Properties

Label 10.26.b.a.9.2
Level $10$
Weight $26$
Character 10.9
Analytic conductor $39.600$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,26,Mod(9,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.9");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5996779952\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 1406300109694 x^{10} + \cdots + 56\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{8}\cdot 5^{29} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 9.2
Root \(-540092. i\) of defining polynomial
Character \(\chi\) \(=\) 10.9
Dual form 10.26.b.a.9.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4096.00i q^{2} -1.08018e6i q^{3} -1.67772e7 q^{4} +(3.02592e8 + 4.54380e8i) q^{5} -4.42443e9 q^{6} +5.43159e10i q^{7} +6.87195e10i q^{8} -3.19509e11 q^{9} +(1.86114e12 - 1.23942e12i) q^{10} -3.24375e12 q^{11} +1.81225e13i q^{12} -7.83357e13i q^{13} +2.22478e14 q^{14} +(4.90814e14 - 3.26855e14i) q^{15} +2.81475e14 q^{16} -4.33806e15i q^{17} +1.30871e15i q^{18} -8.87783e15 q^{19} +(-5.07665e15 - 7.62323e15i) q^{20} +5.86711e16 q^{21} +1.32864e16i q^{22} -7.05451e16i q^{23} +7.42297e16 q^{24} +(-1.14900e17 + 2.74984e17i) q^{25} -3.20863e17 q^{26} -5.70099e17i q^{27} -9.11269e17i q^{28} +1.11391e18 q^{29} +(-1.33880e18 - 2.01037e18i) q^{30} +6.30227e18 q^{31} -1.15292e18i q^{32} +3.50385e18i q^{33} -1.77687e19 q^{34} +(-2.46800e19 + 1.64355e19i) q^{35} +5.36047e18 q^{36} -1.55100e19i q^{37} +3.63636e19i q^{38} -8.46169e19 q^{39} +(-3.12248e19 + 2.07940e19i) q^{40} -3.82653e19 q^{41} -2.40317e20i q^{42} -3.32618e20i q^{43} +5.44211e19 q^{44} +(-9.66807e19 - 1.45178e20i) q^{45} -2.88953e20 q^{46} -1.01157e21i q^{47} -3.04045e20i q^{48} -1.60914e21 q^{49} +(1.12633e21 + 4.70628e20i) q^{50} -4.68591e21 q^{51} +1.31425e21i q^{52} -3.43480e21i q^{53} -2.33513e21 q^{54} +(-9.81532e20 - 1.47390e21i) q^{55} -3.73256e21 q^{56} +9.58969e21i q^{57} -4.56259e21i q^{58} -4.09753e21 q^{59} +(-8.23450e21 + 5.48371e21i) q^{60} +3.14378e22 q^{61} -2.58141e22i q^{62} -1.73544e22i q^{63} -4.72237e21 q^{64} +(3.55942e22 - 2.37037e22i) q^{65} +1.43518e22 q^{66} +1.01756e23i q^{67} +7.27806e22i q^{68} -7.62017e22 q^{69} +(6.73200e22 + 1.01089e23i) q^{70} +2.10284e23 q^{71} -2.19565e22i q^{72} -1.56829e23i q^{73} -6.35289e22 q^{74} +(2.97033e23 + 1.24113e23i) q^{75} +1.48945e23 q^{76} -1.76187e23i q^{77} +3.46591e23i q^{78} -6.00925e22 q^{79} +(8.51720e22 + 1.27897e23i) q^{80} -8.86528e23 q^{81} +1.56735e23i q^{82} +7.40331e23i q^{83} -9.84338e23 q^{84} +(1.97113e24 - 1.31266e24i) q^{85} -1.36240e24 q^{86} -1.20323e24i q^{87} -2.22909e23i q^{88} -3.21148e24 q^{89} +(-5.94651e23 + 3.96004e23i) q^{90} +4.25487e24 q^{91} +1.18355e24i q^{92} -6.80761e24i q^{93} -4.14341e24 q^{94} +(-2.68636e24 - 4.03391e24i) q^{95} -1.24537e24 q^{96} -5.32805e24i q^{97} +6.59105e24i q^{98} +1.03641e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 201326592 q^{4} - 490295340 q^{5} - 6565199872 q^{6} - 1082937564236 q^{9} + 1636528619520 q^{10} + 19723089228624 q^{11} + 278591122243584 q^{14} - 449884766537680 q^{15} + 33\!\cdots\!72 q^{16}+ \cdots + 41\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00i 0.707107i
\(3\) 1.08018e6i 1.17350i −0.809769 0.586749i \(-0.800408\pi\)
0.809769 0.586749i \(-0.199592\pi\)
\(4\) −1.67772e7 −0.500000
\(5\) 3.02592e8 + 4.54380e8i 0.554284 + 0.832328i
\(6\) −4.42443e9 −0.829788
\(7\) 5.43159e10i 1.48320i 0.670840 + 0.741602i \(0.265934\pi\)
−0.670840 + 0.741602i \(0.734066\pi\)
\(8\) 6.87195e10i 0.353553i
\(9\) −3.19509e11 −0.377095
\(10\) 1.86114e12 1.23942e12i 0.588545 0.391938i
\(11\) −3.24375e12 −0.311630 −0.155815 0.987786i \(-0.549800\pi\)
−0.155815 + 0.987786i \(0.549800\pi\)
\(12\) 1.81225e13i 0.586749i
\(13\) 7.83357e13i 0.932541i −0.884642 0.466270i \(-0.845597\pi\)
0.884642 0.466270i \(-0.154403\pi\)
\(14\) 2.22478e14 1.04878
\(15\) 4.90814e14 3.26855e14i 0.976734 0.650450i
\(16\) 2.81475e14 0.250000
\(17\) 4.33806e15i 1.80586i −0.429786 0.902931i \(-0.641411\pi\)
0.429786 0.902931i \(-0.358589\pi\)
\(18\) 1.30871e15i 0.266647i
\(19\) −8.87783e15 −0.920210 −0.460105 0.887865i \(-0.652188\pi\)
−0.460105 + 0.887865i \(0.652188\pi\)
\(20\) −5.07665e15 7.62323e15i −0.277142 0.416164i
\(21\) 5.86711e16 1.74054
\(22\) 1.32864e16i 0.220355i
\(23\) 7.05451e16i 0.671227i −0.942000 0.335613i \(-0.891056\pi\)
0.942000 0.335613i \(-0.108944\pi\)
\(24\) 7.42297e16 0.414894
\(25\) −1.14900e17 + 2.74984e17i −0.385539 + 0.922692i
\(26\) −3.20863e17 −0.659406
\(27\) 5.70099e17i 0.730977i
\(28\) 9.11269e17i 0.741602i
\(29\) 1.11391e18 0.584624 0.292312 0.956323i \(-0.405575\pi\)
0.292312 + 0.956323i \(0.405575\pi\)
\(30\) −1.33880e18 2.01037e18i −0.459938 0.690655i
\(31\) 6.30227e18 1.43706 0.718532 0.695494i \(-0.244815\pi\)
0.718532 + 0.695494i \(0.244815\pi\)
\(32\) 1.15292e18i 0.176777i
\(33\) 3.50385e18i 0.365696i
\(34\) −1.77687e19 −1.27694
\(35\) −2.46800e19 + 1.64355e19i −1.23451 + 0.822116i
\(36\) 5.36047e18 0.188548
\(37\) 1.55100e19i 0.387338i −0.981067 0.193669i \(-0.937961\pi\)
0.981067 0.193669i \(-0.0620387\pi\)
\(38\) 3.63636e19i 0.650687i
\(39\) −8.46169e19 −1.09433
\(40\) −3.12248e19 + 2.07940e19i −0.294272 + 0.195969i
\(41\) −3.82653e19 −0.264854 −0.132427 0.991193i \(-0.542277\pi\)
−0.132427 + 0.991193i \(0.542277\pi\)
\(42\) 2.40317e20i 1.23075i
\(43\) 3.32618e20i 1.26937i −0.772770 0.634687i \(-0.781129\pi\)
0.772770 0.634687i \(-0.218871\pi\)
\(44\) 5.44211e19 0.155815
\(45\) −9.66807e19 1.45178e20i −0.209018 0.313867i
\(46\) −2.88953e20 −0.474629
\(47\) 1.01157e21i 1.26992i −0.772547 0.634958i \(-0.781018\pi\)
0.772547 0.634958i \(-0.218982\pi\)
\(48\) 3.04045e20i 0.293374i
\(49\) −1.60914e21 −1.19990
\(50\) 1.12633e21 + 4.70628e20i 0.652441 + 0.272617i
\(51\) −4.68591e21 −2.11917
\(52\) 1.31425e21i 0.466270i
\(53\) 3.43480e21i 0.960401i −0.877159 0.480201i \(-0.840564\pi\)
0.877159 0.480201i \(-0.159436\pi\)
\(54\) −2.33513e21 −0.516879
\(55\) −9.81532e20 1.47390e21i −0.172731 0.259378i
\(56\) −3.73256e21 −0.524392
\(57\) 9.58969e21i 1.07986i
\(58\) 4.56259e21i 0.413392i
\(59\) −4.09753e21 −0.299828 −0.149914 0.988699i \(-0.547900\pi\)
−0.149914 + 0.988699i \(0.547900\pi\)
\(60\) −8.23450e21 + 5.48371e21i −0.488367 + 0.325225i
\(61\) 3.14378e22 1.51646 0.758228 0.651990i \(-0.226065\pi\)
0.758228 + 0.651990i \(0.226065\pi\)
\(62\) 2.58141e22i 1.01616i
\(63\) 1.73544e22i 0.559310i
\(64\) −4.72237e21 −0.125000
\(65\) 3.55942e22 2.37037e22i 0.776179 0.516892i
\(66\) 1.43518e22 0.258586
\(67\) 1.01756e23i 1.51923i 0.650372 + 0.759616i \(0.274613\pi\)
−0.650372 + 0.759616i \(0.725387\pi\)
\(68\) 7.27806e22i 0.902931i
\(69\) −7.62017e22 −0.787682
\(70\) 6.73200e22 + 1.01089e23i 0.581324 + 0.872932i
\(71\) 2.10284e23 1.52081 0.760407 0.649446i \(-0.224999\pi\)
0.760407 + 0.649446i \(0.224999\pi\)
\(72\) 2.19565e22i 0.133323i
\(73\) 1.56829e23i 0.801478i −0.916192 0.400739i \(-0.868753\pi\)
0.916192 0.400739i \(-0.131247\pi\)
\(74\) −6.35289e22 −0.273889
\(75\) 2.97033e23 + 1.24113e23i 1.08278 + 0.452429i
\(76\) 1.48945e23 0.460105
\(77\) 1.76187e23i 0.462211i
\(78\) 3.46591e23i 0.773811i
\(79\) −6.00925e22 −0.114415 −0.0572073 0.998362i \(-0.518220\pi\)
−0.0572073 + 0.998362i \(0.518220\pi\)
\(80\) 8.51720e22 + 1.27897e23i 0.138571 + 0.208082i
\(81\) −8.86528e23 −1.23489
\(82\) 1.56735e23i 0.187280i
\(83\) 7.40331e23i 0.760238i 0.924938 + 0.380119i \(0.124117\pi\)
−0.924938 + 0.380119i \(0.875883\pi\)
\(84\) −9.84338e23 −0.870268
\(85\) 1.97113e24 1.31266e24i 1.50307 1.00096i
\(86\) −1.36240e24 −0.897583
\(87\) 1.20323e24i 0.686055i
\(88\) 2.22909e23i 0.110178i
\(89\) −3.21148e24 −1.37826 −0.689128 0.724640i \(-0.742006\pi\)
−0.689128 + 0.724640i \(0.742006\pi\)
\(90\) −5.94651e23 + 3.96004e23i −0.221937 + 0.147798i
\(91\) 4.25487e24 1.38315
\(92\) 1.18355e24i 0.335613i
\(93\) 6.80761e24i 1.68639i
\(94\) −4.14341e24 −0.897966
\(95\) −2.68636e24 4.03391e24i −0.510057 0.765916i
\(96\) −1.24537e24 −0.207447
\(97\) 5.32805e24i 0.779689i −0.920881 0.389844i \(-0.872529\pi\)
0.920881 0.389844i \(-0.127471\pi\)
\(98\) 6.59105e24i 0.848455i
\(99\) 1.03641e24 0.117514
\(100\) 1.92769e24 4.61346e24i 0.192769 0.461346i
\(101\) −9.97515e24 −0.880851 −0.440425 0.897789i \(-0.645172\pi\)
−0.440425 + 0.897789i \(0.645172\pi\)
\(102\) 1.91935e25i 1.49848i
\(103\) 6.46906e24i 0.447070i 0.974696 + 0.223535i \(0.0717598\pi\)
−0.974696 + 0.223535i \(0.928240\pi\)
\(104\) 5.38319e24 0.329703
\(105\) 1.77534e25 + 2.66590e25i 0.964751 + 1.44870i
\(106\) −1.40689e25 −0.679106
\(107\) 2.37528e25i 1.01957i −0.860302 0.509786i \(-0.829725\pi\)
0.860302 0.509786i \(-0.170275\pi\)
\(108\) 9.56468e24i 0.365488i
\(109\) 4.56311e25 1.55393 0.776963 0.629547i \(-0.216759\pi\)
0.776963 + 0.629547i \(0.216759\pi\)
\(110\) −6.03708e24 + 4.02036e24i −0.183408 + 0.122139i
\(111\) −1.67536e25 −0.454540
\(112\) 1.52886e25i 0.370801i
\(113\) 4.40956e25i 0.957005i −0.878086 0.478503i \(-0.841180\pi\)
0.878086 0.478503i \(-0.158820\pi\)
\(114\) 3.92794e25 0.763579
\(115\) 3.20543e25 2.13464e25i 0.558680 0.372050i
\(116\) −1.86884e25 −0.292312
\(117\) 2.50289e25i 0.351657i
\(118\) 1.67835e25i 0.212011i
\(119\) 2.35626e26 2.67846
\(120\) 2.24613e25 + 3.37285e25i 0.229969 + 0.345328i
\(121\) −9.78251e25 −0.902887
\(122\) 1.28769e26i 1.07230i
\(123\) 4.13335e25i 0.310805i
\(124\) −1.05735e26 −0.718532
\(125\) −1.59715e26 + 3.09997e25i −0.981680 + 0.190538i
\(126\) −7.10836e25 −0.395492
\(127\) 3.54526e26i 1.78691i 0.449157 + 0.893453i \(0.351724\pi\)
−0.449157 + 0.893453i \(0.648276\pi\)
\(128\) 1.93428e25i 0.0883883i
\(129\) −3.59288e26 −1.48961
\(130\) −9.70905e25 1.45794e26i −0.365498 0.548842i
\(131\) −3.11451e26 −1.06537 −0.532683 0.846315i \(-0.678816\pi\)
−0.532683 + 0.846315i \(0.678816\pi\)
\(132\) 5.87848e25i 0.182848i
\(133\) 4.82207e26i 1.36486i
\(134\) 4.16792e26 1.07426
\(135\) 2.59042e26 1.72507e26i 0.608412 0.405169i
\(136\) 2.98110e26 0.638468
\(137\) 4.08877e26i 0.799072i −0.916718 0.399536i \(-0.869171\pi\)
0.916718 0.399536i \(-0.130829\pi\)
\(138\) 3.12122e26i 0.556976i
\(139\) −2.66018e26 −0.433737 −0.216869 0.976201i \(-0.569584\pi\)
−0.216869 + 0.976201i \(0.569584\pi\)
\(140\) 4.14063e26 2.75743e26i 0.617256 0.411058i
\(141\) −1.09269e27 −1.49024
\(142\) 8.61322e26i 1.07538i
\(143\) 2.54101e26i 0.290607i
\(144\) −8.99337e25 −0.0942739
\(145\) 3.37062e26 + 5.06141e26i 0.324048 + 0.486599i
\(146\) −6.42373e26 −0.566730
\(147\) 1.73817e27i 1.40807i
\(148\) 2.60214e26i 0.193669i
\(149\) 1.37183e26 0.0938579 0.0469290 0.998898i \(-0.485057\pi\)
0.0469290 + 0.998898i \(0.485057\pi\)
\(150\) 5.08365e26 1.21665e27i 0.319915 0.765638i
\(151\) 2.28415e27 1.32286 0.661428 0.750009i \(-0.269951\pi\)
0.661428 + 0.750009i \(0.269951\pi\)
\(152\) 6.10080e26i 0.325343i
\(153\) 1.38605e27i 0.680982i
\(154\) −7.21662e26 −0.326832
\(155\) 1.90702e27 + 2.86363e27i 0.796541 + 1.19611i
\(156\) 1.41964e27 0.547167
\(157\) 5.56736e26i 0.198109i 0.995082 + 0.0990544i \(0.0315818\pi\)
−0.995082 + 0.0990544i \(0.968418\pi\)
\(158\) 2.46139e26i 0.0809034i
\(159\) −3.71021e27 −1.12703
\(160\) 5.23865e26 3.48865e26i 0.147136 0.0979845i
\(161\) 3.83172e27 0.995566
\(162\) 3.63122e27i 0.873202i
\(163\) 6.45827e27i 1.43804i −0.694990 0.719020i \(-0.744591\pi\)
0.694990 0.719020i \(-0.255409\pi\)
\(164\) 6.41985e26 0.132427
\(165\) −1.59208e27 + 1.06024e27i −0.304379 + 0.202700i
\(166\) 3.03239e27 0.537569
\(167\) 9.17351e26i 0.150862i 0.997151 + 0.0754310i \(0.0240332\pi\)
−0.997151 + 0.0754310i \(0.975967\pi\)
\(168\) 4.03185e27i 0.615373i
\(169\) 9.19932e26 0.130368
\(170\) −5.37667e27 8.07375e27i −0.707786 1.06283i
\(171\) 2.83654e27 0.347007
\(172\) 5.58040e27i 0.634687i
\(173\) 1.13072e28i 1.19614i −0.801445 0.598068i \(-0.795935\pi\)
0.801445 0.598068i \(-0.204065\pi\)
\(174\) −4.92844e27 −0.485114
\(175\) −1.49360e28 6.24087e27i −1.36854 0.571833i
\(176\) −9.13034e26 −0.0779074
\(177\) 4.42609e27i 0.351847i
\(178\) 1.31542e28i 0.974574i
\(179\) 3.61567e27 0.249762 0.124881 0.992172i \(-0.460145\pi\)
0.124881 + 0.992172i \(0.460145\pi\)
\(180\) 1.62203e27 + 2.43569e27i 0.104509 + 0.156933i
\(181\) −1.10646e28 −0.665201 −0.332601 0.943068i \(-0.607926\pi\)
−0.332601 + 0.943068i \(0.607926\pi\)
\(182\) 1.74279e28i 0.978034i
\(183\) 3.39587e28i 1.77956i
\(184\) 4.84782e27 0.237314
\(185\) 7.04743e27 4.69320e27i 0.322392 0.214695i
\(186\) −2.78840e28 −1.19246
\(187\) 1.40716e28i 0.562760i
\(188\) 1.69714e28i 0.634958i
\(189\) 3.09654e28 1.08419
\(190\) −1.65229e28 + 1.10033e28i −0.541585 + 0.360665i
\(191\) 5.84877e27 0.179534 0.0897671 0.995963i \(-0.471388\pi\)
0.0897671 + 0.995963i \(0.471388\pi\)
\(192\) 5.10102e27i 0.146687i
\(193\) 1.61649e28i 0.435620i 0.975991 + 0.217810i \(0.0698913\pi\)
−0.975991 + 0.217810i \(0.930109\pi\)
\(194\) −2.18237e28 −0.551323
\(195\) −2.56044e28 3.84483e28i −0.606571 0.910844i
\(196\) 2.69969e28 0.599948
\(197\) 5.33679e28i 1.11289i 0.830885 + 0.556445i \(0.187835\pi\)
−0.830885 + 0.556445i \(0.812165\pi\)
\(198\) 4.24512e27i 0.0830950i
\(199\) −7.95288e27 −0.146171 −0.0730855 0.997326i \(-0.523285\pi\)
−0.0730855 + 0.997326i \(0.523285\pi\)
\(200\) −1.88967e28 7.89584e27i −0.326221 0.136309i
\(201\) 1.09915e29 1.78281
\(202\) 4.08582e28i 0.622855i
\(203\) 6.05032e28i 0.867118i
\(204\) 7.86165e28 1.05959
\(205\) −1.15788e28 1.73870e28i −0.146804 0.220445i
\(206\) 2.64973e28 0.316127
\(207\) 2.25398e28i 0.253116i
\(208\) 2.20495e28i 0.233135i
\(209\) 2.87975e28 0.286765
\(210\) 1.09195e29 7.27179e28i 1.02438 0.682182i
\(211\) −6.17913e28 −0.546257 −0.273128 0.961978i \(-0.588058\pi\)
−0.273128 + 0.961978i \(0.588058\pi\)
\(212\) 5.76263e28i 0.480201i
\(213\) 2.27145e29i 1.78467i
\(214\) −9.72914e28 −0.720946
\(215\) 1.51135e29 1.00647e29i 1.05653 0.703593i
\(216\) 3.91769e28 0.258439
\(217\) 3.42313e29i 2.13146i
\(218\) 1.86905e29i 1.09879i
\(219\) −1.69404e29 −0.940532
\(220\) 1.64674e28 + 2.47279e28i 0.0863656 + 0.129689i
\(221\) −3.39825e29 −1.68404
\(222\) 6.86229e28i 0.321408i
\(223\) 3.94158e29i 1.74526i 0.488382 + 0.872630i \(0.337587\pi\)
−0.488382 + 0.872630i \(0.662413\pi\)
\(224\) 6.26219e28 0.262196
\(225\) 3.67114e28 8.78596e28i 0.145385 0.347943i
\(226\) −1.80615e29 −0.676705
\(227\) 1.43566e29i 0.509012i 0.967071 + 0.254506i \(0.0819129\pi\)
−0.967071 + 0.254506i \(0.918087\pi\)
\(228\) 1.60888e29i 0.539932i
\(229\) −3.75130e29 −1.19189 −0.595947 0.803023i \(-0.703223\pi\)
−0.595947 + 0.803023i \(0.703223\pi\)
\(230\) −8.74348e28 1.31294e29i −0.263079 0.395047i
\(231\) −1.90314e29 −0.542403
\(232\) 7.65476e28i 0.206696i
\(233\) 4.51422e29i 1.15514i −0.816342 0.577569i \(-0.804001\pi\)
0.816342 0.577569i \(-0.195999\pi\)
\(234\) 1.02518e29 0.248659
\(235\) 4.59639e29 3.06094e29i 1.05699 0.703893i
\(236\) 6.87452e28 0.149914
\(237\) 6.49109e28i 0.134265i
\(238\) 9.65123e29i 1.89396i
\(239\) 1.77838e29 0.331169 0.165585 0.986196i \(-0.447049\pi\)
0.165585 + 0.986196i \(0.447049\pi\)
\(240\) 1.38152e29 9.20015e28i 0.244184 0.162613i
\(241\) −5.18328e28 −0.0869745 −0.0434872 0.999054i \(-0.513847\pi\)
−0.0434872 + 0.999054i \(0.513847\pi\)
\(242\) 4.00692e29i 0.638438i
\(243\) 4.74575e29i 0.718168i
\(244\) −5.27439e29 −0.758228
\(245\) −4.86914e29 7.31163e29i −0.665083 0.998707i
\(246\) 1.69302e29 0.219773
\(247\) 6.95451e29i 0.858133i
\(248\) 4.33089e29i 0.508079i
\(249\) 7.99693e29 0.892137
\(250\) 1.26975e29 + 6.54192e29i 0.134731 + 0.694152i
\(251\) 9.22037e29 0.930737 0.465368 0.885117i \(-0.345922\pi\)
0.465368 + 0.885117i \(0.345922\pi\)
\(252\) 2.91158e29i 0.279655i
\(253\) 2.28831e29i 0.209174i
\(254\) 1.45214e30 1.26353
\(255\) −1.41792e30 2.12918e30i −1.17462 1.76385i
\(256\) 7.92282e28 0.0625000
\(257\) 2.62664e30i 1.97350i 0.162254 + 0.986749i \(0.448123\pi\)
−0.162254 + 0.986749i \(0.551877\pi\)
\(258\) 1.47164e30i 1.05331i
\(259\) 8.42438e29 0.574501
\(260\) −5.97171e29 + 3.97683e29i −0.388090 + 0.258446i
\(261\) −3.55905e29 −0.220459
\(262\) 1.27570e30i 0.753328i
\(263\) 1.28488e30i 0.723465i −0.932282 0.361732i \(-0.882185\pi\)
0.932282 0.361732i \(-0.117815\pi\)
\(264\) −2.40782e29 −0.129293
\(265\) 1.56070e30 1.03934e30i 0.799369 0.532335i
\(266\) −1.97512e30 −0.965102
\(267\) 3.46899e30i 1.61738i
\(268\) 1.70718e30i 0.759616i
\(269\) 2.87870e30 1.22262 0.611312 0.791390i \(-0.290642\pi\)
0.611312 + 0.791390i \(0.290642\pi\)
\(270\) −7.06591e29 1.06104e30i −0.286497 0.430212i
\(271\) 6.47478e29 0.250674 0.125337 0.992114i \(-0.459999\pi\)
0.125337 + 0.992114i \(0.459999\pi\)
\(272\) 1.22106e30i 0.451465i
\(273\) 4.59604e30i 1.62312i
\(274\) −1.67476e30 −0.565029
\(275\) 3.72705e29 8.91978e29i 0.120145 0.287538i
\(276\) 1.27845e30 0.393841
\(277\) 3.36035e30i 0.989436i −0.869054 0.494718i \(-0.835271\pi\)
0.869054 0.494718i \(-0.164729\pi\)
\(278\) 1.08961e30i 0.306699i
\(279\) −2.01363e30 −0.541910
\(280\) −1.12944e30 1.69600e30i −0.290662 0.436466i
\(281\) 3.79608e30 0.934343 0.467172 0.884167i \(-0.345273\pi\)
0.467172 + 0.884167i \(0.345273\pi\)
\(282\) 4.47564e30i 1.05376i
\(283\) 2.26117e30i 0.509334i 0.967029 + 0.254667i \(0.0819658\pi\)
−0.967029 + 0.254667i \(0.918034\pi\)
\(284\) −3.52798e30 −0.760407
\(285\) −4.35737e30 + 2.90176e30i −0.898800 + 0.598551i
\(286\) 1.04080e30 0.205490
\(287\) 2.07841e30i 0.392833i
\(288\) 3.68368e29i 0.0666617i
\(289\) −1.30482e31 −2.26114
\(290\) 2.07315e30 1.38060e30i 0.344077 0.229136i
\(291\) −5.75527e30 −0.914962
\(292\) 2.63116e30i 0.400739i
\(293\) 8.20237e30i 1.19700i −0.801123 0.598500i \(-0.795764\pi\)
0.801123 0.598500i \(-0.204236\pi\)
\(294\) 7.11955e30 0.995659
\(295\) −1.23988e30 1.86184e30i −0.166190 0.249555i
\(296\) 1.06584e30 0.136945
\(297\) 1.84926e30i 0.227794i
\(298\) 5.61900e29i 0.0663676i
\(299\) −5.52620e30 −0.625946
\(300\) −4.98338e30 2.08226e30i −0.541388 0.226214i
\(301\) 1.80664e31 1.88274
\(302\) 9.35588e30i 0.935401i
\(303\) 1.07750e31i 1.03368i
\(304\) −2.49889e30 −0.230052
\(305\) 9.51284e30 + 1.42847e31i 0.840547 + 1.26219i
\(306\) 5.67726e30 0.481527
\(307\) 1.16923e31i 0.952072i 0.879426 + 0.476036i \(0.157927\pi\)
−0.879426 + 0.476036i \(0.842073\pi\)
\(308\) 2.95593e30i 0.231105i
\(309\) 6.98778e30 0.524636
\(310\) 1.17294e31 7.81114e30i 0.845776 0.563240i
\(311\) −9.75410e30 −0.675588 −0.337794 0.941220i \(-0.609681\pi\)
−0.337794 + 0.941220i \(0.609681\pi\)
\(312\) 5.81483e30i 0.386905i
\(313\) 2.13999e31i 1.36807i −0.729449 0.684035i \(-0.760224\pi\)
0.729449 0.684035i \(-0.239776\pi\)
\(314\) 2.28039e30 0.140084
\(315\) 7.88549e30 5.25130e30i 0.465529 0.310016i
\(316\) 1.00818e30 0.0572073
\(317\) 2.87837e31i 1.57002i 0.619482 + 0.785011i \(0.287343\pi\)
−0.619482 + 0.785011i \(0.712657\pi\)
\(318\) 1.51970e31i 0.796929i
\(319\) −3.61326e30 −0.182186
\(320\) −1.42895e30 2.14575e30i −0.0692855 0.104041i
\(321\) −2.56574e31 −1.19646
\(322\) 1.56947e31i 0.703972i
\(323\) 3.85126e31i 1.66177i
\(324\) 1.48735e31 0.617447
\(325\) 2.15410e31 + 9.00073e30i 0.860447 + 0.359531i
\(326\) −2.64531e31 −1.01685
\(327\) 4.92900e31i 1.82353i
\(328\) 2.62957e30i 0.0936400i
\(329\) 5.49445e31 1.88354
\(330\) 4.34272e30 + 6.52115e30i 0.143330 + 0.215229i
\(331\) 7.95904e30 0.252936 0.126468 0.991971i \(-0.459636\pi\)
0.126468 + 0.991971i \(0.459636\pi\)
\(332\) 1.24207e31i 0.380119i
\(333\) 4.95557e30i 0.146063i
\(334\) 3.75747e30 0.106675
\(335\) −4.62358e31 + 3.07905e31i −1.26450 + 0.842085i
\(336\) 1.65144e31 0.435134
\(337\) 5.91626e31i 1.50201i −0.660295 0.751006i \(-0.729569\pi\)
0.660295 0.751006i \(-0.270431\pi\)
\(338\) 3.76804e30i 0.0921842i
\(339\) −4.76313e31 −1.12304
\(340\) −3.30701e31 + 2.20228e31i −0.751534 + 0.500480i
\(341\) −2.04430e31 −0.447832
\(342\) 1.16185e31i 0.245371i
\(343\) 1.45607e31i 0.296487i
\(344\) 2.28573e31 0.448791
\(345\) −2.30580e31 3.46246e31i −0.436600 0.655610i
\(346\) −4.63145e31 −0.845796
\(347\) 2.62292e31i 0.462026i 0.972951 + 0.231013i \(0.0742039\pi\)
−0.972951 + 0.231013i \(0.925796\pi\)
\(348\) 2.01869e31i 0.343028i
\(349\) −6.42126e31 −1.05269 −0.526347 0.850270i \(-0.676439\pi\)
−0.526347 + 0.850270i \(0.676439\pi\)
\(350\) −2.55626e31 + 6.11777e31i −0.404347 + 0.967704i
\(351\) −4.46591e31 −0.681665
\(352\) 3.73979e30i 0.0550889i
\(353\) 3.67958e31i 0.523136i −0.965185 0.261568i \(-0.915760\pi\)
0.965185 0.261568i \(-0.0842396\pi\)
\(354\) 1.81293e31 0.248794
\(355\) 6.36302e31 + 9.55488e31i 0.842963 + 1.26582i
\(356\) 5.38797e31 0.689128
\(357\) 2.54519e32i 3.14317i
\(358\) 1.48098e31i 0.176608i
\(359\) 1.54521e32 1.77953 0.889766 0.456418i \(-0.150868\pi\)
0.889766 + 0.456418i \(0.150868\pi\)
\(360\) 9.97658e30 6.64385e30i 0.110969 0.0738990i
\(361\) −1.42606e31 −0.153214
\(362\) 4.53205e31i 0.470368i
\(363\) 1.05669e32i 1.05954i
\(364\) −7.13849e31 −0.691574
\(365\) 7.12601e31 4.74553e31i 0.667092 0.444246i
\(366\) −1.39095e32 −1.25834
\(367\) 3.45113e31i 0.301742i −0.988553 0.150871i \(-0.951792\pi\)
0.988553 0.150871i \(-0.0482078\pi\)
\(368\) 1.98567e31i 0.167807i
\(369\) 1.22261e31 0.0998752
\(370\) −1.92233e31 2.88663e31i −0.151812 0.227966i
\(371\) 1.86564e32 1.42447
\(372\) 1.14213e32i 0.843195i
\(373\) 5.25010e31i 0.374807i 0.982283 + 0.187403i \(0.0600072\pi\)
−0.982283 + 0.187403i \(0.939993\pi\)
\(374\) 5.76372e31 0.397931
\(375\) 3.34854e31 + 1.72521e32i 0.223596 + 1.15200i
\(376\) 6.95149e31 0.448983
\(377\) 8.72593e31i 0.545186i
\(378\) 1.26834e32i 0.766637i
\(379\) −3.14351e32 −1.83834 −0.919169 0.393864i \(-0.871138\pi\)
−0.919169 + 0.393864i \(0.871138\pi\)
\(380\) 4.50696e31 + 6.76778e31i 0.255029 + 0.382958i
\(381\) 3.82953e32 2.09693
\(382\) 2.39566e31i 0.126950i
\(383\) 2.45971e32i 1.26154i 0.775972 + 0.630768i \(0.217260\pi\)
−0.775972 + 0.630768i \(0.782740\pi\)
\(384\) 2.08938e31 0.103723
\(385\) 8.00559e31 5.33128e31i 0.384711 0.256196i
\(386\) 6.62116e31 0.308030
\(387\) 1.06274e32i 0.478675i
\(388\) 8.93898e31i 0.389844i
\(389\) −2.32919e32 −0.983638 −0.491819 0.870698i \(-0.663668\pi\)
−0.491819 + 0.870698i \(0.663668\pi\)
\(390\) −1.57484e32 + 1.04876e32i −0.644064 + 0.428911i
\(391\) −3.06029e32 −1.21214
\(392\) 1.10579e32i 0.424227i
\(393\) 3.36425e32i 1.25020i
\(394\) 2.18595e32 0.786932
\(395\) −1.81835e31 2.73048e31i −0.0634182 0.0952305i
\(396\) −1.73880e31 −0.0587571
\(397\) 2.38017e32i 0.779338i −0.920955 0.389669i \(-0.872589\pi\)
0.920955 0.389669i \(-0.127411\pi\)
\(398\) 3.25750e31i 0.103358i
\(399\) −5.20872e32 −1.60166
\(400\) −3.23413e31 + 7.74010e31i −0.0963847 + 0.230673i
\(401\) 5.61815e32 1.62289 0.811444 0.584430i \(-0.198682\pi\)
0.811444 + 0.584430i \(0.198682\pi\)
\(402\) 4.50212e32i 1.26064i
\(403\) 4.93693e32i 1.34012i
\(404\) 1.67355e32 0.440425
\(405\) −2.68256e32 4.02821e32i −0.684482 1.02784i
\(406\) 2.47821e32 0.613145
\(407\) 5.03105e31i 0.120706i
\(408\) 3.22013e32i 0.749241i
\(409\) 3.90144e32 0.880408 0.440204 0.897898i \(-0.354906\pi\)
0.440204 + 0.897898i \(0.354906\pi\)
\(410\) −7.12171e31 + 4.74266e31i −0.155878 + 0.103806i
\(411\) −4.41662e32 −0.937708
\(412\) 1.08533e32i 0.223535i
\(413\) 2.22561e32i 0.444707i
\(414\) 9.23229e31 0.178980
\(415\) −3.36392e32 + 2.24018e32i −0.632767 + 0.421388i
\(416\) −9.03149e31 −0.164851
\(417\) 2.87349e32i 0.508989i
\(418\) 1.17954e32i 0.202773i
\(419\) −5.77394e32 −0.963378 −0.481689 0.876342i \(-0.659977\pi\)
−0.481689 + 0.876342i \(0.659977\pi\)
\(420\) −2.97853e32 4.47264e32i −0.482376 0.724348i
\(421\) −9.43709e32 −1.48358 −0.741792 0.670630i \(-0.766024\pi\)
−0.741792 + 0.670630i \(0.766024\pi\)
\(422\) 2.53097e32i 0.386262i
\(423\) 3.23207e32i 0.478879i
\(424\) 2.36037e32 0.339553
\(425\) 1.19290e33 + 4.98442e32i 1.66625 + 0.696230i
\(426\) −9.30386e32 −1.26195
\(427\) 1.70757e33i 2.24921i
\(428\) 3.98506e32i 0.509786i
\(429\) 2.74476e32 0.341027
\(430\) −4.12252e32 6.19048e32i −0.497516 0.747083i
\(431\) 3.90741e32 0.458061 0.229030 0.973419i \(-0.426444\pi\)
0.229030 + 0.973419i \(0.426444\pi\)
\(432\) 1.60469e32i 0.182744i
\(433\) 7.17692e32i 0.794034i −0.917811 0.397017i \(-0.870045\pi\)
0.917811 0.397017i \(-0.129955\pi\)
\(434\) 1.40211e33 1.50717
\(435\) 5.46725e32 3.64088e32i 0.571023 0.380269i
\(436\) −7.65564e32 −0.776963
\(437\) 6.26288e32i 0.617669i
\(438\) 6.93881e32i 0.665056i
\(439\) 4.73065e32 0.440671 0.220336 0.975424i \(-0.429285\pi\)
0.220336 + 0.975424i \(0.429285\pi\)
\(440\) 1.01285e32 6.74504e31i 0.0917040 0.0610697i
\(441\) 5.14135e32 0.452475
\(442\) 1.39192e33i 1.19080i
\(443\) 1.16496e33i 0.968871i −0.874827 0.484436i \(-0.839025\pi\)
0.874827 0.484436i \(-0.160975\pi\)
\(444\) 2.81079e32 0.227270
\(445\) −9.71767e32 1.45923e33i −0.763945 1.14716i
\(446\) 1.61447e33 1.23408
\(447\) 1.48183e32i 0.110142i
\(448\) 2.56499e32i 0.185401i
\(449\) 1.31459e33 0.924082 0.462041 0.886859i \(-0.347117\pi\)
0.462041 + 0.886859i \(0.347117\pi\)
\(450\) −3.59873e32 1.50370e32i −0.246033 0.102803i
\(451\) 1.24123e32 0.0825363
\(452\) 7.39801e32i 0.478503i
\(453\) 2.46730e33i 1.55237i
\(454\) 5.88046e32 0.359926
\(455\) 1.28749e33 + 1.93333e33i 0.766657 + 1.15123i
\(456\) −6.58999e32 −0.381789
\(457\) 4.66527e32i 0.262981i −0.991317 0.131490i \(-0.958024\pi\)
0.991317 0.131490i \(-0.0419763\pi\)
\(458\) 1.53653e33i 0.842797i
\(459\) −2.47313e33 −1.32004
\(460\) −5.37782e32 + 3.58133e32i −0.279340 + 0.186025i
\(461\) 1.54013e33 0.778566 0.389283 0.921118i \(-0.372723\pi\)
0.389283 + 0.921118i \(0.372723\pi\)
\(462\) 7.79528e32i 0.383537i
\(463\) 2.04979e33i 0.981628i 0.871264 + 0.490814i \(0.163301\pi\)
−0.871264 + 0.490814i \(0.836699\pi\)
\(464\) 3.13539e32 0.146156
\(465\) 3.09324e33 2.05993e33i 1.40363 0.934739i
\(466\) −1.84903e33 −0.816806
\(467\) 1.89201e33i 0.813699i 0.913495 + 0.406849i \(0.133373\pi\)
−0.913495 + 0.406849i \(0.866627\pi\)
\(468\) 4.19916e32i 0.175828i
\(469\) −5.52695e33 −2.25333
\(470\) −1.25376e33 1.88268e33i −0.497728 0.747402i
\(471\) 6.01378e32 0.232480
\(472\) 2.81580e32i 0.106005i
\(473\) 1.07893e33i 0.395574i
\(474\) 2.65875e32 0.0949399
\(475\) 1.02006e33 2.44126e33i 0.354777 0.849070i
\(476\) −3.95314e33 −1.33923
\(477\) 1.09745e33i 0.362163i
\(478\) 7.28423e32i 0.234172i
\(479\) −9.31244e32 −0.291655 −0.145828 0.989310i \(-0.546584\pi\)
−0.145828 + 0.989310i \(0.546584\pi\)
\(480\) −3.76838e32 5.65870e32i −0.114984 0.172664i
\(481\) −1.21499e33 −0.361208
\(482\) 2.12307e32i 0.0615003i
\(483\) 4.13896e33i 1.16829i
\(484\) 1.64123e33 0.451443
\(485\) 2.42096e33 1.61222e33i 0.648957 0.432169i
\(486\) 1.94386e33 0.507822
\(487\) 1.90079e33i 0.483973i −0.970280 0.241987i \(-0.922201\pi\)
0.970280 0.241987i \(-0.0777990\pi\)
\(488\) 2.16039e33i 0.536148i
\(489\) −6.97611e33 −1.68754
\(490\) −2.99484e33 + 1.99440e33i −0.706192 + 0.470285i
\(491\) −1.53089e32 −0.0351905 −0.0175953 0.999845i \(-0.505601\pi\)
−0.0175953 + 0.999845i \(0.505601\pi\)
\(492\) 6.93461e32i 0.155403i
\(493\) 4.83223e33i 1.05575i
\(494\) 2.84857e33 0.606792
\(495\) 3.13608e32 + 4.70922e32i 0.0651362 + 0.0978103i
\(496\) 1.77393e33 0.359266
\(497\) 1.14217e34i 2.25568i
\(498\) 3.27554e33i 0.630836i
\(499\) 3.99567e33 0.750469 0.375234 0.926930i \(-0.377562\pi\)
0.375234 + 0.926930i \(0.377562\pi\)
\(500\) 2.67957e33 5.20089e32i 0.490840 0.0952692i
\(501\) 9.90908e32 0.177036
\(502\) 3.77666e33i 0.658130i
\(503\) 7.03745e33i 1.19623i 0.801410 + 0.598116i \(0.204084\pi\)
−0.801410 + 0.598116i \(0.795916\pi\)
\(504\) 1.19258e33 0.197746
\(505\) −3.01840e33 4.53251e33i −0.488241 0.733156i
\(506\) 9.37291e32 0.147908
\(507\) 9.93695e32i 0.152987i
\(508\) 5.94796e33i 0.893453i
\(509\) −5.62123e32 −0.0823870 −0.0411935 0.999151i \(-0.513116\pi\)
−0.0411935 + 0.999151i \(0.513116\pi\)
\(510\) −8.72114e33 + 5.80779e33i −1.24723 + 0.830584i
\(511\) 8.51832e33 1.18876
\(512\) 3.24519e32i 0.0441942i
\(513\) 5.06125e33i 0.672652i
\(514\) 1.07587e34 1.39547
\(515\) −2.93941e33 + 1.95749e33i −0.372109 + 0.247804i
\(516\) 6.02785e33 0.744803
\(517\) 3.28129e33i 0.395743i
\(518\) 3.45063e33i 0.406234i
\(519\) −1.22139e34 −1.40366
\(520\) 1.62891e33 + 2.44601e33i 0.182749 + 0.274421i
\(521\) 1.15250e34 1.26232 0.631162 0.775651i \(-0.282578\pi\)
0.631162 + 0.775651i \(0.282578\pi\)
\(522\) 1.45779e33i 0.155888i
\(523\) 1.37858e34i 1.43933i 0.694323 + 0.719663i \(0.255704\pi\)
−0.694323 + 0.719663i \(0.744296\pi\)
\(524\) 5.22529e33 0.532683
\(525\) −6.74128e33 + 1.61336e34i −0.671044 + 1.60598i
\(526\) −5.26289e33 −0.511567
\(527\) 2.73397e34i 2.59514i
\(528\) 9.86245e32i 0.0914241i
\(529\) 6.06915e33 0.549455
\(530\) −4.25714e33 6.39264e33i −0.376418 0.565239i
\(531\) 1.30920e33 0.113064
\(532\) 8.09009e33i 0.682430i
\(533\) 2.99754e33i 0.246987i
\(534\) 1.42090e34 1.14366
\(535\) 1.07928e34 7.18740e33i 0.848617 0.565132i
\(536\) −6.99260e33 −0.537129
\(537\) 3.90559e33i 0.293095i
\(538\) 1.17911e34i 0.864525i
\(539\) 5.21966e33 0.373923
\(540\) −4.34600e33 + 2.89419e33i −0.304206 + 0.202584i
\(541\) −2.20638e34 −1.50909 −0.754543 0.656251i \(-0.772141\pi\)
−0.754543 + 0.656251i \(0.772141\pi\)
\(542\) 2.65207e33i 0.177253i
\(543\) 1.19518e34i 0.780612i
\(544\) −5.00145e33 −0.319234
\(545\) 1.38076e34 + 2.07339e34i 0.861316 + 1.29338i
\(546\) −1.88254e34 −1.14772
\(547\) 1.59179e34i 0.948514i −0.880387 0.474257i \(-0.842717\pi\)
0.880387 0.474257i \(-0.157283\pi\)
\(548\) 6.85982e33i 0.399536i
\(549\) −1.00447e34 −0.571849
\(550\) −3.65354e33 1.52660e33i −0.203320 0.0849556i
\(551\) −9.88915e33 −0.537977
\(552\) 5.23654e33i 0.278488i
\(553\) 3.26398e33i 0.169700i
\(554\) −1.37640e34 −0.699637
\(555\) −5.06951e33 7.61252e33i −0.251944 0.378326i
\(556\) 4.46305e33 0.216869
\(557\) 1.37117e34i 0.651479i −0.945460 0.325739i \(-0.894387\pi\)
0.945460 0.325739i \(-0.105613\pi\)
\(558\) 8.24783e33i 0.383188i
\(559\) −2.60558e34 −1.18374
\(560\) −6.94682e33 + 4.62619e33i −0.308628 + 0.205529i
\(561\) 1.51999e34 0.660397
\(562\) 1.55488e34i 0.660681i
\(563\) 3.01185e34i 1.25164i −0.779969 0.625818i \(-0.784765\pi\)
0.779969 0.625818i \(-0.215235\pi\)
\(564\) 1.83322e34 0.745121
\(565\) 2.00361e34 1.33430e34i 0.796542 0.530452i
\(566\) 9.26175e33 0.360153
\(567\) 4.81525e34i 1.83160i
\(568\) 1.44506e34i 0.537689i
\(569\) −1.37959e34 −0.502166 −0.251083 0.967966i \(-0.580787\pi\)
−0.251083 + 0.967966i \(0.580787\pi\)
\(570\) 1.18856e34 + 1.78478e34i 0.423239 + 0.635548i
\(571\) 1.46730e34 0.511173 0.255587 0.966786i \(-0.417731\pi\)
0.255587 + 0.966786i \(0.417731\pi\)
\(572\) 4.26311e33i 0.145304i
\(573\) 6.31775e33i 0.210683i
\(574\) −8.51317e33 −0.277775
\(575\) 1.93987e34 + 8.10560e33i 0.619335 + 0.258784i
\(576\) 1.50884e33 0.0471369
\(577\) 5.61780e34i 1.71739i 0.512488 + 0.858694i \(0.328724\pi\)
−0.512488 + 0.858694i \(0.671276\pi\)
\(578\) 5.34453e34i 1.59886i
\(579\) 1.74611e34 0.511199
\(580\) −5.65495e33 8.49163e33i −0.162024 0.243300i
\(581\) −4.02117e34 −1.12759
\(582\) 2.35736e34i 0.646976i
\(583\) 1.11416e34i 0.299290i
\(584\) 1.07772e34 0.283365
\(585\) −1.13726e34 + 7.57355e33i −0.292694 + 0.194918i
\(586\) −3.35969e34 −0.846407
\(587\) 3.79085e34i 0.934889i −0.884022 0.467444i \(-0.845175\pi\)
0.884022 0.467444i \(-0.154825\pi\)
\(588\) 2.91617e34i 0.704037i
\(589\) −5.59505e34 −1.32240
\(590\) −7.62609e33 + 5.07855e33i −0.176462 + 0.117514i
\(591\) 5.76471e34 1.30597
\(592\) 4.36567e33i 0.0968344i
\(593\) 1.87221e34i 0.406604i 0.979116 + 0.203302i \(0.0651673\pi\)
−0.979116 + 0.203302i \(0.934833\pi\)
\(594\) 7.57457e33 0.161075
\(595\) 7.12984e34 + 1.07064e35i 1.48463 + 2.22936i
\(596\) −2.30154e33 −0.0469290
\(597\) 8.59057e33i 0.171531i
\(598\) 2.26353e34i 0.442611i
\(599\) 5.76089e34 1.10320 0.551601 0.834108i \(-0.314017\pi\)
0.551601 + 0.834108i \(0.314017\pi\)
\(600\) −8.52895e33 + 2.04119e34i −0.159958 + 0.382819i
\(601\) 4.67680e34 0.859049 0.429525 0.903055i \(-0.358681\pi\)
0.429525 + 0.903055i \(0.358681\pi\)
\(602\) 7.40000e34i 1.33130i
\(603\) 3.25118e34i 0.572895i
\(604\) −3.83217e34 −0.661428
\(605\) −2.96011e34 4.44498e34i −0.500456 0.751498i
\(606\) 4.41344e34 0.730919
\(607\) 3.27875e33i 0.0531924i −0.999646 0.0265962i \(-0.991533\pi\)
0.999646 0.0265962i \(-0.00846684\pi\)
\(608\) 1.02354e34i 0.162672i
\(609\) 6.53546e34 1.01756
\(610\) 5.85103e34 3.89646e34i 0.892502 0.594356i
\(611\) −7.92424e34 −1.18425
\(612\) 2.32540e34i 0.340491i
\(613\) 3.82074e34i 0.548140i 0.961710 + 0.274070i \(0.0883701\pi\)
−0.961710 + 0.274070i \(0.911630\pi\)
\(614\) 4.78916e34 0.673216
\(615\) −1.87811e34 + 1.25072e34i −0.258692 + 0.172274i
\(616\) 1.21075e34 0.163416
\(617\) 8.69280e34i 1.14973i 0.818249 + 0.574864i \(0.194945\pi\)
−0.818249 + 0.574864i \(0.805055\pi\)
\(618\) 2.86219e34i 0.370974i
\(619\) 3.61889e34 0.459666 0.229833 0.973230i \(-0.426182\pi\)
0.229833 + 0.973230i \(0.426182\pi\)
\(620\) −3.19944e34 4.80437e34i −0.398270 0.598054i
\(621\) −4.02177e34 −0.490651
\(622\) 3.99528e34i 0.477713i
\(623\) 1.74434e35i 2.04424i
\(624\) −2.38176e34 −0.273583
\(625\) −6.24140e34 6.31910e34i −0.702720 0.711467i
\(626\) −8.76542e34 −0.967372
\(627\) 3.11066e34i 0.336517i
\(628\) 9.34049e33i 0.0990544i
\(629\) −6.72833e34 −0.699478
\(630\) −2.15093e34 3.22990e34i −0.219215 0.329179i
\(631\) −6.79781e34 −0.679207 −0.339604 0.940569i \(-0.610293\pi\)
−0.339604 + 0.940569i \(0.610293\pi\)
\(632\) 4.12953e33i 0.0404517i
\(633\) 6.67460e34i 0.641030i
\(634\) 1.17898e35 1.11017
\(635\) −1.61090e35 + 1.07277e35i −1.48729 + 0.990453i
\(636\) 6.22470e34 0.563514
\(637\) 1.26053e35i 1.11895i
\(638\) 1.47999e34i 0.128825i
\(639\) −6.71875e34 −0.573492
\(640\) −8.78899e33 + 5.85298e33i −0.0735681 + 0.0489922i
\(641\) −8.90435e34 −0.730932 −0.365466 0.930825i \(-0.619090\pi\)
−0.365466 + 0.930825i \(0.619090\pi\)
\(642\) 1.05093e35i 0.846028i
\(643\) 1.28997e35i 1.01846i 0.860630 + 0.509230i \(0.170070\pi\)
−0.860630 + 0.509230i \(0.829930\pi\)
\(644\) −6.42856e34 −0.497783
\(645\) −1.08718e35 1.63253e35i −0.825665 1.23984i
\(646\) 1.57748e35 1.17505
\(647\) 1.39383e34i 0.101837i −0.998703 0.0509186i \(-0.983785\pi\)
0.998703 0.0509186i \(-0.0162149\pi\)
\(648\) 6.09218e34i 0.436601i
\(649\) 1.32914e34 0.0934353
\(650\) 3.68670e34 8.82320e34i 0.254227 0.608428i
\(651\) 3.69761e35 2.50126
\(652\) 1.08352e35i 0.719020i
\(653\) 1.27030e35i 0.826970i −0.910511 0.413485i \(-0.864311\pi\)
0.910511 0.413485i \(-0.135689\pi\)
\(654\) −2.01892e35 −1.28943
\(655\) −9.42427e34 1.41517e35i −0.590516 0.886734i
\(656\) −1.07707e34 −0.0662135
\(657\) 5.01083e34i 0.302234i
\(658\) 2.25053e35i 1.33187i
\(659\) −4.18479e34 −0.243000 −0.121500 0.992591i \(-0.538770\pi\)
−0.121500 + 0.992591i \(0.538770\pi\)
\(660\) 2.67106e34 1.77878e34i 0.152190 0.101350i
\(661\) −2.05843e34 −0.115085 −0.0575424 0.998343i \(-0.518326\pi\)
−0.0575424 + 0.998343i \(0.518326\pi\)
\(662\) 3.26002e34i 0.178853i
\(663\) 3.67074e35i 1.97621i
\(664\) −5.08751e34 −0.268785
\(665\) 2.19105e35 1.45912e35i 1.13601 0.756520i
\(666\) 2.02980e34 0.103282
\(667\) 7.85813e34i 0.392415i
\(668\) 1.53906e34i 0.0754310i
\(669\) 4.25764e35 2.04806
\(670\) 1.26118e35 + 1.89382e35i 0.595444 + 0.894135i
\(671\) −1.01976e35 −0.472573
\(672\) 6.76432e34i 0.307686i
\(673\) 1.99051e35i 0.888741i −0.895843 0.444370i \(-0.853427\pi\)
0.895843 0.444370i \(-0.146573\pi\)
\(674\) −2.42330e35 −1.06208
\(675\) 1.56768e35 + 6.55042e34i 0.674466 + 0.281820i
\(676\) −1.54339e34 −0.0651841
\(677\) 3.44905e35i 1.43002i 0.699116 + 0.715008i \(0.253577\pi\)
−0.699116 + 0.715008i \(0.746423\pi\)
\(678\) 1.95098e35i 0.794111i
\(679\) 2.89397e35 1.15644
\(680\) 9.02055e34 + 1.35455e35i 0.353893 + 0.531415i
\(681\) 1.55078e35 0.597324
\(682\) 8.37345e34i 0.316665i
\(683\) 3.76388e35i 1.39758i −0.715326 0.698791i \(-0.753722\pi\)
0.715326 0.698791i \(-0.246278\pi\)
\(684\) −4.75893e34 −0.173503
\(685\) 1.85786e35 1.23723e35i 0.665089 0.442912i
\(686\) −5.96407e34 −0.209648
\(687\) 4.05209e35i 1.39869i
\(688\) 9.36235e34i 0.317343i
\(689\) −2.69067e35 −0.895613
\(690\) −1.41822e35 + 9.44457e34i −0.463586 + 0.308723i
\(691\) −5.21059e35 −1.67268 −0.836338 0.548215i \(-0.815308\pi\)
−0.836338 + 0.548215i \(0.815308\pi\)
\(692\) 1.89704e35i 0.598068i
\(693\) 5.62933e34i 0.174297i
\(694\) 1.07435e35 0.326702
\(695\) −8.04950e34 1.20873e35i −0.240414 0.361011i
\(696\) 8.26855e34 0.242557
\(697\) 1.65997e35i 0.478290i
\(698\) 2.63015e35i 0.744368i
\(699\) −4.87619e35 −1.35555
\(700\) 2.50584e35 + 1.04704e35i 0.684270 + 0.285917i
\(701\) 2.95057e35 0.791462 0.395731 0.918366i \(-0.370491\pi\)
0.395731 + 0.918366i \(0.370491\pi\)
\(702\) 1.82924e35i 0.482010i
\(703\) 1.37695e35i 0.356432i
\(704\) 1.53182e34 0.0389537
\(705\) −3.30638e35 4.96495e35i −0.826017 1.24037i
\(706\) −1.50716e35 −0.369913
\(707\) 5.41809e35i 1.30648i
\(708\) 7.42575e34i 0.175924i
\(709\) 6.60823e35 1.53818 0.769090 0.639141i \(-0.220710\pi\)
0.769090 + 0.639141i \(0.220710\pi\)
\(710\) 3.91368e35 2.60629e35i 0.895067 0.596065i
\(711\) 1.92001e34 0.0431452
\(712\) 2.20691e35i 0.487287i
\(713\) 4.44595e35i 0.964595i
\(714\) −1.04251e36 −2.22256
\(715\) −1.15459e35 + 7.68890e34i −0.241880 + 0.161079i
\(716\) −6.06609e34 −0.124881
\(717\) 1.92097e35i 0.388626i
\(718\) 6.32916e35i 1.25832i
\(719\) 5.66102e35 1.10607 0.553036 0.833157i \(-0.313469\pi\)
0.553036 + 0.833157i \(0.313469\pi\)
\(720\) −2.72132e34 4.08641e34i −0.0522545 0.0784667i
\(721\) −3.51373e35 −0.663097
\(722\) 5.84114e34i 0.108339i
\(723\) 5.59890e34i 0.102064i
\(724\) 1.85633e35 0.332601
\(725\) −1.27988e35 + 3.06308e35i −0.225395 + 0.539428i
\(726\) 4.32821e35 0.749205
\(727\) 1.18938e35i 0.202368i −0.994868 0.101184i \(-0.967737\pi\)
0.994868 0.101184i \(-0.0322631\pi\)
\(728\) 2.92392e35i 0.489017i
\(729\) −2.38517e35 −0.392126
\(730\) −1.94377e35 2.91881e35i −0.314129 0.471705i
\(731\) −1.44292e36 −2.29231
\(732\) 5.69732e35i 0.889778i
\(733\) 2.75860e35i 0.423534i 0.977320 + 0.211767i \(0.0679219\pi\)
−0.977320 + 0.211767i \(0.932078\pi\)
\(734\) −1.41358e35 −0.213364
\(735\) −7.89790e35 + 5.25956e35i −1.17198 + 0.780473i
\(736\) −8.13330e34 −0.118657
\(737\) 3.30070e35i 0.473438i
\(738\) 5.00780e34i 0.0706224i
\(739\) 7.44302e35 1.03203 0.516017 0.856579i \(-0.327414\pi\)
0.516017 + 0.856579i \(0.327414\pi\)
\(740\) −1.18236e35 + 7.87388e34i −0.161196 + 0.107348i
\(741\) 7.51215e35 1.00702
\(742\) 7.64166e35i 1.00725i
\(743\) 9.71605e35i 1.25930i 0.776878 + 0.629651i \(0.216802\pi\)
−0.776878 + 0.629651i \(0.783198\pi\)
\(744\) 4.67816e35 0.596229
\(745\) 4.15104e34 + 6.23331e34i 0.0520239 + 0.0781206i
\(746\) 2.15044e35 0.265028
\(747\) 2.36542e35i 0.286682i
\(748\) 2.36082e35i 0.281380i
\(749\) 1.29015e36 1.51223
\(750\) 7.06647e35 1.37156e35i 0.814586 0.158106i
\(751\) −3.81212e35 −0.432183 −0.216091 0.976373i \(-0.569331\pi\)
−0.216091 + 0.976373i \(0.569331\pi\)
\(752\) 2.84733e35i 0.317479i
\(753\) 9.95969e35i 1.09222i
\(754\) −3.57414e35 −0.385505
\(755\) 6.91165e35 + 1.03787e36i 0.733238 + 1.10105i
\(756\) −5.19514e35 −0.542094
\(757\) 1.20614e35i 0.123794i −0.998083 0.0618968i \(-0.980285\pi\)
0.998083 0.0618968i \(-0.0197150\pi\)
\(758\) 1.28758e36i 1.29990i
\(759\) 2.47179e35 0.245465
\(760\) 2.77208e35 1.84605e35i 0.270792 0.180333i
\(761\) −1.39110e36 −1.33675 −0.668374 0.743825i \(-0.733010\pi\)
−0.668374 + 0.743825i \(0.733010\pi\)
\(762\) 1.56858e36i 1.48275i
\(763\) 2.47849e36i 2.30479i
\(764\) −9.81260e34 −0.0897671
\(765\) −6.29793e35 + 4.19407e35i −0.566800 + 0.377457i
\(766\) 1.00750e36 0.892040
\(767\) 3.20983e35i 0.279602i
\(768\) 8.55810e34i 0.0733436i
\(769\) −5.62814e35 −0.474554 −0.237277 0.971442i \(-0.576255\pi\)
−0.237277 + 0.971442i \(0.576255\pi\)
\(770\) −2.18369e35 3.27909e35i −0.181158 0.272032i
\(771\) 2.83726e36 2.31589
\(772\) 2.71203e35i 0.217810i
\(773\) 1.08729e36i 0.859211i −0.903017 0.429605i \(-0.858653\pi\)
0.903017 0.429605i \(-0.141347\pi\)
\(774\) 4.35299e35 0.338474
\(775\) −7.24128e35 + 1.73302e36i −0.554044 + 1.32597i
\(776\) 3.66141e35 0.275662
\(777\) 9.09988e35i 0.674175i
\(778\) 9.54037e35i 0.695537i
\(779\) 3.39713e35 0.243721
\(780\) 4.29571e35 + 6.45055e35i 0.303286 + 0.455422i
\(781\) −6.82108e35 −0.473931
\(782\) 1.25350e36i 0.857114i
\(783\) 6.35042e35i 0.427347i
\(784\) −4.52934e35 −0.299974
\(785\) −2.52970e35 + 1.68464e35i −0.164892 + 0.109809i
\(786\) 1.37800e36 0.884028
\(787\) 5.64847e35i 0.356654i −0.983971 0.178327i \(-0.942932\pi\)
0.983971 0.178327i \(-0.0570684\pi\)
\(788\) 8.95364e35i 0.556445i
\(789\) −1.38791e36 −0.848984
\(790\) −1.11841e35 + 7.44796e34i −0.0673381 + 0.0448434i
\(791\) 2.39509e36 1.41943
\(792\) 7.12213e34i 0.0415475i
\(793\) 2.46270e36i 1.41416i
\(794\) −9.74916e35 −0.551075
\(795\) −1.12268e36 1.68585e36i −0.624694 0.938057i
\(796\) 1.33427e35 0.0730855
\(797\) 2.16083e34i 0.0116517i −0.999983 0.00582587i \(-0.998146\pi\)
0.999983 0.00582587i \(-0.00185444\pi\)
\(798\) 2.13349e36i 1.13254i
\(799\) −4.38828e36 −2.29329
\(800\) 3.17034e35 + 1.32470e35i 0.163110 + 0.0681543i
\(801\) 1.02610e36 0.519734
\(802\) 2.30119e36i 1.14756i
\(803\) 5.08715e35i 0.249764i
\(804\) −1.84407e36 −0.891407
\(805\) 1.15945e36 + 1.74106e36i 0.551826 + 0.828638i
\(806\) −2.02217e36 −0.947608
\(807\) 3.10952e36i 1.43474i
\(808\) 6.85487e35i 0.311428i
\(809\) 3.34498e36 1.49637 0.748183 0.663493i \(-0.230927\pi\)
0.748183 + 0.663493i \(0.230927\pi\)
\(810\) −1.64995e36 + 1.09878e36i −0.726790 + 0.484002i
\(811\) −3.06093e36 −1.32768 −0.663838 0.747876i \(-0.731074\pi\)
−0.663838 + 0.747876i \(0.731074\pi\)
\(812\) 1.01508e36i 0.433559i
\(813\) 6.99395e35i 0.294165i
\(814\) 2.06072e35 0.0853520
\(815\) 2.93451e36 1.95422e36i 1.19692 0.797082i
\(816\) −1.31897e36 −0.529793
\(817\) 2.95292e36i 1.16809i
\(818\) 1.59803e36i 0.622542i
\(819\) −1.35947e36 −0.521579
\(820\) 1.94259e35 + 2.91705e35i 0.0734021 + 0.110223i
\(821\) 4.35079e36 1.61912 0.809559 0.587039i \(-0.199706\pi\)
0.809559 + 0.587039i \(0.199706\pi\)
\(822\) 1.80905e36i 0.663060i
\(823\) 2.15419e35i 0.0777655i 0.999244 + 0.0388827i \(0.0123799\pi\)
−0.999244 + 0.0388827i \(0.987620\pi\)
\(824\) −4.44550e35 −0.158063
\(825\) −9.63500e35 4.02590e35i −0.337425 0.140990i
\(826\) −9.11610e35 −0.314455
\(827\) 1.29774e36i 0.440929i −0.975395 0.220465i \(-0.929243\pi\)
0.975395 0.220465i \(-0.0707574\pi\)
\(828\) 3.78155e35i 0.126558i
\(829\) −2.45539e36 −0.809447 −0.404723 0.914439i \(-0.632632\pi\)
−0.404723 + 0.914439i \(0.632632\pi\)
\(830\) 9.17578e35 + 1.37786e36i 0.297966 + 0.447434i
\(831\) −3.62980e36 −1.16110
\(832\) 3.69930e35i 0.116568i
\(833\) 6.98057e36i 2.16685i
\(834\) 1.17698e36 0.359910
\(835\) −4.16826e35 + 2.77583e35i −0.125567 + 0.0836203i
\(836\) −4.83141e35 −0.143382
\(837\) 3.59292e36i 1.05046i
\(838\) 2.36500e36i 0.681211i
\(839\) 4.28477e36 1.21591 0.607957 0.793970i \(-0.291989\pi\)
0.607957 + 0.793970i \(0.291989\pi\)
\(840\) −1.83199e36 + 1.22000e36i −0.512192 + 0.341091i
\(841\) −2.38956e36 −0.658214
\(842\) 3.86543e36i 1.04905i
\(843\) 4.10047e36i 1.09645i
\(844\) 1.03669e36 0.273128
\(845\) 2.78364e35 + 4.17999e35i 0.0722610 + 0.108509i
\(846\) 1.32386e36 0.338619
\(847\) 5.31346e36i 1.33917i
\(848\) 9.66810e35i 0.240100i
\(849\) 2.44248e36 0.597702
\(850\) 2.04162e36 4.88610e36i 0.492309 1.17822i
\(851\) −1.09415e36 −0.259991
\(852\) 3.81086e36i 0.892336i
\(853\) 5.04634e36i 1.16443i 0.813035 + 0.582215i \(0.197814\pi\)
−0.813035 + 0.582215i \(0.802186\pi\)
\(854\) 6.99422e36 1.59043
\(855\) 8.58315e35 + 1.28887e36i 0.192340 + 0.288823i
\(856\) 1.63228e36 0.360473
\(857\) 1.55987e35i 0.0339491i −0.999856 0.0169745i \(-0.994597\pi\)
0.999856 0.0169745i \(-0.00540342\pi\)
\(858\) 1.12425e36i 0.241142i
\(859\) 6.31632e36 1.33521 0.667605 0.744516i \(-0.267320\pi\)
0.667605 + 0.744516i \(0.267320\pi\)
\(860\) −2.53562e36 + 1.68858e36i −0.528267 + 0.351797i
\(861\) −2.24507e36 −0.460988
\(862\) 1.60048e36i 0.323898i
\(863\) 3.19641e36i 0.637569i −0.947827 0.318785i \(-0.896725\pi\)
0.947827 0.318785i \(-0.103275\pi\)
\(864\) −6.57280e35 −0.129220
\(865\) 5.13779e36 3.42148e36i 0.995577 0.662999i
\(866\) −2.93967e36 −0.561467
\(867\) 1.40944e37i 2.65344i
\(868\) 5.74306e36i 1.06573i
\(869\) 1.94925e35 0.0356550
\(870\) −1.49131e36 2.23939e36i −0.268891 0.403774i
\(871\) 7.97111e36 1.41674
\(872\) 3.13575e36i 0.549396i
\(873\) 1.70236e36i 0.294017i
\(874\) 2.56527e36 0.436758
\(875\) −1.68378e36 8.67504e36i −0.282607 1.45603i
\(876\) 2.84214e36 0.470266
\(877\) 1.75514e36i 0.286297i 0.989701 + 0.143148i \(0.0457226\pi\)
−0.989701 + 0.143148i \(0.954277\pi\)
\(878\) 1.93768e36i 0.311602i
\(879\) −8.86007e36 −1.40468
\(880\) −2.76277e35 4.14865e35i −0.0431828 0.0648445i
\(881\) −1.15533e36 −0.178035 −0.0890177 0.996030i \(-0.528373\pi\)
−0.0890177 + 0.996030i \(0.528373\pi\)
\(882\) 2.10590e36i 0.319948i
\(883\) 2.62306e35i 0.0392916i 0.999807 + 0.0196458i \(0.00625386\pi\)
−0.999807 + 0.0196458i \(0.993746\pi\)
\(884\) 5.70132e36 0.842020
\(885\) −2.01113e36 + 1.33930e36i −0.292852 + 0.195023i
\(886\) −4.77170e36 −0.685096
\(887\) 1.26656e37i 1.79299i 0.443049 + 0.896497i \(0.353897\pi\)
−0.443049 + 0.896497i \(0.646103\pi\)
\(888\) 1.15130e36i 0.160704i
\(889\) −1.92564e37 −2.65035
\(890\) −5.97701e36 + 3.98036e36i −0.811165 + 0.540191i
\(891\) 2.87568e36 0.384830
\(892\) 6.61288e36i 0.872630i
\(893\) 8.98059e36i 1.16859i
\(894\) −6.06956e35 −0.0778822
\(895\) 1.09407e36 + 1.64289e36i 0.138439 + 0.207884i
\(896\) −1.05062e36 −0.131098
\(897\) 5.96931e36i 0.734546i
\(898\) 5.38455e36i 0.653424i
\(899\) 7.02019e36 0.840142
\(900\) −6.15915e35 + 1.47404e36i −0.0726925 + 0.173971i
\(901\) −1.49004e37 −1.73435
\(902\) 5.08408e35i 0.0583620i
\(903\) 1.95150e37i 2.20939i
\(904\) 3.03022e36 0.338352
\(905\) −3.34805e36 5.02753e36i −0.368710 0.553665i
\(906\) −1.01061e37 −1.09769
\(907\) 1.10945e37i 1.18855i 0.804262 + 0.594275i \(0.202561\pi\)
−0.804262 + 0.594275i \(0.797439\pi\)
\(908\) 2.40864e36i 0.254506i
\(909\) 3.18715e36 0.332165
\(910\) 7.91891e36 5.27355e36i 0.814045 0.542108i
\(911\) −6.00569e36 −0.608952 −0.304476 0.952520i \(-0.598481\pi\)
−0.304476 + 0.952520i \(0.598481\pi\)
\(912\) 2.69926e36i 0.269966i
\(913\) 2.40145e36i 0.236913i
\(914\) −1.91089e36 −0.185956
\(915\) 1.54301e37 1.02756e37i 1.48117 0.986379i
\(916\) 6.29363e36 0.595947
\(917\) 1.69167e37i 1.58016i
\(918\) 1.01299e37i 0.933411i
\(919\) −8.07538e36 −0.734039 −0.367020 0.930213i \(-0.619622\pi\)
−0.367020 + 0.930213i \(0.619622\pi\)
\(920\) 1.46691e36 + 2.20276e36i 0.131540 + 0.197523i
\(921\) 1.26298e37 1.11725
\(922\) 6.30837e36i 0.550529i
\(923\) 1.64727e37i 1.41822i
\(924\) 3.19295e36 0.271201
\(925\) 4.26499e36 + 1.78209e36i 0.357393 + 0.149334i
\(926\) 8.39594e36 0.694116
\(927\) 2.06692e36i 0.168588i
\(928\) 1.28426e36i 0.103348i
\(929\) −1.77412e37 −1.40860 −0.704299 0.709903i \(-0.748739\pi\)
−0.704299 + 0.709903i \(0.748739\pi\)
\(930\) −8.43747e36 1.26699e37i −0.660960 0.992515i
\(931\) 1.42857e37 1.10416
\(932\) 7.57361e36i 0.577569i
\(933\) 1.05362e37i 0.792801i
\(934\) 7.74969e36 0.575372
\(935\) −6.39385e36 + 4.25795e36i −0.468401 + 0.311929i
\(936\) −1.71997e36 −0.124329
\(937\) 1.54851e37i 1.10451i 0.833676 + 0.552254i \(0.186232\pi\)
−0.833676 + 0.552254i \(0.813768\pi\)
\(938\) 2.26384e37i 1.59335i
\(939\) −2.31159e37 −1.60543
\(940\) −7.71147e36 + 5.13541e36i −0.528493 + 0.351947i
\(941\) 6.87286e36 0.464801 0.232400 0.972620i \(-0.425342\pi\)
0.232400 + 0.972620i \(0.425342\pi\)
\(942\) 2.46324e36i 0.164388i
\(943\) 2.69943e36i 0.177777i
\(944\) −1.15335e36 −0.0749570
\(945\) 9.36989e36 + 1.40701e37i 0.600948 + 0.902400i
\(946\) 4.41929e36 0.279713
\(947\) 6.52055e36i 0.407295i −0.979044 0.203648i \(-0.934720\pi\)
0.979044 0.203648i \(-0.0652797\pi\)
\(948\) 1.08903e36i 0.0671326i
\(949\) −1.22853e37 −0.747410
\(950\) −9.99939e36 4.17816e36i −0.600383 0.250865i
\(951\) 3.10917e37 1.84242
\(952\) 1.61921e37i 0.946979i
\(953\) 8.60992e36i 0.496979i −0.968635 0.248489i \(-0.920066\pi\)
0.968635 0.248489i \(-0.0799341\pi\)
\(954\) 4.49515e36 0.256088
\(955\) 1.76979e36 + 2.65756e36i 0.0995129 + 0.149431i
\(956\) −2.98362e36 −0.165585
\(957\) 3.90299e36i 0.213795i
\(958\) 3.81438e36i 0.206231i
\(959\) 2.22085e37 1.18519
\(960\) −2.31780e36 + 1.54353e36i −0.122092 + 0.0813063i
\(961\) 2.04858e37 1.06515
\(962\) 4.97658e36i 0.255413i
\(963\) 7.58922e36i 0.384476i
\(964\) 8.69611e35 0.0434872
\(965\) −7.34503e36 + 4.89138e36i −0.362579 + 0.241457i
\(966\) −1.69532e37 −0.826109
\(967\) 1.52261e37i 0.732415i 0.930533 + 0.366208i \(0.119344\pi\)
−0.930533 + 0.366208i \(0.880656\pi\)
\(968\) 6.72249e36i 0.319219i
\(969\) 4.16007e37 1.95008
\(970\) −6.60367e36 9.91625e36i −0.305590 0.458882i
\(971\) −1.36186e37 −0.622145 −0.311072 0.950386i \(-0.600688\pi\)
−0.311072 + 0.950386i \(0.600688\pi\)
\(972\) 7.96204e36i 0.359084i
\(973\) 1.44490e37i 0.643321i
\(974\) −7.78562e36 −0.342221
\(975\) 9.72245e36 2.32683e37i 0.421908 1.00973i
\(976\) 8.84897e36 0.379114
\(977\) 1.77242e37i 0.749696i −0.927086 0.374848i \(-0.877695\pi\)
0.927086 0.374848i \(-0.122305\pi\)
\(978\) 2.85742e37i 1.19327i
\(979\) 1.04172e37 0.429505
\(980\) 8.16906e36 + 1.22669e37i 0.332542 + 0.499354i
\(981\) −1.45795e37 −0.585978
\(982\) 6.27053e35i 0.0248835i
\(983\) 1.62613e37i 0.637140i 0.947899 + 0.318570i \(0.103203\pi\)
−0.947899 + 0.318570i \(0.896797\pi\)
\(984\) −2.84042e36 −0.109886
\(985\) −2.42493e37 + 1.61487e37i −0.926289 + 0.616857i
\(986\) −1.97928e37 −0.746528
\(987\) 5.93502e37i 2.21033i
\(988\) 1.16677e37i 0.429066i
\(989\) −2.34645e37 −0.852037
\(990\) 1.92890e36 1.28454e36i 0.0691623 0.0460582i
\(991\) −2.62346e37 −0.928869 −0.464434 0.885608i \(-0.653742\pi\)
−0.464434 + 0.885608i \(0.653742\pi\)
\(992\) 7.26602e36i 0.254039i
\(993\) 8.59723e36i 0.296820i
\(994\) 4.67835e37 1.59501
\(995\) −2.40648e36 3.61363e36i −0.0810202 0.121662i
\(996\) −1.34166e37 −0.446069
\(997\) 4.75249e37i 1.56038i −0.625540 0.780192i \(-0.715121\pi\)
0.625540 0.780192i \(-0.284879\pi\)
\(998\) 1.63663e37i 0.530662i
\(999\) −8.84223e36 −0.283135
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.26.b.a.9.2 12
5.2 odd 4 50.26.a.l.1.2 6
5.3 odd 4 50.26.a.k.1.5 6
5.4 even 2 inner 10.26.b.a.9.11 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.b.a.9.2 12 1.1 even 1 trivial
10.26.b.a.9.11 yes 12 5.4 even 2 inner
50.26.a.k.1.5 6 5.3 odd 4
50.26.a.l.1.2 6 5.2 odd 4