Properties

Label 10.26.b.a.9.4
Level $10$
Weight $26$
Character 10.9
Analytic conductor $39.600$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,26,Mod(9,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.9");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5996779952\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 1406300109694 x^{10} + \cdots + 56\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{8}\cdot 5^{29} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 9.4
Root \(-58327.7i\) of defining polynomial
Character \(\chi\) \(=\) 10.9
Dual form 10.26.b.a.9.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4096.00i q^{2} -116655. i q^{3} -1.67772e7 q^{4} +(5.03737e8 - 2.10410e8i) q^{5} -4.77821e8 q^{6} -1.34370e10i q^{7} +6.87195e10i q^{8} +8.33680e11 q^{9} +(-8.61839e11 - 2.06331e12i) q^{10} +4.67882e11 q^{11} +1.95715e12i q^{12} +9.38695e13i q^{13} -5.50381e13 q^{14} +(-2.45455e13 - 5.87637e13i) q^{15} +2.81475e14 q^{16} +6.14184e14i q^{17} -3.41475e15i q^{18} +1.66661e16 q^{19} +(-8.45130e15 + 3.53009e15i) q^{20} -1.56750e15 q^{21} -1.91644e15i q^{22} +1.60865e17i q^{23} +8.01650e15 q^{24} +(2.09479e17 - 2.11982e17i) q^{25} +3.84489e17 q^{26} -1.96094e17i q^{27} +2.25436e17i q^{28} +1.05009e18 q^{29} +(-2.40696e17 + 1.00538e17i) q^{30} -3.00725e18 q^{31} -1.15292e18i q^{32} -5.45810e16i q^{33} +2.51570e18 q^{34} +(-2.82729e18 - 6.76873e18i) q^{35} -1.39868e19 q^{36} -3.36937e19i q^{37} -6.82643e19i q^{38} +1.09504e19 q^{39} +(1.44593e19 + 3.46165e19i) q^{40} +5.09874e19 q^{41} +6.42050e18i q^{42} -2.92822e20i q^{43} -7.84976e18 q^{44} +(4.19955e20 - 1.75415e20i) q^{45} +6.58901e20 q^{46} -9.77356e20i q^{47} -3.28356e19i q^{48} +1.16051e21 q^{49} +(-8.68280e20 - 8.58024e20i) q^{50} +7.16479e19 q^{51} -1.57487e21i q^{52} -5.26216e21i q^{53} -8.03202e20 q^{54} +(2.35689e20 - 9.84470e19i) q^{55} +9.23387e20 q^{56} -1.94419e21i q^{57} -4.30117e21i q^{58} -4.10935e20 q^{59} +(4.11804e20 + 9.85891e20i) q^{60} -5.44766e21 q^{61} +1.23177e22i q^{62} -1.12022e22i q^{63} -4.72237e21 q^{64} +(1.97511e22 + 4.72855e22i) q^{65} -2.23564e20 q^{66} +6.32396e22i q^{67} -1.03043e22i q^{68} +1.87657e22 q^{69} +(-2.77247e22 + 1.15806e22i) q^{70} -1.81308e22 q^{71} +5.72901e22i q^{72} +3.48574e23i q^{73} -1.38010e23 q^{74} +(-2.47289e22 - 2.44368e22i) q^{75} -2.79610e23 q^{76} -6.28695e21i q^{77} -4.48528e22i q^{78} -3.43193e23 q^{79} +(1.41789e23 - 5.92251e22i) q^{80} +6.83492e23 q^{81} -2.08844e23i q^{82} -6.85739e23i q^{83} +2.62984e22 q^{84} +(1.29230e23 + 3.09387e23i) q^{85} -1.19940e24 q^{86} -1.22499e23i q^{87} +3.21526e22i q^{88} +4.29595e24 q^{89} +(-7.18498e23 - 1.72014e24i) q^{90} +1.26133e24 q^{91} -2.69886e24i q^{92} +3.50812e23i q^{93} -4.00325e24 q^{94} +(8.39532e24 - 3.50671e24i) q^{95} -1.34495e23 q^{96} -2.90151e24i q^{97} -4.75347e24i q^{98} +3.90064e23 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 201326592 q^{4} - 490295340 q^{5} - 6565199872 q^{6} - 1082937564236 q^{9} + 1636528619520 q^{10} + 19723089228624 q^{11} + 278591122243584 q^{14} - 449884766537680 q^{15} + 33\!\cdots\!72 q^{16}+ \cdots + 41\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00i 0.707107i
\(3\) 116655.i 0.126733i −0.997990 0.0633664i \(-0.979816\pi\)
0.997990 0.0633664i \(-0.0201837\pi\)
\(4\) −1.67772e7 −0.500000
\(5\) 5.03737e8 2.10410e8i 0.922739 0.385426i
\(6\) −4.77821e8 −0.0896137
\(7\) 1.34370e10i 0.366926i −0.983027 0.183463i \(-0.941269\pi\)
0.983027 0.183463i \(-0.0587307\pi\)
\(8\) 6.87195e10i 0.353553i
\(9\) 8.33680e11 0.983939
\(10\) −8.61839e11 2.06331e12i −0.272537 0.652475i
\(11\) 4.67882e11 0.0449498 0.0224749 0.999747i \(-0.492845\pi\)
0.0224749 + 0.999747i \(0.492845\pi\)
\(12\) 1.95715e12i 0.0633664i
\(13\) 9.38695e13i 1.11746i 0.829349 + 0.558731i \(0.188711\pi\)
−0.829349 + 0.558731i \(0.811289\pi\)
\(14\) −5.50381e13 −0.259456
\(15\) −2.45455e13 5.87637e13i −0.0488462 0.116941i
\(16\) 2.81475e14 0.250000
\(17\) 6.14184e14i 0.255674i 0.991795 + 0.127837i \(0.0408035\pi\)
−0.991795 + 0.127837i \(0.959197\pi\)
\(18\) 3.41475e15i 0.695750i
\(19\) 1.66661e16 1.72748 0.863741 0.503936i \(-0.168115\pi\)
0.863741 + 0.503936i \(0.168115\pi\)
\(20\) −8.45130e15 + 3.53009e15i −0.461369 + 0.192713i
\(21\) −1.56750e15 −0.0465016
\(22\) 1.91644e15i 0.0317843i
\(23\) 1.60865e17i 1.53060i 0.643673 + 0.765301i \(0.277410\pi\)
−0.643673 + 0.765301i \(0.722590\pi\)
\(24\) 8.01650e15 0.0448068
\(25\) 2.09479e17 2.11982e17i 0.702894 0.711295i
\(26\) 3.84489e17 0.790165
\(27\) 1.96094e17i 0.251430i
\(28\) 2.25436e17i 0.183463i
\(29\) 1.05009e18 0.551126 0.275563 0.961283i \(-0.411136\pi\)
0.275563 + 0.961283i \(0.411136\pi\)
\(30\) −2.40696e17 + 1.00538e17i −0.0826900 + 0.0345395i
\(31\) −3.00725e18 −0.685722 −0.342861 0.939386i \(-0.611396\pi\)
−0.342861 + 0.939386i \(0.611396\pi\)
\(32\) 1.15292e18i 0.176777i
\(33\) 5.45810e16i 0.00569662i
\(34\) 2.51570e18 0.180789
\(35\) −2.82729e18 6.76873e18i −0.141423 0.338577i
\(36\) −1.39868e19 −0.491969
\(37\) 3.36937e19i 0.841449i −0.907189 0.420724i \(-0.861776\pi\)
0.907189 0.420724i \(-0.138224\pi\)
\(38\) 6.82643e19i 1.22151i
\(39\) 1.09504e19 0.141619
\(40\) 1.44593e19 + 3.46165e19i 0.136269 + 0.326237i
\(41\) 5.09874e19 0.352911 0.176455 0.984309i \(-0.443537\pi\)
0.176455 + 0.984309i \(0.443537\pi\)
\(42\) 6.42050e18i 0.0328816i
\(43\) 2.92822e20i 1.11750i −0.829335 0.558751i \(-0.811281\pi\)
0.829335 0.558751i \(-0.188719\pi\)
\(44\) −7.84976e18 −0.0224749
\(45\) 4.19955e20 1.75415e20i 0.907918 0.379236i
\(46\) 6.58901e20 1.08230
\(47\) 9.77356e20i 1.22696i −0.789711 0.613479i \(-0.789770\pi\)
0.789711 0.613479i \(-0.210230\pi\)
\(48\) 3.28356e19i 0.0316832i
\(49\) 1.16051e21 0.865365
\(50\) −8.68280e20 8.58024e20i −0.502962 0.497021i
\(51\) 7.16479e19 0.0324023
\(52\) 1.57487e21i 0.558731i
\(53\) 5.26216e21i 1.47135i −0.677335 0.735675i \(-0.736865\pi\)
0.677335 0.735675i \(-0.263135\pi\)
\(54\) −8.03202e20 −0.177788
\(55\) 2.35689e20 9.84470e19i 0.0414769 0.0173248i
\(56\) 9.23387e20 0.129728
\(57\) 1.94419e21i 0.218929i
\(58\) 4.30117e21i 0.389705i
\(59\) −4.10935e20 −0.0300693 −0.0150346 0.999887i \(-0.504786\pi\)
−0.0150346 + 0.999887i \(0.504786\pi\)
\(60\) 4.11804e20 + 9.85891e20i 0.0244231 + 0.0584707i
\(61\) −5.44766e21 −0.262777 −0.131388 0.991331i \(-0.541943\pi\)
−0.131388 + 0.991331i \(0.541943\pi\)
\(62\) 1.23177e22i 0.484879i
\(63\) 1.12022e22i 0.361032i
\(64\) −4.72237e21 −0.125000
\(65\) 1.97511e22 + 4.72855e22i 0.430699 + 1.03113i
\(66\) −2.23564e20 −0.00402812
\(67\) 6.32396e22i 0.944178i 0.881551 + 0.472089i \(0.156500\pi\)
−0.881551 + 0.472089i \(0.843500\pi\)
\(68\) 1.03043e22i 0.127837i
\(69\) 1.87657e22 0.193978
\(70\) −2.77247e22 + 1.15806e22i −0.239410 + 0.100001i
\(71\) −1.81308e22 −0.131126 −0.0655628 0.997848i \(-0.520884\pi\)
−0.0655628 + 0.997848i \(0.520884\pi\)
\(72\) 5.72901e22i 0.347875i
\(73\) 3.48574e23i 1.78139i 0.454603 + 0.890694i \(0.349781\pi\)
−0.454603 + 0.890694i \(0.650219\pi\)
\(74\) −1.38010e23 −0.594994
\(75\) −2.47289e22 2.44368e22i −0.0901445 0.0890797i
\(76\) −2.79610e23 −0.863741
\(77\) 6.28695e21i 0.0164932i
\(78\) 4.48528e22i 0.100140i
\(79\) −3.43193e23 −0.653432 −0.326716 0.945123i \(-0.605942\pi\)
−0.326716 + 0.945123i \(0.605942\pi\)
\(80\) 1.41789e23 5.92251e22i 0.230685 0.0963565i
\(81\) 6.83492e23 0.952074
\(82\) 2.08844e23i 0.249545i
\(83\) 6.85739e23i 0.704178i −0.935967 0.352089i \(-0.885471\pi\)
0.935967 0.352089i \(-0.114529\pi\)
\(84\) 2.62984e22 0.0232508
\(85\) 1.29230e23 + 3.09387e23i 0.0985435 + 0.235920i
\(86\) −1.19940e24 −0.790194
\(87\) 1.22499e23i 0.0698458i
\(88\) 3.21526e22i 0.0158922i
\(89\) 4.29595e24 1.84367 0.921837 0.387579i \(-0.126688\pi\)
0.921837 + 0.387579i \(0.126688\pi\)
\(90\) −7.18498e23 1.72014e24i −0.268160 0.641995i
\(91\) 1.26133e24 0.410025
\(92\) 2.69886e24i 0.765301i
\(93\) 3.50812e23i 0.0869035i
\(94\) −4.00325e24 −0.867590
\(95\) 8.39532e24 3.50671e24i 1.59401 0.665816i
\(96\) −1.34495e23 −0.0224034
\(97\) 2.90151e24i 0.424598i −0.977205 0.212299i \(-0.931905\pi\)
0.977205 0.212299i \(-0.0680951\pi\)
\(98\) 4.75347e24i 0.611906i
\(99\) 3.90064e23 0.0442279
\(100\) −3.51447e24 + 3.55648e24i −0.351447 + 0.355648i
\(101\) −8.46099e24 −0.747144 −0.373572 0.927601i \(-0.621867\pi\)
−0.373572 + 0.927601i \(0.621867\pi\)
\(102\) 2.93470e23i 0.0229119i
\(103\) 1.06290e25i 0.734562i 0.930110 + 0.367281i \(0.119711\pi\)
−0.930110 + 0.367281i \(0.880289\pi\)
\(104\) −6.45066e24 −0.395082
\(105\) −7.89610e23 + 3.29818e23i −0.0429088 + 0.0179229i
\(106\) −2.15538e25 −1.04040
\(107\) 2.28121e25i 0.979193i 0.871949 + 0.489597i \(0.162856\pi\)
−0.871949 + 0.489597i \(0.837144\pi\)
\(108\) 3.28991e24i 0.125715i
\(109\) 3.17871e25 1.08248 0.541240 0.840868i \(-0.317955\pi\)
0.541240 + 0.840868i \(0.317955\pi\)
\(110\) −4.03239e23 9.65384e23i −0.0122505 0.0293286i
\(111\) −3.93056e24 −0.106639
\(112\) 3.78219e24i 0.0917314i
\(113\) 9.52597e24i 0.206742i −0.994643 0.103371i \(-0.967037\pi\)
0.994643 0.103371i \(-0.0329629\pi\)
\(114\) −7.96340e24 −0.154806
\(115\) 3.38475e25 + 8.10334e25i 0.589934 + 1.41235i
\(116\) −1.76176e25 −0.275563
\(117\) 7.82571e25i 1.09951i
\(118\) 1.68319e24i 0.0212622i
\(119\) 8.25281e24 0.0938134
\(120\) 4.03821e24 1.68675e24i 0.0413450 0.0172697i
\(121\) −1.08128e26 −0.997980
\(122\) 2.23136e25i 0.185811i
\(123\) 5.94796e24i 0.0447254i
\(124\) 5.04532e25 0.342861
\(125\) 6.09189e25 1.50860e26i 0.374435 0.927253i
\(126\) −4.58842e25 −0.255289
\(127\) 2.95859e26i 1.49121i −0.666390 0.745604i \(-0.732161\pi\)
0.666390 0.745604i \(-0.267839\pi\)
\(128\) 1.93428e25i 0.0883883i
\(129\) −3.41593e25 −0.141624
\(130\) 1.93682e26 8.09004e25i 0.729115 0.304550i
\(131\) −2.19768e26 −0.751749 −0.375874 0.926671i \(-0.622658\pi\)
−0.375874 + 0.926671i \(0.622658\pi\)
\(132\) 9.15717e23i 0.00284831i
\(133\) 2.23943e26i 0.633857i
\(134\) 2.59029e26 0.667635
\(135\) −4.12601e25 9.87799e25i −0.0969078 0.232004i
\(136\) −4.22064e25 −0.0903945
\(137\) 3.42423e25i 0.0669200i −0.999440 0.0334600i \(-0.989347\pi\)
0.999440 0.0334600i \(-0.0106526\pi\)
\(138\) 7.68644e25i 0.137163i
\(139\) 2.79093e26 0.455055 0.227528 0.973772i \(-0.426936\pi\)
0.227528 + 0.973772i \(0.426936\pi\)
\(140\) 4.74340e25 + 1.13561e26i 0.0707114 + 0.169288i
\(141\) −1.14014e26 −0.155496
\(142\) 7.42638e25i 0.0927199i
\(143\) 4.39198e25i 0.0502297i
\(144\) 2.34660e26 0.245985
\(145\) 5.28969e26 2.20949e26i 0.508546 0.212418i
\(146\) 1.42776e27 1.25963
\(147\) 1.35380e26i 0.109670i
\(148\) 5.65287e26i 0.420724i
\(149\) −1.42906e27 −0.977739 −0.488870 0.872357i \(-0.662591\pi\)
−0.488870 + 0.872357i \(0.662591\pi\)
\(150\) −1.00093e26 + 1.01290e26i −0.0629889 + 0.0637418i
\(151\) −2.51226e27 −1.45496 −0.727482 0.686127i \(-0.759310\pi\)
−0.727482 + 0.686127i \(0.759310\pi\)
\(152\) 1.14528e27i 0.610757i
\(153\) 5.12033e26i 0.251568i
\(154\) −2.57513e25 −0.0116625
\(155\) −1.51486e27 + 6.32755e26i −0.632742 + 0.264295i
\(156\) −1.83717e26 −0.0708096
\(157\) 3.34741e27i 1.19114i 0.803302 + 0.595571i \(0.203074\pi\)
−0.803302 + 0.595571i \(0.796926\pi\)
\(158\) 1.40572e27i 0.462046i
\(159\) −6.13860e26 −0.186468
\(160\) −2.42586e26 5.80769e26i −0.0681343 0.163119i
\(161\) 2.16154e27 0.561617
\(162\) 2.79958e27i 0.673218i
\(163\) 8.42668e26i 0.187634i −0.995589 0.0938170i \(-0.970093\pi\)
0.995589 0.0938170i \(-0.0299069\pi\)
\(164\) −8.55426e26 −0.176455
\(165\) −1.14844e25 2.74945e25i −0.00219563 0.00525649i
\(166\) −2.80879e27 −0.497929
\(167\) 3.08789e27i 0.507815i 0.967229 + 0.253907i \(0.0817159\pi\)
−0.967229 + 0.253907i \(0.918284\pi\)
\(168\) 1.07718e26i 0.0164408i
\(169\) −1.75507e27 −0.248720
\(170\) 1.26725e27 5.29327e26i 0.166821 0.0696808i
\(171\) 1.38942e28 1.69974
\(172\) 4.91274e27i 0.558751i
\(173\) 9.76292e27i 1.03277i −0.856357 0.516385i \(-0.827277\pi\)
0.856357 0.516385i \(-0.172723\pi\)
\(174\) −5.01754e26 −0.0493885
\(175\) −2.84842e27 2.81477e27i −0.260992 0.257910i
\(176\) 1.31697e26 0.0112375
\(177\) 4.79378e25i 0.00381077i
\(178\) 1.75962e28i 1.30367i
\(179\) 1.48035e28 1.02259 0.511294 0.859406i \(-0.329166\pi\)
0.511294 + 0.859406i \(0.329166\pi\)
\(180\) −7.04568e27 + 2.94297e27i −0.453959 + 0.189618i
\(181\) 1.20192e28 0.722591 0.361295 0.932451i \(-0.382335\pi\)
0.361295 + 0.932451i \(0.382335\pi\)
\(182\) 5.16640e27i 0.289932i
\(183\) 6.35499e26i 0.0333025i
\(184\) −1.10545e28 −0.541150
\(185\) −7.08949e27 1.69728e28i −0.324316 0.776437i
\(186\) 1.43693e27 0.0614501
\(187\) 2.87366e26i 0.0114925i
\(188\) 1.63973e28i 0.613479i
\(189\) −2.63493e27 −0.0922563
\(190\) −1.43635e28 3.43872e28i −0.470803 1.12714i
\(191\) 8.66884e27 0.266099 0.133050 0.991109i \(-0.457523\pi\)
0.133050 + 0.991109i \(0.457523\pi\)
\(192\) 5.50890e26i 0.0158416i
\(193\) 1.60225e28i 0.431782i 0.976417 + 0.215891i \(0.0692657\pi\)
−0.976417 + 0.215891i \(0.930734\pi\)
\(194\) −1.18846e28 −0.300236
\(195\) 5.51612e27 2.30407e27i 0.130677 0.0545837i
\(196\) −1.94702e28 −0.432683
\(197\) 6.69730e28i 1.39660i 0.715805 + 0.698300i \(0.246060\pi\)
−0.715805 + 0.698300i \(0.753940\pi\)
\(198\) 1.59770e27i 0.0312738i
\(199\) −1.81836e28 −0.334208 −0.167104 0.985939i \(-0.553442\pi\)
−0.167104 + 0.985939i \(0.553442\pi\)
\(200\) 1.45673e28 + 1.43953e28i 0.251481 + 0.248510i
\(201\) 7.37724e27 0.119658
\(202\) 3.46562e28i 0.528310i
\(203\) 1.41101e28i 0.202222i
\(204\) −1.20205e27 −0.0162012
\(205\) 2.56842e28 1.07283e28i 0.325644 0.136021i
\(206\) 4.35365e28 0.519414
\(207\) 1.34110e29i 1.50602i
\(208\) 2.64219e28i 0.279365i
\(209\) 7.79776e27 0.0776500
\(210\) 1.35094e27 + 3.23424e27i 0.0126734 + 0.0303411i
\(211\) −1.59042e29 −1.40598 −0.702992 0.711197i \(-0.748153\pi\)
−0.702992 + 0.711197i \(0.748153\pi\)
\(212\) 8.82844e28i 0.735675i
\(213\) 2.11506e27i 0.0166179i
\(214\) 9.34384e28 0.692394
\(215\) −6.16127e28 1.47505e29i −0.430715 1.03116i
\(216\) 1.34755e28 0.0888940
\(217\) 4.04085e28i 0.251609i
\(218\) 1.30200e29i 0.765428i
\(219\) 4.06630e28 0.225761
\(220\) −3.95421e27 + 1.65167e27i −0.0207385 + 0.00866241i
\(221\) −5.76531e28 −0.285706
\(222\) 1.60996e28i 0.0754053i
\(223\) 3.74438e29i 1.65794i −0.559293 0.828970i \(-0.688927\pi\)
0.559293 0.828970i \(-0.311073\pi\)
\(224\) −1.54919e28 −0.0648639
\(225\) 1.74638e29 1.76726e29i 0.691604 0.699871i
\(226\) −3.90184e28 −0.146189
\(227\) 3.09492e29i 1.09730i 0.836052 + 0.548651i \(0.184858\pi\)
−0.836052 + 0.548651i \(0.815142\pi\)
\(228\) 3.26181e28i 0.109464i
\(229\) −4.36225e29 −1.38601 −0.693006 0.720932i \(-0.743714\pi\)
−0.693006 + 0.720932i \(0.743714\pi\)
\(230\) 3.31913e29 1.38639e29i 0.998679 0.417146i
\(231\) −7.33407e26 −0.00209024
\(232\) 7.21616e28i 0.194853i
\(233\) 2.03884e29i 0.521715i −0.965377 0.260858i \(-0.915995\pi\)
0.965377 0.260858i \(-0.0840054\pi\)
\(234\) 3.20541e29 0.777474
\(235\) −2.05645e29 4.92330e29i −0.472902 1.13216i
\(236\) 6.89435e27 0.0150346
\(237\) 4.00354e28i 0.0828113i
\(238\) 3.38035e28i 0.0663361i
\(239\) 7.19381e29 1.33963 0.669816 0.742527i \(-0.266373\pi\)
0.669816 + 0.742527i \(0.266373\pi\)
\(240\) −6.90893e27 1.65405e28i −0.0122115 0.0292353i
\(241\) −5.94932e28 −0.0998285 −0.0499142 0.998754i \(-0.515895\pi\)
−0.0499142 + 0.998754i \(0.515895\pi\)
\(242\) 4.42893e29i 0.705678i
\(243\) 2.45881e29i 0.372089i
\(244\) 9.13966e28 0.131388
\(245\) 5.84594e29 2.44184e29i 0.798506 0.333534i
\(246\) −2.43628e28 −0.0316256
\(247\) 1.56444e30i 1.93039i
\(248\) 2.06656e29i 0.242439i
\(249\) −7.99951e28 −0.0892425
\(250\) −6.17922e29 2.49524e29i −0.655667 0.264766i
\(251\) −1.11692e30 −1.12745 −0.563727 0.825961i \(-0.690633\pi\)
−0.563727 + 0.825961i \(0.690633\pi\)
\(252\) 1.87942e29i 0.180516i
\(253\) 7.52656e28i 0.0688003i
\(254\) −1.21184e30 −1.05444
\(255\) 3.60917e28 1.50754e28i 0.0298989 0.0124887i
\(256\) 7.92282e28 0.0625000
\(257\) 2.23332e30i 1.67798i 0.544146 + 0.838991i \(0.316854\pi\)
−0.544146 + 0.838991i \(0.683146\pi\)
\(258\) 1.39917e29i 0.100144i
\(259\) −4.52744e29 −0.308749
\(260\) −3.31368e29 7.93320e29i −0.215349 0.515563i
\(261\) 8.75438e29 0.542275
\(262\) 9.00168e29i 0.531566i
\(263\) 1.67388e30i 0.942489i 0.882003 + 0.471244i \(0.156195\pi\)
−0.882003 + 0.471244i \(0.843805\pi\)
\(264\) 3.75078e27 0.00201406
\(265\) −1.10721e30 2.65075e30i −0.567096 1.35767i
\(266\) −9.17270e29 −0.448205
\(267\) 5.01146e29i 0.233654i
\(268\) 1.06098e30i 0.472089i
\(269\) 1.51842e30 0.644895 0.322448 0.946587i \(-0.395494\pi\)
0.322448 + 0.946587i \(0.395494\pi\)
\(270\) −4.04602e29 + 1.69002e29i −0.164052 + 0.0685242i
\(271\) 3.73589e30 1.44637 0.723183 0.690657i \(-0.242678\pi\)
0.723183 + 0.690657i \(0.242678\pi\)
\(272\) 1.72877e29i 0.0639185i
\(273\) 1.47141e29i 0.0519637i
\(274\) −1.40256e29 −0.0473196
\(275\) 9.80113e28 9.91828e28i 0.0315949 0.0319726i
\(276\) −3.14837e29 −0.0969888
\(277\) 4.88475e30i 1.43829i 0.694863 + 0.719143i \(0.255465\pi\)
−0.694863 + 0.719143i \(0.744535\pi\)
\(278\) 1.14316e30i 0.321772i
\(279\) −2.50708e30 −0.674708
\(280\) 4.65144e29 1.94290e29i 0.119705 0.0500005i
\(281\) 4.07868e30 1.00390 0.501950 0.864896i \(-0.332616\pi\)
0.501950 + 0.864896i \(0.332616\pi\)
\(282\) 4.67001e29i 0.109952i
\(283\) 8.77909e30i 1.97751i −0.149537 0.988756i \(-0.547778\pi\)
0.149537 0.988756i \(-0.452222\pi\)
\(284\) 3.04184e29 0.0655628
\(285\) −4.09077e29 9.79360e29i −0.0843808 0.202014i
\(286\) 1.79896e29 0.0355177
\(287\) 6.85120e29i 0.129492i
\(288\) 9.61168e29i 0.173937i
\(289\) 5.39341e30 0.934631
\(290\) −9.05008e29 2.16666e30i −0.150203 0.359596i
\(291\) −3.38477e29 −0.0538105
\(292\) 5.84809e30i 0.890694i
\(293\) 4.02063e30i 0.586744i −0.955998 0.293372i \(-0.905222\pi\)
0.955998 0.293372i \(-0.0947775\pi\)
\(294\) −5.54518e29 −0.0775486
\(295\) −2.07003e29 + 8.64648e28i −0.0277461 + 0.0115895i
\(296\) 2.31542e30 0.297497
\(297\) 9.17489e28i 0.0113017i
\(298\) 5.85344e30i 0.691366i
\(299\) −1.51003e31 −1.71039
\(300\) 4.14882e29 + 4.09982e29i 0.0450722 + 0.0445399i
\(301\) −3.93467e30 −0.410040
\(302\) 1.02902e31i 1.02882i
\(303\) 9.87021e29i 0.0946877i
\(304\) 4.69108e30 0.431870
\(305\) −2.74419e30 + 1.14624e30i −0.242474 + 0.101281i
\(306\) 2.09729e30 0.177885
\(307\) 3.20834e29i 0.0261247i 0.999915 + 0.0130623i \(0.00415799\pi\)
−0.999915 + 0.0130623i \(0.995842\pi\)
\(308\) 1.05478e29i 0.00824662i
\(309\) 1.23993e30 0.0930932
\(310\) 2.59176e30 + 6.20487e30i 0.186885 + 0.447416i
\(311\) −1.26721e31 −0.877692 −0.438846 0.898562i \(-0.644613\pi\)
−0.438846 + 0.898562i \(0.644613\pi\)
\(312\) 7.52505e29i 0.0500699i
\(313\) 2.76579e31i 1.76813i 0.467361 + 0.884066i \(0.345205\pi\)
−0.467361 + 0.884066i \(0.654795\pi\)
\(314\) 1.37110e31 0.842265
\(315\) −2.35705e30 5.64296e30i −0.139151 0.333139i
\(316\) 5.75783e30 0.326716
\(317\) 8.12742e30i 0.443315i −0.975125 0.221657i \(-0.928853\pi\)
0.975125 0.221657i \(-0.0711466\pi\)
\(318\) 2.51437e30i 0.131853i
\(319\) 4.91318e29 0.0247730
\(320\) −2.37883e30 + 9.93633e29i −0.115342 + 0.0481783i
\(321\) 2.66116e30 0.124096
\(322\) 8.85368e30i 0.397123i
\(323\) 1.02360e31i 0.441672i
\(324\) −1.14671e31 −0.476037
\(325\) 1.98987e31 + 1.96636e31i 0.794845 + 0.785456i
\(326\) −3.45157e30 −0.132677
\(327\) 3.70814e30i 0.137186i
\(328\) 3.50383e30i 0.124773i
\(329\) −1.31328e31 −0.450203
\(330\) −1.12617e29 + 4.70400e28i −0.00371690 + 0.00155254i
\(331\) −3.24680e31 −1.03182 −0.515912 0.856642i \(-0.672547\pi\)
−0.515912 + 0.856642i \(0.672547\pi\)
\(332\) 1.15048e31i 0.352089i
\(333\) 2.80898e31i 0.827934i
\(334\) 1.26480e31 0.359079
\(335\) 1.33062e31 + 3.18561e31i 0.363911 + 0.871229i
\(336\) −4.41213e29 −0.0116254
\(337\) 6.16105e31i 1.56416i −0.623178 0.782080i \(-0.714159\pi\)
0.623178 0.782080i \(-0.285841\pi\)
\(338\) 7.18877e30i 0.175872i
\(339\) −1.11126e30 −0.0262010
\(340\) −2.16813e30 5.19065e30i −0.0492717 0.117960i
\(341\) −1.40704e30 −0.0308231
\(342\) 5.69106e31i 1.20189i
\(343\) 3.36139e31i 0.684451i
\(344\) 2.01226e31 0.395097
\(345\) 9.45299e30 3.94849e30i 0.178991 0.0747640i
\(346\) −3.99889e31 −0.730279
\(347\) 8.34408e31i 1.46981i −0.678172 0.734903i \(-0.737228\pi\)
0.678172 0.734903i \(-0.262772\pi\)
\(348\) 2.05519e30i 0.0349229i
\(349\) 1.07311e32 1.75924 0.879621 0.475676i \(-0.157796\pi\)
0.879621 + 0.475676i \(0.157796\pi\)
\(350\) −1.15293e31 + 1.16671e31i −0.182370 + 0.184550i
\(351\) 1.84073e31 0.280964
\(352\) 5.39431e29i 0.00794608i
\(353\) 1.05139e32i 1.49479i 0.664381 + 0.747394i \(0.268695\pi\)
−0.664381 + 0.747394i \(0.731305\pi\)
\(354\) 1.96353e29 0.00269462
\(355\) −9.13316e30 + 3.81490e30i −0.120995 + 0.0505393i
\(356\) −7.20741e31 −0.921837
\(357\) 9.62736e29i 0.0118892i
\(358\) 6.06350e31i 0.723079i
\(359\) −1.15543e32 −1.33064 −0.665321 0.746557i \(-0.731705\pi\)
−0.665321 + 0.746557i \(0.731705\pi\)
\(360\) 1.20544e31 + 2.88591e31i 0.134080 + 0.320998i
\(361\) 1.84682e32 1.98419
\(362\) 4.92305e31i 0.510949i
\(363\) 1.26137e31i 0.126477i
\(364\) −2.11616e31 −0.205013
\(365\) 7.33433e31 + 1.75589e32i 0.686594 + 1.64376i
\(366\) 2.60300e30 0.0235484
\(367\) 5.65157e31i 0.494133i −0.968999 0.247066i \(-0.920533\pi\)
0.968999 0.247066i \(-0.0794666\pi\)
\(368\) 4.52793e31i 0.382651i
\(369\) 4.25072e31 0.347242
\(370\) −6.95205e31 + 2.90386e31i −0.549024 + 0.229326i
\(371\) −7.07079e31 −0.539876
\(372\) 5.88565e30i 0.0434518i
\(373\) 1.41123e31i 0.100748i 0.998730 + 0.0503741i \(0.0160414\pi\)
−0.998730 + 0.0503741i \(0.983959\pi\)
\(374\) 1.17705e30 0.00812643
\(375\) −1.75986e31 7.10652e30i −0.117513 0.0474533i
\(376\) 6.71634e31 0.433795
\(377\) 9.85713e31i 0.615862i
\(378\) 1.07927e31i 0.0652350i
\(379\) −2.60316e32 −1.52234 −0.761169 0.648554i \(-0.775374\pi\)
−0.761169 + 0.648554i \(0.775374\pi\)
\(380\) −1.40850e32 + 5.88328e31i −0.797007 + 0.332908i
\(381\) −3.45135e31 −0.188985
\(382\) 3.55076e31i 0.188161i
\(383\) 2.22460e32i 1.14095i 0.821315 + 0.570475i \(0.193241\pi\)
−0.821315 + 0.570475i \(0.806759\pi\)
\(384\) 2.25644e30 0.0112017
\(385\) −1.32284e30 3.16697e30i −0.00635692 0.0152190i
\(386\) 6.56283e31 0.305316
\(387\) 2.44120e32i 1.09955i
\(388\) 4.86793e31i 0.212299i
\(389\) −2.83579e31 −0.119758 −0.0598789 0.998206i \(-0.519071\pi\)
−0.0598789 + 0.998206i \(0.519071\pi\)
\(390\) −9.43747e30 2.25940e31i −0.0385965 0.0924029i
\(391\) −9.88004e31 −0.391335
\(392\) 7.97499e31i 0.305953i
\(393\) 2.56371e31i 0.0952713i
\(394\) 2.74322e32 0.987545
\(395\) −1.72879e32 + 7.22113e31i −0.602947 + 0.251850i
\(396\) −6.54419e30 −0.0221139
\(397\) 1.97865e32i 0.647870i −0.946079 0.323935i \(-0.894994\pi\)
0.946079 0.323935i \(-0.105006\pi\)
\(398\) 7.44802e31i 0.236321i
\(399\) −2.61242e31 −0.0803306
\(400\) 5.89630e31 5.96678e31i 0.175723 0.177824i
\(401\) 5.91837e32 1.70961 0.854806 0.518947i \(-0.173676\pi\)
0.854806 + 0.518947i \(0.173676\pi\)
\(402\) 3.02172e31i 0.0846113i
\(403\) 2.82289e32i 0.766268i
\(404\) 1.41952e32 0.373572
\(405\) 3.44300e32 1.43814e32i 0.878516 0.366954i
\(406\) −5.77949e31 −0.142993
\(407\) 1.57647e31i 0.0378229i
\(408\) 4.92361e30i 0.0114560i
\(409\) −5.10098e32 −1.15110 −0.575549 0.817767i \(-0.695212\pi\)
−0.575549 + 0.817767i \(0.695212\pi\)
\(410\) −4.39429e31 1.05203e32i −0.0961813 0.230265i
\(411\) −3.99455e30 −0.00848097
\(412\) 1.78326e32i 0.367281i
\(413\) 5.52175e30i 0.0110332i
\(414\) 5.49313e32 1.06492
\(415\) −1.44286e32 3.45432e32i −0.271409 0.649772i
\(416\) 1.08224e32 0.197541
\(417\) 3.25577e31i 0.0576704i
\(418\) 3.19396e31i 0.0549068i
\(419\) −3.45646e32 −0.576709 −0.288354 0.957524i \(-0.593108\pi\)
−0.288354 + 0.957524i \(0.593108\pi\)
\(420\) 1.32475e31 5.53343e30i 0.0214544 0.00896146i
\(421\) 1.15256e31 0.0181191 0.00905955 0.999959i \(-0.497116\pi\)
0.00905955 + 0.999959i \(0.497116\pi\)
\(422\) 6.51435e32i 0.994181i
\(423\) 8.14803e32i 1.20725i
\(424\) 3.61613e32 0.520201
\(425\) 1.30196e32 + 1.28658e32i 0.181860 + 0.179712i
\(426\) 8.66328e30 0.0117507
\(427\) 7.32004e31i 0.0964196i
\(428\) 3.82724e32i 0.489597i
\(429\) 5.12349e30 0.00636575
\(430\) −6.04182e32 + 2.52366e32i −0.729142 + 0.304561i
\(431\) −1.12581e33 −1.31978 −0.659888 0.751364i \(-0.729396\pi\)
−0.659888 + 0.751364i \(0.729396\pi\)
\(432\) 5.51956e31i 0.0628576i
\(433\) 5.31109e32i 0.587604i −0.955866 0.293802i \(-0.905079\pi\)
0.955866 0.293802i \(-0.0949207\pi\)
\(434\) 1.65513e32 0.177914
\(435\) −2.57749e31 6.17071e31i −0.0269204 0.0644495i
\(436\) −5.33299e32 −0.541240
\(437\) 2.68098e33i 2.64409i
\(438\) 1.66556e32i 0.159637i
\(439\) −7.89847e32 −0.735760 −0.367880 0.929873i \(-0.619916\pi\)
−0.367880 + 0.929873i \(0.619916\pi\)
\(440\) 6.76523e30 + 1.61965e31i 0.00612525 + 0.0146643i
\(441\) 9.67498e32 0.851467
\(442\) 2.36147e32i 0.202025i
\(443\) 1.82758e33i 1.51995i 0.649953 + 0.759974i \(0.274788\pi\)
−0.649953 + 0.759974i \(0.725212\pi\)
\(444\) 6.59438e31 0.0533196
\(445\) 2.16403e33 9.03910e32i 1.70123 0.710600i
\(446\) −1.53370e33 −1.17234
\(447\) 1.66708e32i 0.123912i
\(448\) 6.34546e31i 0.0458657i
\(449\) 8.32692e31 0.0585336 0.0292668 0.999572i \(-0.490683\pi\)
0.0292668 + 0.999572i \(0.490683\pi\)
\(450\) −7.23868e32 7.15318e32i −0.494883 0.489038i
\(451\) 2.38561e31 0.0158633
\(452\) 1.59819e32i 0.103371i
\(453\) 2.93069e32i 0.184392i
\(454\) 1.26768e33 0.775909
\(455\) 6.35378e32 2.65396e32i 0.378346 0.158034i
\(456\) 1.33604e32 0.0774030
\(457\) 2.02366e33i 1.14074i 0.821389 + 0.570368i \(0.193199\pi\)
−0.821389 + 0.570368i \(0.806801\pi\)
\(458\) 1.78678e33i 0.980058i
\(459\) 1.20438e32 0.0642842
\(460\) −5.67867e32 1.35951e33i −0.294967 0.706173i
\(461\) −8.37646e32 −0.423447 −0.211724 0.977330i \(-0.567908\pi\)
−0.211724 + 0.977330i \(0.567908\pi\)
\(462\) 3.00404e30i 0.00147802i
\(463\) 3.37029e33i 1.61401i −0.590547 0.807003i \(-0.701088\pi\)
0.590547 0.807003i \(-0.298912\pi\)
\(464\) 2.95574e32 0.137782
\(465\) 7.38143e31 + 1.76717e32i 0.0334949 + 0.0801892i
\(466\) −8.35108e32 −0.368909
\(467\) 2.79564e33i 1.20232i 0.799128 + 0.601161i \(0.205295\pi\)
−0.799128 + 0.601161i \(0.794705\pi\)
\(468\) 1.31294e33i 0.549757i
\(469\) 8.49753e32 0.346443
\(470\) −2.01659e33 + 8.42324e32i −0.800559 + 0.334392i
\(471\) 3.90494e32 0.150957
\(472\) 2.82392e31i 0.0106311i
\(473\) 1.37006e32i 0.0502315i
\(474\) 1.63985e32 0.0585564
\(475\) 3.49119e33 3.53292e33i 1.21424 1.22875i
\(476\) −1.38459e32 −0.0469067
\(477\) 4.38696e33i 1.44772i
\(478\) 2.94659e33i 0.947263i
\(479\) −6.03192e33 −1.88913 −0.944565 0.328324i \(-0.893516\pi\)
−0.944565 + 0.328324i \(0.893516\pi\)
\(480\) −6.77499e31 + 2.82990e31i −0.0206725 + 0.00863486i
\(481\) 3.16281e33 0.940286
\(482\) 2.43684e32i 0.0705894i
\(483\) 2.52156e32i 0.0711754i
\(484\) 1.81409e33 0.498990
\(485\) −6.10507e32 1.46160e33i −0.163651 0.391793i
\(486\) −1.00713e33 −0.263107
\(487\) 2.63729e33i 0.671500i 0.941951 + 0.335750i \(0.108990\pi\)
−0.941951 + 0.335750i \(0.891010\pi\)
\(488\) 3.74360e32i 0.0929056i
\(489\) −9.83018e31 −0.0237794
\(490\) −1.00018e33 2.39450e33i −0.235844 0.564629i
\(491\) 4.59365e33 1.05594 0.527970 0.849263i \(-0.322953\pi\)
0.527970 + 0.849263i \(0.322953\pi\)
\(492\) 9.97902e31i 0.0223627i
\(493\) 6.44948e32i 0.140909i
\(494\) 6.40793e33 1.36499
\(495\) 1.96490e32 8.20733e31i 0.0408108 0.0170466i
\(496\) −8.46465e32 −0.171430
\(497\) 2.43624e32i 0.0481134i
\(498\) 3.27660e32i 0.0631040i
\(499\) −4.28804e33 −0.805382 −0.402691 0.915336i \(-0.631925\pi\)
−0.402691 + 0.915336i \(0.631925\pi\)
\(500\) −1.02205e33 + 2.53101e33i −0.187218 + 0.463626i
\(501\) 3.60219e32 0.0643569
\(502\) 4.57488e33i 0.797230i
\(503\) 1.27163e33i 0.216152i 0.994143 + 0.108076i \(0.0344690\pi\)
−0.994143 + 0.108076i \(0.965531\pi\)
\(504\) 7.69809e32 0.127644
\(505\) −4.26211e33 + 1.78028e33i −0.689418 + 0.287969i
\(506\) 3.08288e32 0.0486491
\(507\) 2.04739e32i 0.0315210i
\(508\) 4.96369e33i 0.745604i
\(509\) −8.49642e33 −1.24527 −0.622635 0.782512i \(-0.713938\pi\)
−0.622635 + 0.782512i \(0.713938\pi\)
\(510\) −6.17489e31 1.47832e32i −0.00883085 0.0211417i
\(511\) 4.68380e33 0.653637
\(512\) 3.24519e32i 0.0441942i
\(513\) 3.26812e33i 0.434341i
\(514\) 9.14768e33 1.18651
\(515\) 2.23645e33 + 5.35424e33i 0.283119 + 0.677809i
\(516\) 5.73098e32 0.0708122
\(517\) 4.57287e32i 0.0551515i
\(518\) 1.85444e33i 0.218319i
\(519\) −1.13890e33 −0.130886
\(520\) −3.24944e33 + 1.35728e33i −0.364558 + 0.152275i
\(521\) −1.16997e34 −1.28146 −0.640730 0.767767i \(-0.721368\pi\)
−0.640730 + 0.767767i \(0.721368\pi\)
\(522\) 3.58580e33i 0.383446i
\(523\) 2.58251e33i 0.269631i 0.990871 + 0.134816i \(0.0430442\pi\)
−0.990871 + 0.134816i \(0.956956\pi\)
\(524\) 3.68709e33 0.375874
\(525\) −3.28359e32 + 3.32283e32i −0.0326856 + 0.0330763i
\(526\) 6.85619e33 0.666440
\(527\) 1.84700e33i 0.175321i
\(528\) 1.53632e31i 0.00142415i
\(529\) −1.48316e34 −1.34274
\(530\) −1.08575e34 + 4.53514e33i −0.960019 + 0.400998i
\(531\) −3.42588e32 −0.0295863
\(532\) 3.75714e33i 0.316929i
\(533\) 4.78616e33i 0.394364i
\(534\) −2.05269e33 −0.165218
\(535\) 4.79989e33 + 1.14913e34i 0.377407 + 0.903539i
\(536\) −4.34579e33 −0.333817
\(537\) 1.72691e33i 0.129596i
\(538\) 6.21946e33i 0.456010i
\(539\) 5.42984e32 0.0388980
\(540\) 6.92230e32 + 1.65725e33i 0.0484539 + 0.116002i
\(541\) 8.08434e33 0.552941 0.276470 0.961022i \(-0.410835\pi\)
0.276470 + 0.961022i \(0.410835\pi\)
\(542\) 1.53022e34i 1.02274i
\(543\) 1.40210e33i 0.0915760i
\(544\) 7.08106e32 0.0451972
\(545\) 1.60123e34 6.68832e33i 0.998846 0.417216i
\(546\) −6.02689e32 −0.0367439
\(547\) 3.07411e34i 1.83180i −0.401408 0.915900i \(-0.631479\pi\)
0.401408 0.915900i \(-0.368521\pi\)
\(548\) 5.74491e32i 0.0334600i
\(549\) −4.54160e33 −0.258556
\(550\) −4.06253e32 4.01454e32i −0.0226080 0.0223410i
\(551\) 1.75009e34 0.952061
\(552\) 1.28957e33i 0.0685814i
\(553\) 4.61150e33i 0.239761i
\(554\) 2.00079e34 1.01702
\(555\) −1.97997e33 + 8.27028e32i −0.0984001 + 0.0411015i
\(556\) −4.68240e33 −0.227528
\(557\) 2.42852e34i 1.15385i −0.816796 0.576927i \(-0.804252\pi\)
0.816796 0.576927i \(-0.195748\pi\)
\(558\) 1.02690e34i 0.477091i
\(559\) 2.74871e34 1.24877
\(560\) −7.95810e32 1.90523e33i −0.0353557 0.0846442i
\(561\) 3.35228e31 0.00145648
\(562\) 1.67063e34i 0.709865i
\(563\) 2.54352e34i 1.05701i 0.848929 + 0.528507i \(0.177248\pi\)
−0.848929 + 0.528507i \(0.822752\pi\)
\(564\) 1.91284e33 0.0777480
\(565\) −2.00436e33 4.79858e33i −0.0796837 0.190769i
\(566\) −3.59592e34 −1.39831
\(567\) 9.18411e33i 0.349341i
\(568\) 1.24594e33i 0.0463599i
\(569\) −9.11823e33 −0.331900 −0.165950 0.986134i \(-0.553069\pi\)
−0.165950 + 0.986134i \(0.553069\pi\)
\(570\) −4.01146e33 + 1.67558e33i −0.142845 + 0.0596663i
\(571\) −7.94351e33 −0.276733 −0.138366 0.990381i \(-0.544185\pi\)
−0.138366 + 0.990381i \(0.544185\pi\)
\(572\) 7.36853e32i 0.0251148i
\(573\) 1.01127e33i 0.0337236i
\(574\) −2.80625e33 −0.0915646
\(575\) 3.41005e34 + 3.36977e34i 1.08871 + 1.07585i
\(576\) −3.93694e33 −0.122992
\(577\) 3.99407e33i 0.122101i 0.998135 + 0.0610503i \(0.0194450\pi\)
−0.998135 + 0.0610503i \(0.980555\pi\)
\(578\) 2.20914e34i 0.660884i
\(579\) 1.86912e33 0.0547210
\(580\) −8.87462e33 + 3.70691e33i −0.254273 + 0.106209i
\(581\) −9.21430e33 −0.258381
\(582\) 1.38640e33i 0.0380498i
\(583\) 2.46207e33i 0.0661369i
\(584\) −2.39538e34 −0.629816
\(585\) 1.64661e34 + 3.94210e34i 0.423781 + 1.01456i
\(586\) −1.64685e34 −0.414891
\(587\) 1.28546e34i 0.317017i −0.987358 0.158508i \(-0.949332\pi\)
0.987358 0.158508i \(-0.0506685\pi\)
\(588\) 2.27131e33i 0.0548351i
\(589\) −5.01190e34 −1.18457
\(590\) 3.54160e32 + 8.47885e32i 0.00819500 + 0.0196195i
\(591\) 7.81277e33 0.176995
\(592\) 9.48394e33i 0.210362i
\(593\) 1.35249e34i 0.293732i −0.989156 0.146866i \(-0.953081\pi\)
0.989156 0.146866i \(-0.0469186\pi\)
\(594\) −3.75804e32 −0.00799154
\(595\) 4.15725e33 1.73647e33i 0.0865653 0.0361581i
\(596\) 2.39757e34 0.488870
\(597\) 2.12122e33i 0.0423552i
\(598\) 6.18507e34i 1.20943i
\(599\) 4.11263e34 0.787561 0.393781 0.919204i \(-0.371167\pi\)
0.393781 + 0.919204i \(0.371167\pi\)
\(600\) 1.67929e33 1.69936e33i 0.0314944 0.0318709i
\(601\) −8.66879e34 −1.59231 −0.796155 0.605092i \(-0.793136\pi\)
−0.796155 + 0.605092i \(0.793136\pi\)
\(602\) 1.61164e34i 0.289942i
\(603\) 5.27216e34i 0.929013i
\(604\) 4.21487e34 0.727482
\(605\) −5.44681e34 + 2.27512e34i −0.920874 + 0.384647i
\(606\) 4.04284e33 0.0669543
\(607\) 1.06263e35i 1.72394i 0.506956 + 0.861972i \(0.330771\pi\)
−0.506956 + 0.861972i \(0.669229\pi\)
\(608\) 1.92147e34i 0.305378i
\(609\) −1.64602e33 −0.0256282
\(610\) 4.69500e33 + 1.12402e34i 0.0716165 + 0.171455i
\(611\) 9.17439e34 1.37108
\(612\) 8.59049e33i 0.125784i
\(613\) 3.14879e34i 0.451740i −0.974157 0.225870i \(-0.927478\pi\)
0.974157 0.225870i \(-0.0725224\pi\)
\(614\) 1.31414e33 0.0184729
\(615\) −1.25151e33 2.99621e33i −0.0172383 0.0412698i
\(616\) 4.32036e32 0.00583124
\(617\) 1.34862e35i 1.78371i −0.452320 0.891856i \(-0.649403\pi\)
0.452320 0.891856i \(-0.350597\pi\)
\(618\) 5.07877e33i 0.0658268i
\(619\) −2.48732e34 −0.315936 −0.157968 0.987444i \(-0.550494\pi\)
−0.157968 + 0.987444i \(0.550494\pi\)
\(620\) 2.54152e34 1.06159e34i 0.316371 0.132148i
\(621\) 3.15446e34 0.384840
\(622\) 5.19048e34i 0.620622i
\(623\) 5.77248e34i 0.676491i
\(624\) 3.08226e33 0.0354048
\(625\) −1.05528e33 8.88116e34i −0.0118814 0.999929i
\(626\) 1.13287e35 1.25026
\(627\) 9.09651e32i 0.00984080i
\(628\) 5.61603e34i 0.595571i
\(629\) 2.06941e34 0.215137
\(630\) −2.31136e34 + 9.65449e33i −0.235565 + 0.0983948i
\(631\) −9.95340e34 −0.994499 −0.497250 0.867607i \(-0.665657\pi\)
−0.497250 + 0.867607i \(0.665657\pi\)
\(632\) 2.35841e34i 0.231023i
\(633\) 1.85531e34i 0.178184i
\(634\) −3.32899e34 −0.313471
\(635\) −6.22516e34 1.49035e35i −0.574750 1.37599i
\(636\) 1.02989e34 0.0932342
\(637\) 1.08937e35i 0.967013i
\(638\) 2.01244e33i 0.0175172i
\(639\) −1.51153e34 −0.129020
\(640\) 4.06992e33 + 9.74369e33i 0.0340672 + 0.0815594i
\(641\) 2.11836e33 0.0173890 0.00869452 0.999962i \(-0.497232\pi\)
0.00869452 + 0.999962i \(0.497232\pi\)
\(642\) 1.09001e34i 0.0877491i
\(643\) 5.48861e34i 0.433336i −0.976245 0.216668i \(-0.930481\pi\)
0.976245 0.216668i \(-0.0695190\pi\)
\(644\) −3.62647e34 −0.280809
\(645\) −1.72073e34 + 7.18746e33i −0.130682 + 0.0545857i
\(646\) 4.19268e34 0.312310
\(647\) 8.23657e34i 0.601787i −0.953658 0.300894i \(-0.902715\pi\)
0.953658 0.300894i \(-0.0972849\pi\)
\(648\) 4.69692e34i 0.336609i
\(649\) −1.92269e32 −0.00135161
\(650\) 8.05423e34 8.15050e34i 0.555402 0.562040i
\(651\) 4.71387e33 0.0318871
\(652\) 1.41376e34i 0.0938170i
\(653\) 2.06557e35i 1.34470i −0.740235 0.672349i \(-0.765286\pi\)
0.740235 0.672349i \(-0.234714\pi\)
\(654\) −1.51885e34 −0.0970050
\(655\) −1.10705e35 + 4.62413e34i −0.693667 + 0.289743i
\(656\) 1.43517e34 0.0882276
\(657\) 2.90599e35i 1.75278i
\(658\) 5.37919e34i 0.318341i
\(659\) 1.48751e35 0.863756 0.431878 0.901932i \(-0.357851\pi\)
0.431878 + 0.901932i \(0.357851\pi\)
\(660\) 1.92676e32 + 4.61280e32i 0.00109781 + 0.00262825i
\(661\) 1.93614e35 1.08248 0.541238 0.840869i \(-0.317956\pi\)
0.541238 + 0.840869i \(0.317956\pi\)
\(662\) 1.32989e35i 0.729610i
\(663\) 6.72555e33i 0.0362084i
\(664\) 4.71236e34 0.248965
\(665\) −4.71198e34 1.12808e35i −0.244305 0.584885i
\(666\) −1.15056e35 −0.585438
\(667\) 1.68922e35i 0.843555i
\(668\) 5.18061e34i 0.253907i
\(669\) −4.36802e34 −0.210116
\(670\) 1.30483e35 5.45023e34i 0.616052 0.257324i
\(671\) −2.54886e33 −0.0118118
\(672\) 1.80721e33i 0.00822039i
\(673\) 2.68004e35i 1.19661i 0.801268 + 0.598305i \(0.204159\pi\)
−0.801268 + 0.598305i \(0.795841\pi\)
\(674\) −2.52357e35 −1.10603
\(675\) −4.15685e34 4.10775e34i −0.178841 0.176729i
\(676\) 2.94452e34 0.124360
\(677\) 2.37470e35i 0.984578i 0.870432 + 0.492289i \(0.163840\pi\)
−0.870432 + 0.492289i \(0.836160\pi\)
\(678\) 4.55170e33i 0.0185269i
\(679\) −3.89878e34 −0.155796
\(680\) −2.12609e34 + 8.88064e33i −0.0834105 + 0.0348404i
\(681\) 3.61039e34 0.139064
\(682\) 5.76322e33i 0.0217952i
\(683\) 2.30743e35i 0.856779i 0.903594 + 0.428390i \(0.140919\pi\)
−0.903594 + 0.428390i \(0.859081\pi\)
\(684\) −2.33106e35 −0.849868
\(685\) −7.20492e33 1.72491e34i −0.0257927 0.0617497i
\(686\) −1.37682e35 −0.483980
\(687\) 5.08880e34i 0.175653i
\(688\) 8.24222e34i 0.279376i
\(689\) 4.93957e35 1.64418
\(690\) −1.61730e34 3.87194e34i −0.0528662 0.126566i
\(691\) −1.65717e35 −0.531974 −0.265987 0.963977i \(-0.585698\pi\)
−0.265987 + 0.963977i \(0.585698\pi\)
\(692\) 1.63795e35i 0.516385i
\(693\) 5.24131e33i 0.0162283i
\(694\) −3.41774e35 −1.03931
\(695\) 1.40589e35 5.87239e34i 0.419897 0.175390i
\(696\) 8.41804e33 0.0246942
\(697\) 3.13156e34i 0.0902301i
\(698\) 4.39545e35i 1.24397i
\(699\) −2.37842e34 −0.0661185
\(700\) 4.77885e34 + 4.72241e34i 0.130496 + 0.128955i
\(701\) −4.91864e35 −1.31938 −0.659690 0.751538i \(-0.729312\pi\)
−0.659690 + 0.751538i \(0.729312\pi\)
\(702\) 7.53961e34i 0.198671i
\(703\) 5.61542e35i 1.45359i
\(704\) −2.20951e33 −0.00561873
\(705\) −5.74330e34 + 2.39897e34i −0.143482 + 0.0599322i
\(706\) 4.30649e35 1.05697
\(707\) 1.13691e35i 0.274146i
\(708\) 8.04263e32i 0.00190538i
\(709\) 7.85100e35 1.82746 0.913728 0.406326i \(-0.133190\pi\)
0.913728 + 0.406326i \(0.133190\pi\)
\(710\) 1.56258e34 + 3.74094e34i 0.0357366 + 0.0855562i
\(711\) −2.86114e35 −0.642937
\(712\) 2.95215e35i 0.651837i
\(713\) 4.83759e35i 1.04957i
\(714\) −3.94337e33 −0.00840697
\(715\) 9.24117e33 + 2.21240e34i 0.0193598 + 0.0463489i
\(716\) −2.48361e35 −0.511294
\(717\) 8.39197e34i 0.169775i
\(718\) 4.73262e35i 0.940906i
\(719\) −2.69785e33 −0.00527118 −0.00263559 0.999997i \(-0.500839\pi\)
−0.00263559 + 0.999997i \(0.500839\pi\)
\(720\) 1.18207e35 4.93748e34i 0.226980 0.0948089i
\(721\) 1.42823e35 0.269530
\(722\) 7.56456e35i 1.40304i
\(723\) 6.94021e33i 0.0126516i
\(724\) −2.01648e35 −0.361295
\(725\) 2.19971e35 2.22600e35i 0.387383 0.392013i
\(726\) 5.16659e34 0.0894326
\(727\) 5.83647e35i 0.993048i −0.868023 0.496524i \(-0.834609\pi\)
0.868023 0.496524i \(-0.165391\pi\)
\(728\) 8.66778e34i 0.144966i
\(729\) 5.50432e35 0.904918
\(730\) 7.19214e35 3.00414e35i 1.16231 0.485495i
\(731\) 1.79847e35 0.285717
\(732\) 1.06619e34i 0.0166512i
\(733\) 6.31572e35i 0.969668i 0.874606 + 0.484834i \(0.161120\pi\)
−0.874606 + 0.484834i \(0.838880\pi\)
\(734\) −2.31488e35 −0.349405
\(735\) −2.84854e34 6.81961e34i −0.0422698 0.101197i
\(736\) 1.85464e35 0.270575
\(737\) 2.95887e34i 0.0424406i
\(738\) 1.74109e35i 0.245537i
\(739\) −6.44973e35 −0.894305 −0.447153 0.894458i \(-0.647562\pi\)
−0.447153 + 0.894458i \(0.647562\pi\)
\(740\) 1.18942e35 + 2.84756e35i 0.162158 + 0.388219i
\(741\) 1.82500e35 0.244644
\(742\) 2.89620e35i 0.381750i
\(743\) 5.26299e35i 0.682138i 0.940038 + 0.341069i \(0.110789\pi\)
−0.940038 + 0.341069i \(0.889211\pi\)
\(744\) −2.41076e34 −0.0307250
\(745\) −7.19872e35 + 3.00689e35i −0.902198 + 0.376846i
\(746\) 5.78040e34 0.0712398
\(747\) 5.71687e35i 0.692868i
\(748\) 4.82119e33i 0.00574625i
\(749\) 3.06527e35 0.359291
\(750\) −2.91083e34 + 7.20839e34i −0.0335545 + 0.0830946i
\(751\) −1.61425e36 −1.83009 −0.915044 0.403355i \(-0.867844\pi\)
−0.915044 + 0.403355i \(0.867844\pi\)
\(752\) 2.75101e35i 0.306740i
\(753\) 1.30294e35i 0.142885i
\(754\) 4.03748e35 0.435481
\(755\) −1.26552e36 + 5.28604e35i −1.34255 + 0.560781i
\(756\) 4.42067e34 0.0461281
\(757\) 6.23656e35i 0.640098i −0.947401 0.320049i \(-0.896301\pi\)
0.947401 0.320049i \(-0.103699\pi\)
\(758\) 1.06625e36i 1.07645i
\(759\) 8.78014e33 0.00871926
\(760\) 2.40979e35 + 5.76922e35i 0.235402 + 0.563569i
\(761\) 4.69451e35 0.451110 0.225555 0.974230i \(-0.427580\pi\)
0.225555 + 0.974230i \(0.427580\pi\)
\(762\) 1.41367e35i 0.133633i
\(763\) 4.27125e35i 0.397190i
\(764\) −1.45439e35 −0.133050
\(765\) 1.07737e35 + 2.57930e35i 0.0969608 + 0.232131i
\(766\) 9.11195e35 0.806774
\(767\) 3.85743e34i 0.0336013i
\(768\) 9.24240e33i 0.00792081i
\(769\) −1.07024e36 −0.902402 −0.451201 0.892422i \(-0.649004\pi\)
−0.451201 + 0.892422i \(0.649004\pi\)
\(770\) −1.29719e34 + 5.41834e33i −0.0107614 + 0.00449502i
\(771\) 2.60529e35 0.212655
\(772\) 2.68814e35i 0.215891i
\(773\) 1.40143e36i 1.10746i 0.832695 + 0.553732i \(0.186797\pi\)
−0.832695 + 0.553732i \(0.813203\pi\)
\(774\) −9.99916e35 −0.777502
\(775\) −6.29954e35 + 6.37484e35i −0.481989 + 0.487751i
\(776\) 1.99390e35 0.150118
\(777\) 5.28151e34i 0.0391287i
\(778\) 1.16154e35i 0.0846816i
\(779\) 8.49760e35 0.609646
\(780\) −9.25451e34 + 3.86559e34i −0.0653387 + 0.0272919i
\(781\) −8.48308e33 −0.00589407
\(782\) 4.04686e35i 0.276716i
\(783\) 2.05916e35i 0.138570i
\(784\) 3.26656e35 0.216341
\(785\) 7.04329e35 + 1.68622e36i 0.459097 + 1.09911i
\(786\) 1.05010e35 0.0673670
\(787\) 2.04262e36i 1.28974i −0.764292 0.644870i \(-0.776911\pi\)
0.764292 0.644870i \(-0.223089\pi\)
\(788\) 1.12362e36i 0.698300i
\(789\) 1.95267e35 0.119444
\(790\) 2.95777e35 + 7.08113e35i 0.178085 + 0.426348i
\(791\) −1.28001e35 −0.0758589
\(792\) 2.68050e34i 0.0156369i
\(793\) 5.11369e35i 0.293643i
\(794\) −8.10456e35 −0.458114
\(795\) −3.09224e35 + 1.29162e35i −0.172062 + 0.0718698i
\(796\) 3.05071e35 0.167104
\(797\) 4.60347e35i 0.248231i −0.992268 0.124115i \(-0.960391\pi\)
0.992268 0.124115i \(-0.0396093\pi\)
\(798\) 1.07005e35i 0.0568023i
\(799\) 6.00276e35 0.313701
\(800\) −2.44399e35 2.41512e35i −0.125740 0.124255i
\(801\) 3.58145e36 1.81406
\(802\) 2.42417e36i 1.20888i
\(803\) 1.63091e35i 0.0800731i
\(804\) −1.23770e35 −0.0598292
\(805\) 1.08885e36 4.54810e35i 0.518226 0.216462i
\(806\) −1.15625e36 −0.541833
\(807\) 1.77132e35i 0.0817294i
\(808\) 5.81435e35i 0.264155i
\(809\) −2.81919e35 −0.126115 −0.0630576 0.998010i \(-0.520085\pi\)
−0.0630576 + 0.998010i \(0.520085\pi\)
\(810\) −5.89060e35 1.41025e36i −0.259476 0.621204i
\(811\) 8.66756e35 0.375955 0.187978 0.982173i \(-0.439807\pi\)
0.187978 + 0.982173i \(0.439807\pi\)
\(812\) 2.36728e35i 0.101111i
\(813\) 4.35812e35i 0.183302i
\(814\) −6.45722e34 −0.0267449
\(815\) −1.77306e35 4.24483e35i −0.0723190 0.173137i
\(816\) 2.01671e34 0.00810058
\(817\) 4.88020e36i 1.93047i
\(818\) 2.08936e36i 0.813950i
\(819\) 1.05154e36 0.403440
\(820\) −4.30910e35 + 1.79990e35i −0.162822 + 0.0680105i
\(821\) −2.61490e36 −0.973120 −0.486560 0.873647i \(-0.661748\pi\)
−0.486560 + 0.873647i \(0.661748\pi\)
\(822\) 1.63617e34i 0.00599695i
\(823\) 3.63703e35i 0.131295i −0.997843 0.0656477i \(-0.979089\pi\)
0.997843 0.0656477i \(-0.0209113\pi\)
\(824\) −7.30422e35 −0.259707
\(825\) −1.15702e34 1.14335e34i −0.00405198 0.00400412i
\(826\) 2.26171e34 0.00780165
\(827\) 3.87599e36i 1.31693i 0.752610 + 0.658467i \(0.228795\pi\)
−0.752610 + 0.658467i \(0.771205\pi\)
\(828\) 2.24998e36i 0.753009i
\(829\) −1.44009e36 −0.474743 −0.237371 0.971419i \(-0.576286\pi\)
−0.237371 + 0.971419i \(0.576286\pi\)
\(830\) −1.41489e36 + 5.90996e35i −0.459458 + 0.191915i
\(831\) 5.69832e35 0.182278
\(832\) 4.43286e35i 0.139683i
\(833\) 7.12769e35i 0.221252i
\(834\) −1.33356e35 −0.0407792
\(835\) 6.49722e35 + 1.55548e36i 0.195725 + 0.468580i
\(836\) −1.30825e35 −0.0388250
\(837\) 5.89704e35i 0.172411i
\(838\) 1.41577e36i 0.407795i
\(839\) 2.94352e36 0.835300 0.417650 0.908608i \(-0.362854\pi\)
0.417650 + 0.908608i \(0.362854\pi\)
\(840\) −2.26649e34 5.42616e34i −0.00633671 0.0151705i
\(841\) −2.52767e36 −0.696260
\(842\) 4.72088e34i 0.0128121i
\(843\) 4.75800e35i 0.127227i
\(844\) 2.66828e36 0.702992
\(845\) −8.84095e35 + 3.69284e35i −0.229504 + 0.0958632i
\(846\) −3.33743e36 −0.853656
\(847\) 1.45292e36i 0.366184i
\(848\) 1.48117e36i 0.367837i
\(849\) −1.02413e36 −0.250616
\(850\) 5.26985e35 5.33284e35i 0.127075 0.128594i
\(851\) 5.42013e36 1.28792
\(852\) 3.54848e34i 0.00830897i
\(853\) 1.60861e36i 0.371183i 0.982627 + 0.185591i \(0.0594201\pi\)
−0.982627 + 0.185591i \(0.940580\pi\)
\(854\) 2.99829e35 0.0681789
\(855\) 6.99901e36 2.92347e36i 1.56841 0.655123i
\(856\) −1.56764e36 −0.346197
\(857\) 7.04998e36i 1.53436i 0.641432 + 0.767180i \(0.278341\pi\)
−0.641432 + 0.767180i \(0.721659\pi\)
\(858\) 2.09858e34i 0.00450127i
\(859\) −6.59563e36 −1.39425 −0.697126 0.716948i \(-0.745538\pi\)
−0.697126 + 0.716948i \(0.745538\pi\)
\(860\) 1.03369e36 + 2.47473e36i 0.215357 + 0.515581i
\(861\) −7.99230e34 −0.0164109
\(862\) 4.61133e36i 0.933222i
\(863\) 9.41312e36i 1.87758i 0.344487 + 0.938791i \(0.388053\pi\)
−0.344487 + 0.938791i \(0.611947\pi\)
\(864\) −2.26081e35 −0.0444470
\(865\) −2.05422e36 4.91795e36i −0.398056 0.952977i
\(866\) −2.17542e36 −0.415499
\(867\) 6.29170e35i 0.118448i
\(868\) 6.77942e35i 0.125805i
\(869\) −1.60574e35 −0.0293716
\(870\) −2.52752e35 + 1.05574e35i −0.0455727 + 0.0190356i
\(871\) −5.93627e36 −1.05508
\(872\) 2.18439e36i 0.382714i
\(873\) 2.41893e36i 0.417778i
\(874\) 1.09813e37 1.86965
\(875\) −2.02711e36 8.18570e35i −0.340233 0.137390i
\(876\) −6.82212e35 −0.112880
\(877\) 4.23262e36i 0.690422i 0.938525 + 0.345211i \(0.112193\pi\)
−0.938525 + 0.345211i \(0.887807\pi\)
\(878\) 3.23521e36i 0.520261i
\(879\) −4.69029e35 −0.0743598
\(880\) 6.63407e34 2.77104e34i 0.0103692 0.00433121i
\(881\) −9.23339e36 −1.42286 −0.711431 0.702756i \(-0.751952\pi\)
−0.711431 + 0.702756i \(0.751952\pi\)
\(882\) 3.96287e36i 0.602078i
\(883\) 9.76831e36i 1.46322i −0.681721 0.731612i \(-0.738768\pi\)
0.681721 0.731612i \(-0.261232\pi\)
\(884\) 9.67259e35 0.142853
\(885\) 1.00866e34 + 2.41481e34i 0.00146877 + 0.00351634i
\(886\) 7.48575e36 1.07477
\(887\) 1.62985e36i 0.230729i −0.993323 0.115365i \(-0.963196\pi\)
0.993323 0.115365i \(-0.0368036\pi\)
\(888\) 2.70106e35i 0.0377027i
\(889\) −3.97547e36 −0.547162
\(890\) −3.70242e36 8.86386e36i −0.502470 1.20295i
\(891\) 3.19794e35 0.0427955
\(892\) 6.28202e36i 0.828970i
\(893\) 1.62887e37i 2.11955i
\(894\) 6.82836e35 0.0876188
\(895\) 7.45706e36 3.11480e36i 0.943582 0.394132i
\(896\) 2.59910e35 0.0324320
\(897\) 1.76153e36i 0.216763i
\(898\) 3.41071e35i 0.0413895i
\(899\) −3.15788e36 −0.377919
\(900\) −2.92994e36 + 2.96496e36i −0.345802 + 0.349935i
\(901\) 3.23194e36 0.376186
\(902\) 9.77145e34i 0.0112170i
\(903\) 4.59000e35i 0.0519656i
\(904\) 6.54619e35 0.0730943
\(905\) 6.05450e36 2.52895e36i 0.666763 0.278505i
\(906\) 1.20041e36 0.130385
\(907\) 4.47773e36i 0.479697i 0.970810 + 0.239848i \(0.0770977\pi\)
−0.970810 + 0.239848i \(0.922902\pi\)
\(908\) 5.19241e36i 0.548651i
\(909\) −7.05376e36 −0.735144
\(910\) −1.08706e36 2.60251e36i −0.111747 0.267531i
\(911\) 9.15716e36 0.928498 0.464249 0.885705i \(-0.346324\pi\)
0.464249 + 0.885705i \(0.346324\pi\)
\(912\) 5.47241e35i 0.0547322i
\(913\) 3.20845e35i 0.0316527i
\(914\) 8.28891e36 0.806622
\(915\) 1.33715e35 + 3.20124e35i 0.0128356 + 0.0307295i
\(916\) 7.31864e36 0.693006
\(917\) 2.95303e36i 0.275836i
\(918\) 4.93313e35i 0.0454558i
\(919\) −1.60416e36 −0.145816 −0.0729078 0.997339i \(-0.523228\pi\)
−0.0729078 + 0.997339i \(0.523228\pi\)
\(920\) −5.56857e36 + 2.32598e36i −0.499340 + 0.208573i
\(921\) 3.74270e34 0.00331085
\(922\) 3.43100e36i 0.299422i
\(923\) 1.70193e36i 0.146528i
\(924\) 1.23045e34 0.00104512
\(925\) −7.14248e36 7.05812e36i −0.598518 0.591449i
\(926\) −1.38047e37 −1.14127
\(927\) 8.86121e36i 0.722764i
\(928\) 1.21067e36i 0.0974263i
\(929\) 8.64983e35 0.0686770 0.0343385 0.999410i \(-0.489068\pi\)
0.0343385 + 0.999410i \(0.489068\pi\)
\(930\) 7.23832e35 3.02343e35i 0.0567024 0.0236845i
\(931\) 1.93412e37 1.49490
\(932\) 3.42060e36i 0.260858i
\(933\) 1.47826e36i 0.111232i
\(934\) 1.14510e37 0.850170
\(935\) 6.04646e34 + 1.44757e35i 0.00442951 + 0.0106046i
\(936\) −5.37779e36 −0.388737
\(937\) 7.42933e36i 0.529913i −0.964260 0.264956i \(-0.914642\pi\)
0.964260 0.264956i \(-0.0853576\pi\)
\(938\) 3.48059e36i 0.244972i
\(939\) 3.22644e36 0.224081
\(940\) 3.45016e36 + 8.25994e36i 0.236451 + 0.566081i
\(941\) 6.99775e36 0.473247 0.236623 0.971601i \(-0.423959\pi\)
0.236623 + 0.971601i \(0.423959\pi\)
\(942\) 1.59946e36i 0.106743i
\(943\) 8.20206e36i 0.540166i
\(944\) −1.15668e35 −0.00751732
\(945\) −1.32731e36 + 5.54414e35i −0.0851284 + 0.0355580i
\(946\) −5.61178e35 −0.0355190
\(947\) 9.94818e36i 0.621397i 0.950509 + 0.310698i \(0.100563\pi\)
−0.950509 + 0.310698i \(0.899437\pi\)
\(948\) 6.71682e35i 0.0414057i
\(949\) −3.27204e37 −1.99063
\(950\) −1.44708e37 1.42999e37i −0.868857 0.858594i
\(951\) −9.48108e35 −0.0561825
\(952\) 5.67129e35i 0.0331681i
\(953\) 1.89836e37i 1.09577i 0.836555 + 0.547883i \(0.184566\pi\)
−0.836555 + 0.547883i \(0.815434\pi\)
\(954\) −1.79690e37 −1.02369
\(955\) 4.36682e36 1.82401e36i 0.245540 0.102562i
\(956\) −1.20692e37 −0.669816
\(957\) 5.73149e34i 0.00313956i
\(958\) 2.47068e37i 1.33582i
\(959\) −4.60115e35 −0.0245547
\(960\) 1.15913e35 + 2.77504e35i 0.00610577 + 0.0146177i
\(961\) −1.01893e37 −0.529785
\(962\) 1.29549e37i 0.664883i
\(963\) 1.90180e37i 0.963466i
\(964\) 9.98131e35 0.0499142
\(965\) 3.37130e36 + 8.07114e36i 0.166420 + 0.398422i
\(966\) −1.03283e36 −0.0503286
\(967\) 1.99094e37i 0.957693i 0.877899 + 0.478846i \(0.158945\pi\)
−0.877899 + 0.478846i \(0.841055\pi\)
\(968\) 7.43051e36i 0.352839i
\(969\) 1.19409e36 0.0559744
\(970\) −5.98671e36 + 2.50064e36i −0.277039 + 0.115719i
\(971\) 1.95878e37 0.894841 0.447421 0.894324i \(-0.352343\pi\)
0.447421 + 0.894324i \(0.352343\pi\)
\(972\) 4.12521e36i 0.186045i
\(973\) 3.75018e36i 0.166971i
\(974\) 1.08023e37 0.474822
\(975\) 2.29387e36 2.32129e36i 0.0995432 0.100733i
\(976\) −1.53338e36 −0.0656942
\(977\) 2.97587e37i 1.25873i −0.777110 0.629365i \(-0.783315\pi\)
0.777110 0.629365i \(-0.216685\pi\)
\(978\) 4.02644e35i 0.0168146i
\(979\) 2.01000e36 0.0828727
\(980\) −9.80786e36 + 4.09672e36i −0.399253 + 0.166767i
\(981\) 2.65003e37 1.06509
\(982\) 1.88156e37i 0.746663i
\(983\) 4.05260e37i 1.58787i −0.608004 0.793934i \(-0.708030\pi\)
0.608004 0.793934i \(-0.291970\pi\)
\(984\) 4.08741e35 0.0158128
\(985\) 1.40918e37 + 3.37368e37i 0.538286 + 1.28870i
\(986\) 2.64171e36 0.0996376
\(987\) 1.53201e36i 0.0570555i
\(988\) 2.62469e37i 0.965197i
\(989\) 4.71047e37 1.71045
\(990\) −3.36172e35 8.04821e35i −0.0120537 0.0288576i
\(991\) −3.58276e37 −1.26852 −0.634260 0.773120i \(-0.718695\pi\)
−0.634260 + 0.773120i \(0.718695\pi\)
\(992\) 3.46712e36i 0.121220i
\(993\) 3.78757e36i 0.130766i
\(994\) 9.97886e35 0.0340213
\(995\) −9.15977e36 + 3.82602e36i −0.308387 + 0.128813i
\(996\) 1.34210e36 0.0446213
\(997\) 9.64459e36i 0.316661i −0.987386 0.158330i \(-0.949389\pi\)
0.987386 0.158330i \(-0.0506111\pi\)
\(998\) 1.75638e37i 0.569491i
\(999\) −6.60714e36 −0.211566
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.26.b.a.9.4 12
5.2 odd 4 50.26.a.l.1.4 6
5.3 odd 4 50.26.a.k.1.3 6
5.4 even 2 inner 10.26.b.a.9.9 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.b.a.9.4 12 1.1 even 1 trivial
10.26.b.a.9.9 yes 12 5.4 even 2 inner
50.26.a.k.1.3 6 5.3 odd 4
50.26.a.l.1.4 6 5.2 odd 4