\)
−0.953010 + 0.302940i \(0.902032\pi\)
\(828\) 3.03853e35i 0.101691i
\(829\) 2.64368e36 0.871521 0.435760 0.900063i \(-0.356479\pi\)
0.435760 + 0.900063i \(0.356479\pi\)
\(830\) −1.85207e36 3.35173e36i −0.601423 1.08841i
\(831\) −4.89981e36 −1.56735
\(832\) 3.86850e35i 0.121899i
\(833\) 1.66007e36i 0.515303i
\(834\) 3.10075e36 0.948180
\(835\) 1.33203e36 7.36040e35i 0.401266 0.221728i
\(836\) −4.65240e35 −0.138070
\(837\) 3.45383e36i 1.00980i
\(838\) 4.38619e36i 1.26339i
\(839\) −6.66972e36 −1.89271 −0.946354 0.323133i \(-0.895264\pi\)
−0.946354 + 0.323133i \(0.895264\pi\)
\(840\) −3.88395e35 + 2.14616e35i −0.108588 + 0.0600027i
\(841\) 8.84259e34 0.0243573
\(842\) 1.77820e36i 0.482593i
\(843\) 3.87947e36i 1.03735i
\(844\) 4.60469e35 0.121317
\(845\) −9.12884e34 1.65207e35i −0.0236977 0.0428863i
\(846\) −8.40185e35 −0.214904
\(847\) 8.48997e35i 0.213975i
\(848\) 1.72208e35i 0.0427666i
\(849\) −3.56349e36 −0.872026
\(850\) 8.94400e35 1.42290e36i 0.215673 0.343113i
\(851\) −4.62867e36 −1.09986
\(852\) 3.87638e36i 0.907678i
\(853\) 5.04065e36i 1.16312i −0.813504 0.581559i \(-0.802443\pi\)
0.813504 0.581559i \(-0.197557\pi\)
\(854\) 1.40358e35 0.0319164
\(855\) −2.29837e35 4.15941e35i −0.0515043 0.0932085i
\(856\) −8.61159e35 −0.190178
\(857\) 1.92537e36i 0.419038i −0.977805 0.209519i \(-0.932810\pi\)
0.977805 0.209519i \(-0.0671899\pi\)
\(858\) 2.02894e36i 0.435189i
\(859\) −4.40642e36 −0.931474 −0.465737 0.884923i \(-0.654211\pi\)
−0.465737 + 0.884923i \(0.654211\pi\)
\(860\) −7.54841e34 + 4.17103e34i −0.0157262 + 0.00868986i
\(861\) −1.34262e36 −0.275686
\(862\) 3.06940e36i 0.621172i
\(863\) 8.01223e36i 1.59815i −0.601229 0.799077i \(-0.705322\pi\)
0.601229 0.799077i \(-0.294678\pi\)
\(864\) 7.74462e35 0.152257
\(865\) 7.38572e36 4.08113e36i 1.43117 0.790823i
\(866\) 1.27139e36 0.242831
\(867\) 3.94033e36i 0.741812i
\(868\) 1.00346e36i 0.186209i
\(869\) −5.56106e36 −1.01721
\(870\) −2.12063e36 3.83775e36i −0.382362 0.691969i
\(871\) 4.79545e36 0.852319
\(872\) 3.65534e36i 0.640430i
\(873\) 2.11127e35i 0.0364641i
\(874\) −1.85312e36 −0.315508
\(875\) −1.06594e35 + 1.88957e36i −0.0178909 + 0.317148i
\(876\) −4.60569e36 −0.762068
\(877\) 4.46078e36i 0.727639i −0.931469 0.363820i \(-0.881472\pi\)
0.931469 0.363820i \(-0.118528\pi\)
\(878\) 1.61379e36i 0.259518i
\(879\) 1.02861e36 0.163075
\(880\) 4.41942e35 + 7.99793e35i 0.0690768 + 0.125010i
\(881\) 3.24157e36 0.499525 0.249762 0.968307i \(-0.419648\pi\)
0.249762 + 0.968307i \(0.419648\pi\)
\(882\) 9.21937e35i 0.140070i
\(883\) 4.92118e35i 0.0737157i 0.999321 + 0.0368579i \(0.0117349\pi\)
−0.999321 + 0.0368579i \(0.988265\pi\)
\(884\) 1.89221e36 0.279458
\(885\) 8.48528e36 4.68872e36i 1.23559 0.682752i
\(886\) −5.27831e36 −0.757833
\(887\) 1.07566e37i 1.52276i 0.648306 + 0.761380i \(0.275478\pi\)
−0.648306 + 0.761380i \(0.724522\pi\)
\(888\) 3.33372e36i 0.465337i
\(889\) 5.28314e35 0.0727143
\(890\) −5.67242e36 + 3.13441e36i −0.769827 + 0.425384i
\(891\) 5.00244e36 0.669439
\(892\) 4.33853e36i 0.572508i
\(893\) 5.12407e36i 0.666763i
\(894\) 3.99192e36 0.512228
\(895\) 3.93101e36 + 7.11404e36i 0.497412 + 0.900178i
\(896\) −2.25007e35 −0.0280767
\(897\) 8.08154e36i 0.994463i
\(898\) 1.08453e37i 1.31609i
\(899\) 9.91520e36 1.18660
\(900\) −4.96716e35 + 7.90223e35i −0.0586241 + 0.0932650i
\(901\) 8.42327e35 0.0980439
\(902\) 2.76476e36i 0.317377i
\(903\) 1.11378e35i 0.0126097i
\(904\) 1.25069e36 0.139651
\(905\) −7.89886e36 1.42947e37i −0.869875 1.57423i
\(906\) 3.71053e36 0.403026
\(907\) 5.76079e35i 0.0617151i 0.999524 + 0.0308575i \(0.00982381\pi\)
−0.999524 + 0.0308575i \(0.990176\pi\)
\(908\) 8.15978e36i 0.862194i
\(909\) 2.25566e36 0.235085
\(910\) −1.86502e36 + 1.03056e36i −0.191720 + 0.105939i
\(911\) −2.28818e36 −0.232012 −0.116006 0.993249i \(-0.537009\pi\)
−0.116006 + 0.993249i \(0.537009\pi\)
\(912\) 1.33468e36i 0.133487i
\(913\) 1.01840e37i 1.00469i
\(914\) 1.39890e37 1.36131
\(915\) 1.43125e36 7.90869e35i 0.137389 0.0759174i
\(916\) −8.23922e36 −0.780176
\(917\) 3.75000e36i 0.350279i
\(918\) 3.78816e36i 0.349056i
\(919\) −3.48143e36 −0.316457 −0.158228 0.987403i \(-0.550578\pi\)
−0.158228 + 0.987403i \(0.550578\pi\)
\(920\) 1.76032e36 + 3.18569e36i 0.157850 + 0.285664i
\(921\) 1.29915e37 1.14925
\(922\) 1.45797e37i 1.27237i
\(923\) 1.86139e37i 1.60256i
\(924\) −1.18011e36 −0.100236
\(925\) −1.20377e37 7.56661e36i −1.00872 0.634059i
\(926\) 9.72584e36 0.804063
\(927\) 3.18212e34i 0.00259549i
\(928\) 2.22331e36i 0.178917i
\(929\) 4.39451e36 0.348910 0.174455 0.984665i \(-0.444184\pi\)
0.174455 + 0.984665i \(0.444184\pi\)
\(930\) −5.65412e36 1.02324e37i −0.442923 0.801568i
\(931\) −5.62265e36 −0.434581
\(932\) 4.92190e36i 0.375348i
\(933\) 1.21788e37i 0.916394i
\(934\) 6.02292e36 0.447168
\(935\) 3.91206e36 2.16169e36i 0.286590 0.158361i
\(936\) −1.05086e36 −0.0759623
\(937\) 2.04937e37i 1.46176i 0.682508 + 0.730878i \(0.260889\pi\)
−0.682508 + 0.730878i \(0.739111\pi\)
\(938\) 2.78923e36i 0.196313i
\(939\) −2.44037e37 −1.69487
\(940\) −8.80876e36 + 4.86747e36i −0.603694 + 0.333584i
\(941\) −7.85670e36 −0.531337 −0.265668 0.964064i \(-0.585593\pi\)
−0.265668 + 0.964064i \(0.585593\pi\)
\(942\) 1.85301e37i 1.23664i
\(943\) 1.10124e37i 0.725249i
\(944\) 4.91574e36 0.319477
\(945\) 2.06315e36 + 3.73372e36i 0.132322 + 0.239466i
\(946\) −2.29353e35 −0.0145166
\(947\) 7.10609e36i 0.443870i −0.975061 0.221935i \(-0.928763\pi\)
0.975061 0.221935i \(-0.0712373\pi\)
\(948\) 1.59535e37i 0.983449i
\(949\) −2.21159e37 −1.34548
\(950\) −4.81937e36 3.02934e36i −0.289364 0.181887i
\(951\) 5.30772e36 0.314522
\(952\) 1.10059e36i 0.0643670i
\(953\) 1.19839e37i 0.691729i 0.938285 + 0.345864i \(0.112414\pi\)
−0.938285 + 0.345864i \(0.887586\pi\)
\(954\) −4.67796e35 −0.0266503
\(955\) −2.98719e36 5.40599e36i −0.167966 0.303972i
\(956\) −4.45354e35 −0.0247162
\(957\) 1.16608e37i 0.638745i
\(958\) 6.40392e36i 0.346240i
\(959\) 6.53289e36 0.348637
\(960\) −2.29444e36 + 1.26784e36i −0.120861 + 0.0667842i
\(961\) 7.20357e36 0.374546
\(962\) 1.60081e37i 0.821583i
\(963\) 2.33931e36i 0.118511i
\(964\) 1.08448e35 0.00542324
\(965\) 3.28228e35 1.81369e35i 0.0162026 0.00895307i
\(966\) −4.70055e36 −0.229052
\(967\) 3.63759e37i 1.74978i −0.484322 0.874890i \(-0.660934\pi\)
0.484322 0.874890i \(-0.339066\pi\)
\(968\) 5.01544e36i 0.238159i
\(969\) −6.52836e36 −0.306025
\(970\) 1.22313e36 + 2.21352e36i 0.0566011 + 0.102432i
\(971\) −2.46036e36 −0.112398 −0.0561990 0.998420i \(-0.517898\pi\)
−0.0561990 + 0.998420i \(0.517898\pi\)
\(972\) 4.80208e36i 0.216572i
\(973\) 8.66027e36i 0.385586i
\(974\) 1.71295e37 0.752934
\(975\) −1.32111e37 + 2.10175e37i −0.573299 + 0.912060i
\(976\) 8.29163e35 0.0355236
\(977\) 7.12253e36i 0.301268i 0.988590 + 0.150634i \(0.0481314\pi\)
−0.988590 + 0.150634i \(0.951869\pi\)
\(978\) 7.88666e36i 0.329350i
\(979\) −1.72353e37 −0.710614
\(980\) 5.34109e36 + 9.66589e36i 0.217422 + 0.393474i
\(981\) 9.92960e36 0.399088
\(982\) 1.69407e36i 0.0672260i
\(983\) 3.14802e37i 1.23344i 0.787183 + 0.616720i \(0.211539\pi\)
−0.787183 + 0.616720i \(0.788461\pi\)
\(984\) −7.93152e36 −0.306844
\(985\) 3.45098e37 1.90691e37i 1.31822 0.728412i
\(986\) −1.08750e37 −0.410173
\(987\) 1.29975e37i 0.484057i
\(988\) 6.40894e36i 0.235681i
\(989\) −9.13547e35 −0.0331724
\(990\) −2.17261e36 + 1.20052e36i −0.0779008 + 0.0430457i
\(991\) 2.04047e37 0.722454 0.361227 0.932478i \(-0.382358\pi\)
0.361227 + 0.932478i \(0.382358\pi\)
\(992\) 5.92790e36i 0.207255i
\(993\) 3.04849e37i 1.05249i
\(994\) −1.08266e37 −0.369115
\(995\) 1.69255e37 + 3.06305e37i 0.569840 + 1.03125i
\(996\) 2.92157e37 0.971348
\(997\) 1.06204e37i 0.348700i 0.984684 + 0.174350i \(0.0557825\pi\)
−0.984684 + 0.174350i \(0.944218\pi\)
\(998\) 2.12904e37i 0.690323i
\(999\) −3.20478e37 −1.02619
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.26.b.a.9.5 12
5.2 odd 4 50.26.a.l.1.5 6
5.3 odd 4 50.26.a.k.1.2 6
5.4 even 2 inner 10.26.b.a.9.8 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.b.a.9.5 12 1.1 even 1 trivial
10.26.b.a.9.8 yes 12 5.4 even 2 inner
50.26.a.k.1.2 6 5.3 odd 4
50.26.a.l.1.5 6 5.2 odd 4