Properties

Label 10.26.b.a.9.12
Level $10$
Weight $26$
Character 10.9
Analytic conductor $39.600$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,26,Mod(9,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.9");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5996779952\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 1406300109694 x^{10} + \cdots + 56\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{8}\cdot 5^{29} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 9.12
Root \(737346. i\) of defining polynomial
Character \(\chi\) \(=\) 10.9
Dual form 10.26.b.a.9.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4096.00i q^{2} +1.47469e6i q^{3} -1.67772e7 q^{4} +(-2.33061e8 + 4.93666e8i) q^{5} -6.04034e9 q^{6} +3.57876e9i q^{7} -6.87195e10i q^{8} -1.32743e12 q^{9} +(-2.02205e12 - 9.54619e11i) q^{10} +1.08564e12 q^{11} -2.47412e13i q^{12} -2.13293e13i q^{13} -1.46586e13 q^{14} +(-7.28005e14 - 3.43694e14i) q^{15} +2.81475e14 q^{16} -3.79275e15i q^{17} -5.43715e15i q^{18} -6.90611e15 q^{19} +(3.91012e15 - 8.28233e15i) q^{20} -5.27758e15 q^{21} +4.44680e15i q^{22} +1.56245e17i q^{23} +1.01340e17 q^{24} +(-1.89388e17 - 2.30109e17i) q^{25} +8.73648e16 q^{26} -7.08060e17i q^{27} -6.00417e16i q^{28} -6.08503e17 q^{29} +(1.40777e18 - 2.98191e18i) q^{30} -3.42961e18 q^{31} +1.15292e18i q^{32} +1.60099e18i q^{33} +1.55351e19 q^{34} +(-1.76671e18 - 8.34071e17i) q^{35} +2.22706e19 q^{36} +7.61614e19i q^{37} -2.82874e19i q^{38} +3.14542e19 q^{39} +(3.39244e19 + 1.60158e19i) q^{40} +2.17158e20 q^{41} -2.16169e19i q^{42} -4.70339e20i q^{43} -1.82141e19 q^{44} +(3.09372e20 - 6.55306e20i) q^{45} -6.39979e20 q^{46} -6.53190e20i q^{47} +4.15089e20i q^{48} +1.32826e21 q^{49} +(9.42525e20 - 7.75734e20i) q^{50} +5.59313e21 q^{51} +3.57846e20i q^{52} +4.54358e21i q^{53} +2.90021e21 q^{54} +(-2.53021e20 + 5.35945e20i) q^{55} +2.45931e20 q^{56} -1.01844e22i q^{57} -2.49243e21i q^{58} -1.39811e22 q^{59} +(1.22139e22 + 5.76622e21i) q^{60} -4.30120e21 q^{61} -1.40477e22i q^{62} -4.75056e21i q^{63} -4.72237e21 q^{64} +(1.05295e22 + 4.97103e21i) q^{65} -6.55766e21 q^{66} +3.04650e22i q^{67} +6.36317e22i q^{68} -2.30413e23 q^{69} +(3.41635e21 - 7.23645e21i) q^{70} -4.08644e22 q^{71} +9.12202e22i q^{72} +1.14063e23i q^{73} -3.11957e23 q^{74} +(3.39339e23 - 2.79289e23i) q^{75} +1.15865e23 q^{76} +3.88526e21i q^{77} +1.28836e23i q^{78} -6.98160e23 q^{79} +(-6.56009e22 + 1.38955e23i) q^{80} -8.05452e22 q^{81} +8.89479e23i q^{82} -1.18110e24i q^{83} +8.85430e22 q^{84} +(1.87235e24 + 8.83942e23i) q^{85} +1.92651e24 q^{86} -8.97354e23i q^{87} -7.46049e22i q^{88} -2.79755e24 q^{89} +(2.68413e24 + 1.26719e24i) q^{90} +7.63325e22 q^{91} -2.62136e24i q^{92} -5.05762e24i q^{93} +2.67546e24 q^{94} +(1.60955e24 - 3.40931e24i) q^{95} -1.70020e24 q^{96} -1.06166e25i q^{97} +5.44056e24i q^{98} -1.44112e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 201326592 q^{4} - 490295340 q^{5} - 6565199872 q^{6} - 1082937564236 q^{9} + 1636528619520 q^{10} + 19723089228624 q^{11} + 278591122243584 q^{14} - 449884766537680 q^{15} + 33\!\cdots\!72 q^{16}+ \cdots + 41\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00i 0.707107i
\(3\) 1.47469e6i 1.60209i 0.598607 + 0.801043i \(0.295721\pi\)
−0.598607 + 0.801043i \(0.704279\pi\)
\(4\) −1.67772e7 −0.500000
\(5\) −2.33061e8 + 4.93666e8i −0.426918 + 0.904290i
\(6\) −6.04034e9 −1.13285
\(7\) 3.57876e9i 0.0977254i 0.998806 + 0.0488627i \(0.0155597\pi\)
−0.998806 + 0.0488627i \(0.984440\pi\)
\(8\) 6.87195e10i 0.353553i
\(9\) −1.32743e12 −1.56668
\(10\) −2.02205e12 9.54619e11i −0.639430 0.301877i
\(11\) 1.08564e12 0.104299 0.0521493 0.998639i \(-0.483393\pi\)
0.0521493 + 0.998639i \(0.483393\pi\)
\(12\) 2.47412e13i 0.801043i
\(13\) 2.13293e13i 0.253913i −0.991908 0.126956i \(-0.959479\pi\)
0.991908 0.126956i \(-0.0405208\pi\)
\(14\) −1.46586e13 −0.0691023
\(15\) −7.28005e14 3.43694e14i −1.44875 0.683960i
\(16\) 2.81475e14 0.250000
\(17\) 3.79275e15i 1.57886i −0.613844 0.789428i \(-0.710377\pi\)
0.613844 0.789428i \(-0.289623\pi\)
\(18\) 5.43715e15i 1.10781i
\(19\) −6.90611e15 −0.715836 −0.357918 0.933753i \(-0.616513\pi\)
−0.357918 + 0.933753i \(0.616513\pi\)
\(20\) 3.91012e15 8.28233e15i 0.213459 0.452145i
\(21\) −5.27758e15 −0.156564
\(22\) 4.44680e15i 0.0737503i
\(23\) 1.56245e17i 1.48665i 0.668932 + 0.743324i \(0.266752\pi\)
−0.668932 + 0.743324i \(0.733248\pi\)
\(24\) 1.01340e17 0.566423
\(25\) −1.89388e17 2.30109e17i −0.635481 0.772116i
\(26\) 8.73648e16 0.179544
\(27\) 7.08060e17i 0.907868i
\(28\) 6.00417e16i 0.0488627i
\(29\) −6.08503e17 −0.319365 −0.159683 0.987168i \(-0.551047\pi\)
−0.159683 + 0.987168i \(0.551047\pi\)
\(30\) 1.40777e18 2.98191e18i 0.483633 1.02442i
\(31\) −3.42961e18 −0.782030 −0.391015 0.920384i \(-0.627876\pi\)
−0.391015 + 0.920384i \(0.627876\pi\)
\(32\) 1.15292e18i 0.176777i
\(33\) 1.60099e18i 0.167095i
\(34\) 1.55351e19 1.11642
\(35\) −1.76671e18 8.34071e17i −0.0883721 0.0417208i
\(36\) 2.22706e19 0.783339
\(37\) 7.61614e19i 1.90201i 0.309173 + 0.951006i \(0.399948\pi\)
−0.309173 + 0.951006i \(0.600052\pi\)
\(38\) 2.82874e19i 0.506172i
\(39\) 3.14542e19 0.406790
\(40\) 3.39244e19 + 1.60158e19i 0.319715 + 0.150938i
\(41\) 2.17158e20 1.50306 0.751532 0.659696i \(-0.229315\pi\)
0.751532 + 0.659696i \(0.229315\pi\)
\(42\) 2.16169e19i 0.110708i
\(43\) 4.70339e20i 1.79496i −0.441052 0.897481i \(-0.645395\pi\)
0.441052 0.897481i \(-0.354605\pi\)
\(44\) −1.82141e19 −0.0521493
\(45\) 3.09372e20 6.55306e20i 0.668844 1.41673i
\(46\) −6.39979e20 −1.05122
\(47\) 6.53190e20i 0.820004i −0.912085 0.410002i \(-0.865528\pi\)
0.912085 0.410002i \(-0.134472\pi\)
\(48\) 4.15089e20i 0.400521i
\(49\) 1.32826e21 0.990450
\(50\) 9.42525e20 7.75734e20i 0.545969 0.449353i
\(51\) 5.59313e21 2.52946
\(52\) 3.57846e20i 0.126956i
\(53\) 4.54358e21i 1.27043i 0.772336 + 0.635214i \(0.219088\pi\)
−0.772336 + 0.635214i \(0.780912\pi\)
\(54\) 2.90021e21 0.641960
\(55\) −2.53021e20 + 5.35945e20i −0.0445270 + 0.0943162i
\(56\) 2.45931e20 0.0345512
\(57\) 1.01844e22i 1.14683i
\(58\) 2.49243e21i 0.225825i
\(59\) −1.39811e22 −1.02303 −0.511517 0.859273i \(-0.670916\pi\)
−0.511517 + 0.859273i \(0.670916\pi\)
\(60\) 1.22139e22 + 5.76622e21i 0.724375 + 0.341980i
\(61\) −4.30120e21 −0.207475 −0.103738 0.994605i \(-0.533080\pi\)
−0.103738 + 0.994605i \(0.533080\pi\)
\(62\) 1.40477e22i 0.552979i
\(63\) 4.75056e21i 0.153104i
\(64\) −4.72237e21 −0.125000
\(65\) 1.05295e22 + 4.97103e21i 0.229611 + 0.108400i
\(66\) −6.55766e21 −0.118154
\(67\) 3.04650e22i 0.454848i 0.973796 + 0.227424i \(0.0730303\pi\)
−0.973796 + 0.227424i \(0.926970\pi\)
\(68\) 6.36317e22i 0.789428i
\(69\) −2.30413e23 −2.38174
\(70\) 3.41635e21 7.23645e21i 0.0295010 0.0624885i
\(71\) −4.08644e22 −0.295540 −0.147770 0.989022i \(-0.547209\pi\)
−0.147770 + 0.989022i \(0.547209\pi\)
\(72\) 9.12202e22i 0.553905i
\(73\) 1.14063e23i 0.582918i 0.956583 + 0.291459i \(0.0941408\pi\)
−0.956583 + 0.291459i \(0.905859\pi\)
\(74\) −3.11957e23 −1.34493
\(75\) 3.39339e23 2.79289e23i 1.23700 1.01810i
\(76\) 1.15865e23 0.357918
\(77\) 3.88526e21i 0.0101926i
\(78\) 1.28836e23i 0.287644i
\(79\) −6.98160e23 −1.32928 −0.664640 0.747164i \(-0.731415\pi\)
−0.664640 + 0.747164i \(0.731415\pi\)
\(80\) −6.56009e22 + 1.38955e23i −0.106730 + 0.226073i
\(81\) −8.05452e22 −0.112196
\(82\) 8.89479e23i 1.06283i
\(83\) 1.18110e24i 1.21286i −0.795139 0.606428i \(-0.792602\pi\)
0.795139 0.606428i \(-0.207398\pi\)
\(84\) 8.85430e22 0.0782822
\(85\) 1.87235e24 + 8.83942e23i 1.42774 + 0.674042i
\(86\) 1.92651e24 1.26923
\(87\) 8.97354e23i 0.511650i
\(88\) 7.46049e22i 0.0368751i
\(89\) −2.79755e24 −1.20061 −0.600307 0.799770i \(-0.704955\pi\)
−0.600307 + 0.799770i \(0.704955\pi\)
\(90\) 2.68413e24 + 1.26719e24i 1.00178 + 0.472944i
\(91\) 7.63325e22 0.0248137
\(92\) 2.62136e24i 0.743324i
\(93\) 5.05762e24i 1.25288i
\(94\) 2.67546e24 0.579831
\(95\) 1.60955e24 3.40931e24i 0.305603 0.647323i
\(96\) −1.70020e24 −0.283211
\(97\) 1.06166e25i 1.55360i −0.629750 0.776798i \(-0.716843\pi\)
0.629750 0.776798i \(-0.283157\pi\)
\(98\) 5.44056e24i 0.700354i
\(99\) −1.44112e24 −0.163403
\(100\) 3.17741e24 + 3.86058e24i 0.317741 + 0.386058i
\(101\) 7.61024e24 0.672019 0.336009 0.941859i \(-0.390923\pi\)
0.336009 + 0.941859i \(0.390923\pi\)
\(102\) 2.29095e25i 1.78860i
\(103\) 1.50264e25i 1.03846i 0.854635 + 0.519229i \(0.173781\pi\)
−0.854635 + 0.519229i \(0.826219\pi\)
\(104\) −1.46574e24 −0.0897718
\(105\) 1.23000e24 2.60536e24i 0.0668403 0.141580i
\(106\) −1.86105e25 −0.898328
\(107\) 3.03661e24i 0.130344i 0.997874 + 0.0651721i \(0.0207596\pi\)
−0.997874 + 0.0651721i \(0.979240\pi\)
\(108\) 1.18793e25i 0.453934i
\(109\) 3.16922e25 1.07925 0.539625 0.841906i \(-0.318566\pi\)
0.539625 + 0.841906i \(0.318566\pi\)
\(110\) −2.19523e24 1.03638e24i −0.0666917 0.0314854i
\(111\) −1.12315e26 −3.04719
\(112\) 1.00733e24i 0.0244314i
\(113\) 6.24206e25i 1.35471i −0.735655 0.677357i \(-0.763125\pi\)
0.735655 0.677357i \(-0.236875\pi\)
\(114\) 4.17152e25 0.810931
\(115\) −7.71328e25 3.64146e25i −1.34436 0.634677i
\(116\) 1.02090e25 0.159683
\(117\) 2.83131e25i 0.397800i
\(118\) 5.72664e25i 0.723394i
\(119\) 1.35733e25 0.154294
\(120\) −2.36184e25 + 5.00281e25i −0.241816 + 0.512211i
\(121\) −1.07168e26 −0.989122
\(122\) 1.76177e25i 0.146707i
\(123\) 3.20241e26i 2.40804i
\(124\) 5.75393e25 0.391015
\(125\) 1.57736e26 3.98650e25i 0.969516 0.245029i
\(126\) 1.94583e25 0.108261
\(127\) 1.67435e26i 0.843917i −0.906615 0.421959i \(-0.861343\pi\)
0.906615 0.421959i \(-0.138657\pi\)
\(128\) 1.93428e25i 0.0883883i
\(129\) 6.93606e26 2.87568
\(130\) −2.03613e25 + 4.31290e25i −0.0766504 + 0.162359i
\(131\) −1.90057e26 −0.650118 −0.325059 0.945694i \(-0.605384\pi\)
−0.325059 + 0.945694i \(0.605384\pi\)
\(132\) 2.68602e25i 0.0835477i
\(133\) 2.47153e25i 0.0699553i
\(134\) −1.24785e26 −0.321626
\(135\) 3.49545e26 + 1.65021e26i 0.820976 + 0.387586i
\(136\) −2.60636e26 −0.558210
\(137\) 3.51717e26i 0.687364i −0.939086 0.343682i \(-0.888326\pi\)
0.939086 0.343682i \(-0.111674\pi\)
\(138\) 9.43773e26i 1.68414i
\(139\) −3.91803e26 −0.638827 −0.319414 0.947615i \(-0.603486\pi\)
−0.319414 + 0.947615i \(0.603486\pi\)
\(140\) 2.96405e25 + 1.39934e25i 0.0441861 + 0.0208604i
\(141\) 9.63254e26 1.31372
\(142\) 1.67381e26i 0.208978i
\(143\) 2.31560e25i 0.0264828i
\(144\) −3.73638e26 −0.391670
\(145\) 1.41818e26 3.00397e26i 0.136343 0.288799i
\(146\) −4.67201e26 −0.412186
\(147\) 1.95878e27i 1.58679i
\(148\) 1.27778e27i 0.951006i
\(149\) −1.80648e27 −1.23596 −0.617979 0.786194i \(-0.712048\pi\)
−0.617979 + 0.786194i \(0.712048\pi\)
\(150\) 1.14397e27 + 1.38993e27i 0.719902 + 0.874689i
\(151\) −1.68416e26 −0.0975373 −0.0487687 0.998810i \(-0.515530\pi\)
−0.0487687 + 0.998810i \(0.515530\pi\)
\(152\) 4.74584e26i 0.253086i
\(153\) 5.03460e27i 2.47356i
\(154\) −1.59140e25 −0.00720728
\(155\) 7.99309e26 1.69308e27i 0.333863 0.707182i
\(156\) −5.27713e26 −0.203395
\(157\) 1.56946e27i 0.558475i −0.960222 0.279237i \(-0.909918\pi\)
0.960222 0.279237i \(-0.0900817\pi\)
\(158\) 2.85967e27i 0.939943i
\(159\) −6.70039e27 −2.03533
\(160\) −5.69158e26 2.68701e26i −0.159857 0.0754692i
\(161\) −5.59164e26 −0.145283
\(162\) 3.29913e26i 0.0793345i
\(163\) 5.35307e27i 1.19195i 0.803004 + 0.595974i \(0.203234\pi\)
−0.803004 + 0.595974i \(0.796766\pi\)
\(164\) −3.64331e27 −0.751532
\(165\) −7.90354e26 3.73129e26i −0.151103 0.0713361i
\(166\) 4.83777e27 0.857618
\(167\) 1.01057e28i 1.66192i −0.556334 0.830959i \(-0.687793\pi\)
0.556334 0.830959i \(-0.312207\pi\)
\(168\) 3.62672e26i 0.0553539i
\(169\) 6.60147e27 0.935528
\(170\) −3.62063e27 + 7.66914e27i −0.476620 + 1.00957i
\(171\) 9.16737e27 1.12148
\(172\) 7.89098e27i 0.897481i
\(173\) 8.66506e26i 0.0916633i 0.998949 + 0.0458316i \(0.0145938\pi\)
−0.998949 + 0.0458316i \(0.985406\pi\)
\(174\) 3.67556e27 0.361791
\(175\) 8.23504e26 6.77776e26i 0.0754554 0.0621027i
\(176\) 3.05581e26 0.0260747
\(177\) 2.06178e28i 1.63899i
\(178\) 1.14588e28i 0.848962i
\(179\) 2.03208e28 1.40371 0.701856 0.712319i \(-0.252355\pi\)
0.701856 + 0.712319i \(0.252355\pi\)
\(180\) −5.19041e27 + 1.09942e28i −0.334422 + 0.708366i
\(181\) −6.11555e27 −0.367666 −0.183833 0.982957i \(-0.558851\pi\)
−0.183833 + 0.982957i \(0.558851\pi\)
\(182\) 3.12658e26i 0.0175460i
\(183\) 6.34295e27i 0.332393i
\(184\) 1.07371e28 0.525609
\(185\) −3.75982e28 1.77503e28i −1.71997 0.812004i
\(186\) 2.07160e28 0.885919
\(187\) 4.11757e27i 0.164672i
\(188\) 1.09587e28i 0.410002i
\(189\) 2.53398e27 0.0887218
\(190\) 1.39645e28 + 6.59270e27i 0.457727 + 0.216094i
\(191\) 1.25038e28 0.383819 0.191909 0.981413i \(-0.438532\pi\)
0.191909 + 0.981413i \(0.438532\pi\)
\(192\) 6.96404e27i 0.200261i
\(193\) 4.00087e28i 1.07817i 0.842251 + 0.539086i \(0.181230\pi\)
−0.842251 + 0.539086i \(0.818770\pi\)
\(194\) 4.34855e28 1.09856
\(195\) −7.33074e27 + 1.55278e28i −0.173666 + 0.367856i
\(196\) −2.22845e28 −0.495225
\(197\) 1.19953e28i 0.250141i 0.992148 + 0.125070i \(0.0399157\pi\)
−0.992148 + 0.125070i \(0.960084\pi\)
\(198\) 5.90281e27i 0.115543i
\(199\) −3.34370e28 −0.614559 −0.307280 0.951619i \(-0.599419\pi\)
−0.307280 + 0.951619i \(0.599419\pi\)
\(200\) −1.58129e28 + 1.30147e28i −0.272984 + 0.224677i
\(201\) −4.49265e28 −0.728705
\(202\) 3.11715e28i 0.475189i
\(203\) 2.17769e27i 0.0312101i
\(204\) −9.38372e28 −1.26473
\(205\) −5.06111e28 + 1.07203e29i −0.641686 + 1.35921i
\(206\) −6.15480e28 −0.734301
\(207\) 2.07404e29i 2.32910i
\(208\) 6.00366e27i 0.0634782i
\(209\) −7.49757e27 −0.0746607
\(210\) 1.06715e28 + 5.03807e27i 0.100112 + 0.0472632i
\(211\) 6.92258e28 0.611980 0.305990 0.952035i \(-0.401013\pi\)
0.305990 + 0.952035i \(0.401013\pi\)
\(212\) 7.62287e28i 0.635214i
\(213\) 6.02624e28i 0.473480i
\(214\) −1.24379e28 −0.0921672
\(215\) 2.32190e29 + 1.09618e29i 1.62317 + 0.766303i
\(216\) −4.86575e28 −0.320980
\(217\) 1.22738e28i 0.0764242i
\(218\) 1.29811e29i 0.763144i
\(219\) −1.68207e29 −0.933885
\(220\) 4.24499e27 8.99166e27i 0.0222635 0.0471581i
\(221\) −8.08966e28 −0.400892
\(222\) 4.60040e29i 2.15469i
\(223\) 4.37006e29i 1.93498i 0.252908 + 0.967490i \(0.418613\pi\)
−0.252908 + 0.967490i \(0.581387\pi\)
\(224\) −4.12603e27 −0.0172756
\(225\) 2.51399e29 + 3.05453e29i 0.995595 + 1.20966i
\(226\) 2.55675e29 0.957927
\(227\) 4.51616e28i 0.160120i 0.996790 + 0.0800600i \(0.0255112\pi\)
−0.996790 + 0.0800600i \(0.974489\pi\)
\(228\) 1.70866e29i 0.573415i
\(229\) 3.96675e29 1.26035 0.630175 0.776454i \(-0.282983\pi\)
0.630175 + 0.776454i \(0.282983\pi\)
\(230\) 1.49154e29 3.15936e29i 0.448785 0.950607i
\(231\) −5.72957e27 −0.0163295
\(232\) 4.18160e28i 0.112913i
\(233\) 2.52711e29i 0.646658i −0.946287 0.323329i \(-0.895198\pi\)
0.946287 0.323329i \(-0.104802\pi\)
\(234\) −1.15971e29 −0.281287
\(235\) 3.22457e29 + 1.52233e29i 0.741522 + 0.350075i
\(236\) 2.34563e29 0.511517
\(237\) 1.02957e30i 2.12962i
\(238\) 5.55964e28i 0.109103i
\(239\) −7.75729e29 −1.44456 −0.722281 0.691600i \(-0.756906\pi\)
−0.722281 + 0.691600i \(0.756906\pi\)
\(240\) −2.04915e29 9.67411e28i −0.362188 0.170990i
\(241\) −1.98502e28 −0.0333082 −0.0166541 0.999861i \(-0.505301\pi\)
−0.0166541 + 0.999861i \(0.505301\pi\)
\(242\) 4.38962e29i 0.699415i
\(243\) 7.18710e29i 1.08762i
\(244\) 7.21621e28 0.103738
\(245\) −3.09566e29 + 6.55717e29i −0.422841 + 0.895654i
\(246\) −1.31171e30 −1.70274
\(247\) 1.47302e29i 0.181760i
\(248\) 2.35681e29i 0.276489i
\(249\) 1.74175e30 1.94310
\(250\) 1.63287e29 + 6.46086e29i 0.173261 + 0.685551i
\(251\) −9.10004e29 −0.918590 −0.459295 0.888284i \(-0.651898\pi\)
−0.459295 + 0.888284i \(0.651898\pi\)
\(252\) 7.97011e28i 0.0765522i
\(253\) 1.69626e29i 0.155055i
\(254\) 6.85814e29 0.596740
\(255\) −1.30354e30 + 2.76114e30i −1.07987 + 2.28737i
\(256\) 7.92282e28 0.0625000
\(257\) 1.13259e30i 0.850961i −0.904968 0.425480i \(-0.860105\pi\)
0.904968 0.425480i \(-0.139895\pi\)
\(258\) 2.84101e30i 2.03342i
\(259\) −2.72563e29 −0.185875
\(260\) −1.76656e29 8.34001e28i −0.114805 0.0542000i
\(261\) 8.07744e29 0.500343
\(262\) 7.78473e29i 0.459703i
\(263\) 7.83926e29i 0.441396i 0.975342 + 0.220698i \(0.0708335\pi\)
−0.975342 + 0.220698i \(0.929167\pi\)
\(264\) 1.10019e29 0.0590771
\(265\) −2.24301e30 1.05893e30i −1.14884 0.542369i
\(266\) 1.01234e29 0.0494659
\(267\) 4.12553e30i 1.92349i
\(268\) 5.11118e29i 0.227424i
\(269\) −2.21562e30 −0.941005 −0.470502 0.882399i \(-0.655927\pi\)
−0.470502 + 0.882399i \(0.655927\pi\)
\(270\) −6.75927e29 + 1.43174e30i −0.274065 + 0.580518i
\(271\) −3.34900e29 −0.129658 −0.0648289 0.997896i \(-0.520650\pi\)
−0.0648289 + 0.997896i \(0.520650\pi\)
\(272\) 1.06756e30i 0.394714i
\(273\) 1.12567e29i 0.0397537i
\(274\) 1.44063e30 0.486040
\(275\) −2.05608e29 2.49816e29i −0.0662798 0.0805307i
\(276\) 3.86569e30 1.19087
\(277\) 3.78301e30i 1.11388i −0.830552 0.556942i \(-0.811975\pi\)
0.830552 0.556942i \(-0.188025\pi\)
\(278\) 1.60483e30i 0.451719i
\(279\) 4.55256e30 1.22519
\(280\) −5.73169e28 + 1.21408e29i −0.0147505 + 0.0312443i
\(281\) −2.06047e30 −0.507151 −0.253576 0.967316i \(-0.581607\pi\)
−0.253576 + 0.967316i \(0.581607\pi\)
\(282\) 3.94549e30i 0.928938i
\(283\) 1.40735e30i 0.317010i 0.987358 + 0.158505i \(0.0506673\pi\)
−0.987358 + 0.158505i \(0.949333\pi\)
\(284\) 6.85591e29 0.147770
\(285\) 5.02768e30 + 2.37359e30i 1.03707 + 0.489603i
\(286\) 9.48471e28 0.0187261
\(287\) 7.77157e29i 0.146888i
\(288\) 1.53042e30i 0.276952i
\(289\) −8.61430e30 −1.49278
\(290\) 1.23043e30 + 5.80888e29i 0.204212 + 0.0964089i
\(291\) 1.56562e31 2.48899
\(292\) 1.91365e30i 0.291459i
\(293\) 3.14320e30i 0.458698i 0.973344 + 0.229349i \(0.0736598\pi\)
−0.973344 + 0.229349i \(0.926340\pi\)
\(294\) −8.02315e30 −1.12203
\(295\) 3.25844e30 6.90196e30i 0.436752 0.925119i
\(296\) 5.23377e30 0.672463
\(297\) 7.68701e29i 0.0946894i
\(298\) 7.39933e30i 0.873955i
\(299\) 3.33260e30 0.377479
\(300\) −5.69317e30 + 4.68570e30i −0.618498 + 0.509048i
\(301\) 1.68323e30 0.175413
\(302\) 6.89831e29i 0.0689693i
\(303\) 1.12228e31i 1.07663i
\(304\) −1.94390e30 −0.178959
\(305\) 1.00244e30 2.12335e30i 0.0885751 0.187618i
\(306\) −2.06217e31 −1.74907
\(307\) 6.65869e29i 0.0542200i −0.999632 0.0271100i \(-0.991370\pi\)
0.999632 0.0271100i \(-0.00863044\pi\)
\(308\) 6.51839e28i 0.00509631i
\(309\) −2.21593e31 −1.66370
\(310\) 6.93485e30 + 3.27397e30i 0.500053 + 0.236077i
\(311\) −1.30158e31 −0.901497 −0.450749 0.892651i \(-0.648843\pi\)
−0.450749 + 0.892651i \(0.648843\pi\)
\(312\) 2.16151e30i 0.143822i
\(313\) 1.48840e31i 0.951514i 0.879577 + 0.475757i \(0.157826\pi\)
−0.879577 + 0.475757i \(0.842174\pi\)
\(314\) 6.42849e30 0.394901
\(315\) 2.34519e30 + 1.10717e30i 0.138451 + 0.0653631i
\(316\) 1.17132e31 0.664640
\(317\) 4.63362e30i 0.252743i 0.991983 + 0.126372i \(0.0403332\pi\)
−0.991983 + 0.126372i \(0.959667\pi\)
\(318\) 2.74448e31i 1.43920i
\(319\) −6.60617e29 −0.0333093
\(320\) 1.10060e30 2.33127e30i 0.0533648 0.113036i
\(321\) −4.47806e30 −0.208822
\(322\) 2.29034e30i 0.102731i
\(323\) 2.61931e31i 1.13020i
\(324\) 1.35132e30 0.0560980
\(325\) −4.90806e30 + 4.03952e30i −0.196050 + 0.161357i
\(326\) −2.19262e31 −0.842835
\(327\) 4.67363e31i 1.72905i
\(328\) 1.49230e31i 0.531414i
\(329\) 2.33761e30 0.0801352
\(330\) 1.52834e30 3.23729e30i 0.0504422 0.106846i
\(331\) −1.64006e31 −0.521207 −0.260604 0.965446i \(-0.583922\pi\)
−0.260604 + 0.965446i \(0.583922\pi\)
\(332\) 1.98155e31i 0.606428i
\(333\) 1.01099e32i 2.97984i
\(334\) 4.13928e31 1.17515
\(335\) −1.50395e31 7.10021e30i −0.411314 0.194183i
\(336\) −1.48551e30 −0.0391411
\(337\) 8.69817e30i 0.220828i −0.993886 0.110414i \(-0.964782\pi\)
0.993886 0.110414i \(-0.0352177\pi\)
\(338\) 2.70396e31i 0.661518i
\(339\) 9.20512e31 2.17037
\(340\) −3.14128e31 1.48301e31i −0.713872 0.337021i
\(341\) −3.72333e30 −0.0815647
\(342\) 3.75495e31i 0.793009i
\(343\) 9.55290e30i 0.194518i
\(344\) −3.23215e31 −0.634615
\(345\) 5.37004e31 1.13747e32i 1.01681 2.15378i
\(346\) −3.54921e30 −0.0648157
\(347\) 8.06238e31i 1.42019i 0.704108 + 0.710093i \(0.251347\pi\)
−0.704108 + 0.710093i \(0.748653\pi\)
\(348\) 1.50551e31i 0.255825i
\(349\) 9.75945e31 1.59995 0.799977 0.600031i \(-0.204845\pi\)
0.799977 + 0.600031i \(0.204845\pi\)
\(350\) 2.77617e30 + 3.37307e30i 0.0439132 + 0.0533550i
\(351\) −1.51024e31 −0.230519
\(352\) 1.25166e30i 0.0184376i
\(353\) 1.35792e31i 0.193060i 0.995330 + 0.0965298i \(0.0307743\pi\)
−0.995330 + 0.0965298i \(0.969226\pi\)
\(354\) 8.44503e31 1.15894
\(355\) 9.52390e30 2.01733e31i 0.126171 0.267253i
\(356\) 4.69351e31 0.600307
\(357\) 2.00165e31i 0.247193i
\(358\) 8.32340e31i 0.992574i
\(359\) −1.23431e32 −1.42148 −0.710742 0.703453i \(-0.751641\pi\)
−0.710742 + 0.703453i \(0.751641\pi\)
\(360\) −4.50323e31 2.12599e31i −0.500891 0.236472i
\(361\) −4.53822e31 −0.487579
\(362\) 2.50493e31i 0.259979i
\(363\) 1.58040e32i 1.58466i
\(364\) −1.28065e30 −0.0124069
\(365\) −5.63088e31 2.65836e31i −0.527127 0.248859i
\(366\) 2.59807e31 0.235038
\(367\) 1.94163e31i 0.169762i 0.996391 + 0.0848811i \(0.0270510\pi\)
−0.996391 + 0.0848811i \(0.972949\pi\)
\(368\) 4.39791e31i 0.371662i
\(369\) −2.88262e32 −2.35482
\(370\) 7.27050e31 1.54002e32i 0.574173 1.21620i
\(371\) −1.62604e31 −0.124153
\(372\) 8.48527e31i 0.626439i
\(373\) 1.75681e32i 1.25420i −0.778941 0.627098i \(-0.784243\pi\)
0.778941 0.627098i \(-0.215757\pi\)
\(374\) 1.68656e31 0.116441
\(375\) 5.87887e31 + 2.32612e32i 0.392557 + 1.55325i
\(376\) −4.48869e31 −0.289915
\(377\) 1.29789e31i 0.0810909i
\(378\) 1.03792e31i 0.0627358i
\(379\) −2.09100e32 −1.22283 −0.611413 0.791312i \(-0.709399\pi\)
−0.611413 + 0.791312i \(0.709399\pi\)
\(380\) −2.70037e31 + 5.71987e31i −0.152802 + 0.323662i
\(381\) 2.46915e32 1.35203
\(382\) 5.12157e31i 0.271401i
\(383\) 1.47981e32i 0.758966i 0.925199 + 0.379483i \(0.123898\pi\)
−0.925199 + 0.379483i \(0.876102\pi\)
\(384\) 2.85247e31 0.141606
\(385\) −1.91802e30 9.05504e29i −0.00921709 0.00435142i
\(386\) −1.63876e32 −0.762383
\(387\) 6.24342e32i 2.81213i
\(388\) 1.78117e32i 0.776798i
\(389\) −2.19739e32 −0.927978 −0.463989 0.885841i \(-0.653582\pi\)
−0.463989 + 0.885841i \(0.653582\pi\)
\(390\) −6.36020e31 3.00267e31i −0.260114 0.122801i
\(391\) 5.92598e32 2.34720
\(392\) 9.12774e31i 0.350177i
\(393\) 2.80275e32i 1.04155i
\(394\) −4.91329e31 −0.176876
\(395\) 1.62714e32 3.44658e32i 0.567494 1.20206i
\(396\) 2.41779e31 0.0817013
\(397\) 1.95462e32i 0.640003i −0.947417 0.320001i \(-0.896317\pi\)
0.947417 0.320001i \(-0.103683\pi\)
\(398\) 1.36958e32i 0.434559i
\(399\) 3.64475e31 0.112074
\(400\) −5.33080e31 6.47698e31i −0.158870 0.193029i
\(401\) −4.71177e32 −1.36107 −0.680534 0.732717i \(-0.738252\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(402\) 1.84019e32i 0.515273i
\(403\) 7.31511e31i 0.198567i
\(404\) −1.27679e32 −0.336009
\(405\) 1.87720e31 3.97624e31i 0.0478985 0.101458i
\(406\) 8.91980e30 0.0220689
\(407\) 8.26841e31i 0.198377i
\(408\) 3.84357e32i 0.894300i
\(409\) 4.32845e32 0.976767 0.488384 0.872629i \(-0.337587\pi\)
0.488384 + 0.872629i \(0.337587\pi\)
\(410\) −4.39105e32 2.07303e32i −0.961104 0.453741i
\(411\) 5.18675e32 1.10122
\(412\) 2.52101e32i 0.519229i
\(413\) 5.00349e31i 0.0999763i
\(414\) 8.49528e32 1.64692
\(415\) 5.83066e32 + 2.75268e32i 1.09677 + 0.517790i
\(416\) 2.45910e31 0.0448859
\(417\) 5.77790e32i 1.02346i
\(418\) 3.07101e31i 0.0527931i
\(419\) −9.61858e31 −0.160485 −0.0802427 0.996775i \(-0.525570\pi\)
−0.0802427 + 0.996775i \(0.525570\pi\)
\(420\) −2.06359e31 + 4.37106e31i −0.0334201 + 0.0707899i
\(421\) 1.59673e31 0.0251018 0.0125509 0.999921i \(-0.496005\pi\)
0.0125509 + 0.999921i \(0.496005\pi\)
\(422\) 2.83549e32i 0.432735i
\(423\) 8.67063e32i 1.28468i
\(424\) 3.12233e32 0.449164
\(425\) −8.72744e32 + 7.18301e32i −1.21906 + 1.00333i
\(426\) 2.46835e32 0.334801
\(427\) 1.53930e31i 0.0202756i
\(428\) 5.09458e31i 0.0651721i
\(429\) 3.41480e31 0.0424277
\(430\) −4.48995e32 + 9.51051e32i −0.541858 + 1.14775i
\(431\) −7.11839e32 −0.834479 −0.417240 0.908796i \(-0.637002\pi\)
−0.417240 + 0.908796i \(0.637002\pi\)
\(432\) 1.99301e32i 0.226967i
\(433\) 9.69753e32i 1.07291i 0.843930 + 0.536454i \(0.180236\pi\)
−0.843930 + 0.536454i \(0.819764\pi\)
\(434\) 5.02733e31 0.0540401
\(435\) 4.42993e32 + 2.09138e32i 0.462680 + 0.218433i
\(436\) −5.31708e32 −0.539625
\(437\) 1.07904e33i 1.06420i
\(438\) 6.88977e32i 0.660357i
\(439\) 6.89367e32 0.642161 0.321081 0.947052i \(-0.395954\pi\)
0.321081 + 0.947052i \(0.395954\pi\)
\(440\) 3.68298e31 + 1.73875e31i 0.0333458 + 0.0157427i
\(441\) −1.76317e33 −1.55172
\(442\) 3.31353e32i 0.283473i
\(443\) 1.47442e33i 1.22624i 0.789990 + 0.613120i \(0.210086\pi\)
−0.789990 + 0.613120i \(0.789914\pi\)
\(444\) 1.88433e33 1.52359
\(445\) 6.52001e32 1.38106e33i 0.512564 1.08570i
\(446\) −1.78998e33 −1.36824
\(447\) 2.66400e33i 1.98011i
\(448\) 1.69002e31i 0.0122157i
\(449\) −2.43553e33 −1.71204 −0.856020 0.516942i \(-0.827070\pi\)
−0.856020 + 0.516942i \(0.827070\pi\)
\(450\) −1.25113e33 + 1.02973e33i −0.855358 + 0.703992i
\(451\) 2.35756e32 0.156768
\(452\) 1.04724e33i 0.677357i
\(453\) 2.48361e32i 0.156263i
\(454\) −1.84982e32 −0.113222
\(455\) −1.77902e31 + 3.76827e31i −0.0105934 + 0.0224388i
\(456\) −6.99866e32 −0.405466
\(457\) 1.75801e33i 0.990990i −0.868611 0.495495i \(-0.834987\pi\)
0.868611 0.495495i \(-0.165013\pi\)
\(458\) 1.62478e33i 0.891201i
\(459\) −2.68549e33 −1.43339
\(460\) 1.29407e33 + 6.10936e32i 0.672181 + 0.317339i
\(461\) 2.02960e33 1.02600 0.513002 0.858387i \(-0.328533\pi\)
0.513002 + 0.858387i \(0.328533\pi\)
\(462\) 2.34683e31i 0.0115467i
\(463\) 5.63047e32i 0.269639i −0.990870 0.134819i \(-0.956955\pi\)
0.990870 0.134819i \(-0.0430454\pi\)
\(464\) −1.71278e32 −0.0798413
\(465\) 2.49677e33 + 1.17873e33i 1.13297 + 0.534877i
\(466\) 1.03510e33 0.457256
\(467\) 3.35205e33i 1.44162i 0.693134 + 0.720808i \(0.256229\pi\)
−0.693134 + 0.720808i \(0.743771\pi\)
\(468\) 4.75016e32i 0.198900i
\(469\) −1.09027e32 −0.0444502
\(470\) −6.23547e32 + 1.32078e33i −0.247540 + 0.524335i
\(471\) 2.31447e33 0.894725
\(472\) 9.60771e32i 0.361697i
\(473\) 5.10621e32i 0.187212i
\(474\) 4.21713e33 1.50587
\(475\) 1.30794e33 + 1.58915e33i 0.454900 + 0.552708i
\(476\) −2.27723e32 −0.0771471
\(477\) 6.03128e33i 1.99035i
\(478\) 3.17739e33i 1.02146i
\(479\) −3.28090e33 −1.02754 −0.513770 0.857928i \(-0.671752\pi\)
−0.513770 + 0.857928i \(0.671752\pi\)
\(480\) 3.96252e32 8.39333e32i 0.120908 0.256105i
\(481\) 1.62447e33 0.482945
\(482\) 8.13063e31i 0.0235525i
\(483\) 8.24595e32i 0.232756i
\(484\) 1.79799e33 0.494561
\(485\) 5.24104e33 + 2.47431e33i 1.40490 + 0.663259i
\(486\) 2.94384e33 0.769061
\(487\) 2.83575e33i 0.722032i −0.932560 0.361016i \(-0.882430\pi\)
0.932560 0.361016i \(-0.117570\pi\)
\(488\) 2.95576e32i 0.0733536i
\(489\) −7.89413e33 −1.90960
\(490\) −2.68582e33 1.26798e33i −0.633323 0.298994i
\(491\) −6.18264e33 −1.42120 −0.710600 0.703596i \(-0.751576\pi\)
−0.710600 + 0.703596i \(0.751576\pi\)
\(492\) 5.37276e33i 1.20402i
\(493\) 2.30790e33i 0.504231i
\(494\) −6.03351e32 −0.128524
\(495\) 3.35868e32 7.11429e32i 0.0697595 0.147763i
\(496\) −9.65349e32 −0.195507
\(497\) 1.46244e32i 0.0288817i
\(498\) 7.13422e33i 1.37398i
\(499\) 2.73531e33 0.513748 0.256874 0.966445i \(-0.417307\pi\)
0.256874 + 0.966445i \(0.417307\pi\)
\(500\) −2.64637e33 + 6.68824e32i −0.484758 + 0.122514i
\(501\) 1.49028e34 2.66253
\(502\) 3.72738e33i 0.649542i
\(503\) 1.17377e33i 0.199519i −0.995012 0.0997597i \(-0.968193\pi\)
0.995012 0.0997597i \(-0.0318074\pi\)
\(504\) −3.26456e32 −0.0541306
\(505\) −1.77365e33 + 3.75691e33i −0.286897 + 0.607700i
\(506\) −6.94790e32 −0.109641
\(507\) 9.73514e33i 1.49880i
\(508\) 2.80909e33i 0.421959i
\(509\) 4.20998e33 0.617031 0.308516 0.951219i \(-0.400168\pi\)
0.308516 + 0.951219i \(0.400168\pi\)
\(510\) −1.13096e34 5.33931e33i −1.61741 0.763586i
\(511\) −4.08203e32 −0.0569659
\(512\) 3.24519e32i 0.0441942i
\(513\) 4.88994e33i 0.649885i
\(514\) 4.63910e33 0.601720
\(515\) −7.41801e33 3.50207e33i −0.939068 0.443337i
\(516\) −1.16368e34 −1.43784
\(517\) 7.09131e32i 0.0855253i
\(518\) 1.11642e33i 0.131433i
\(519\) −1.27783e33 −0.146852
\(520\) 3.41607e32 7.23585e32i 0.0383252 0.0811797i
\(521\) −1.42619e34 −1.56208 −0.781042 0.624478i \(-0.785312\pi\)
−0.781042 + 0.624478i \(0.785312\pi\)
\(522\) 3.30852e33i 0.353796i
\(523\) 1.07993e34i 1.12752i −0.825939 0.563760i \(-0.809354\pi\)
0.825939 0.563760i \(-0.190646\pi\)
\(524\) 3.18863e33 0.325059
\(525\) 9.99510e32 + 1.21442e33i 0.0994938 + 0.120886i
\(526\) −3.21096e33 −0.312114
\(527\) 1.30076e34i 1.23471i
\(528\) 4.50639e32i 0.0417738i
\(529\) −1.33667e34 −1.21012
\(530\) 4.33739e33 9.18737e33i 0.383513 0.812349i
\(531\) 1.85589e34 1.60276
\(532\) 4.14654e32i 0.0349777i
\(533\) 4.63183e33i 0.381647i
\(534\) 1.68982e34 1.36011
\(535\) −1.49907e33 7.07715e32i −0.117869 0.0556463i
\(536\) 2.09354e33 0.160813
\(537\) 2.99669e34i 2.24887i
\(538\) 9.07518e33i 0.665391i
\(539\) 1.44202e33 0.103303
\(540\) −5.86439e33 2.76860e33i −0.410488 0.193793i
\(541\) −9.36097e32 −0.0640258 −0.0320129 0.999487i \(-0.510192\pi\)
−0.0320129 + 0.999487i \(0.510192\pi\)
\(542\) 1.37175e33i 0.0916819i
\(543\) 9.01856e33i 0.589033i
\(544\) 4.37274e33 0.279105
\(545\) −7.38623e33 + 1.56454e34i −0.460751 + 0.975954i
\(546\) −4.61074e32 −0.0281101
\(547\) 1.05246e34i 0.627137i −0.949566 0.313568i \(-0.898475\pi\)
0.949566 0.313568i \(-0.101525\pi\)
\(548\) 5.90084e33i 0.343682i
\(549\) 5.70954e33 0.325047
\(550\) 1.02325e33 8.42171e32i 0.0569438 0.0468669i
\(551\) 4.20238e33 0.228613
\(552\) 1.58339e34i 0.842071i
\(553\) 2.49855e33i 0.129904i
\(554\) 1.54952e34 0.787635
\(555\) 2.61762e34 5.54458e34i 1.30090 2.75554i
\(556\) 6.57337e33 0.319414
\(557\) 9.65307e33i 0.458644i −0.973351 0.229322i \(-0.926349\pi\)
0.973351 0.229322i \(-0.0736509\pi\)
\(558\) 1.86473e34i 0.866340i
\(559\) −1.00320e34 −0.455764
\(560\) −4.97285e32 2.34770e32i −0.0220930 0.0104302i
\(561\) 6.07215e33 0.263819
\(562\) 8.43969e33i 0.358610i
\(563\) 4.08658e34i 1.69826i −0.528180 0.849132i \(-0.677125\pi\)
0.528180 0.849132i \(-0.322875\pi\)
\(564\) −1.61607e34 −0.656859
\(565\) 3.08149e34 + 1.45478e34i 1.22505 + 0.578352i
\(566\) −5.76452e33 −0.224160
\(567\) 2.88252e32i 0.0109644i
\(568\) 2.80818e33i 0.104489i
\(569\) −8.49519e33 −0.309221 −0.154611 0.987975i \(-0.549412\pi\)
−0.154611 + 0.987975i \(0.549412\pi\)
\(570\) −9.72220e33 + 2.05934e34i −0.346202 + 0.733317i
\(571\) −2.91693e34 −1.01619 −0.508095 0.861301i \(-0.669650\pi\)
−0.508095 + 0.861301i \(0.669650\pi\)
\(572\) 3.88494e32i 0.0132414i
\(573\) 1.84393e34i 0.614910i
\(574\) −3.18324e33 −0.103865
\(575\) 3.59533e34 2.95910e34i 1.14787 0.944737i
\(576\) 6.26861e33 0.195835
\(577\) 5.12659e33i 0.156722i 0.996925 + 0.0783611i \(0.0249687\pi\)
−0.996925 + 0.0783611i \(0.975031\pi\)
\(578\) 3.52842e34i 1.05556i
\(579\) −5.90005e34 −1.72732
\(580\) −2.37932e33 + 5.03982e33i −0.0681714 + 0.144399i
\(581\) 4.22686e33 0.118527
\(582\) 6.41278e34i 1.75998i
\(583\) 4.93271e33i 0.132504i
\(584\) 7.83833e33 0.206093
\(585\) −1.39772e34 6.59869e33i −0.359727 0.169828i
\(586\) −1.28746e34 −0.324349
\(587\) 6.37641e34i 1.57253i 0.617888 + 0.786266i \(0.287989\pi\)
−0.617888 + 0.786266i \(0.712011\pi\)
\(588\) 3.28628e34i 0.793393i
\(589\) 2.36852e34 0.559805
\(590\) 2.82704e34 + 1.33466e34i 0.654158 + 0.308830i
\(591\) −1.76894e34 −0.400747
\(592\) 2.14375e34i 0.475503i
\(593\) 7.56532e34i 1.64302i 0.570192 + 0.821511i \(0.306869\pi\)
−0.570192 + 0.821511i \(0.693131\pi\)
\(594\) 3.14860e33 0.0669556
\(595\) −3.16342e33 + 6.70069e33i −0.0658711 + 0.139527i
\(596\) 3.03076e34 0.617979
\(597\) 4.93093e34i 0.984577i
\(598\) 1.36503e34i 0.266918i
\(599\) −6.58590e34 −1.26119 −0.630594 0.776113i \(-0.717189\pi\)
−0.630594 + 0.776113i \(0.717189\pi\)
\(600\) −1.91926e34 2.33192e34i −0.359951 0.437344i
\(601\) −3.63692e34 −0.668041 −0.334020 0.942566i \(-0.608405\pi\)
−0.334020 + 0.942566i \(0.608405\pi\)
\(602\) 6.89452e33i 0.124036i
\(603\) 4.04401e34i 0.712601i
\(604\) 2.82555e33 0.0487687
\(605\) 2.49768e34 5.29054e34i 0.422274 0.894453i
\(606\) −4.59684e34 −0.761293
\(607\) 1.13535e35i 1.84193i 0.389650 + 0.920963i \(0.372596\pi\)
−0.389650 + 0.920963i \(0.627404\pi\)
\(608\) 7.96220e33i 0.126543i
\(609\) 3.21142e33 0.0500012
\(610\) 8.69726e33 + 4.10600e33i 0.132666 + 0.0626320i
\(611\) −1.39321e34 −0.208210
\(612\) 8.44666e34i 1.23678i
\(613\) 8.49768e34i 1.21911i 0.792742 + 0.609557i \(0.208653\pi\)
−0.792742 + 0.609557i \(0.791347\pi\)
\(614\) 2.72740e33 0.0383393
\(615\) −1.58092e35 7.46358e34i −2.17757 1.02804i
\(616\) 2.66993e32 0.00360364
\(617\) 1.49456e35i 1.97674i −0.152079 0.988368i \(-0.548597\pi\)
0.152079 0.988368i \(-0.451403\pi\)
\(618\) 9.07644e34i 1.17641i
\(619\) 5.75885e34 0.731481 0.365740 0.930717i \(-0.380816\pi\)
0.365740 + 0.930717i \(0.380816\pi\)
\(620\) −1.34102e34 + 2.84052e34i −0.166931 + 0.353591i
\(621\) 1.10631e35 1.34968
\(622\) 5.33125e34i 0.637455i
\(623\) 1.00118e34i 0.117330i
\(624\) 8.85356e33 0.101698
\(625\) −1.70821e34 + 8.71597e34i −0.192327 + 0.981331i
\(626\) −6.09648e34 −0.672822
\(627\) 1.10566e34i 0.119613i
\(628\) 2.63311e34i 0.279237i
\(629\) 2.88861e35 3.00300
\(630\) −4.53497e33 + 9.60588e33i −0.0462187 + 0.0978995i
\(631\) 3.54832e34 0.354532 0.177266 0.984163i \(-0.443275\pi\)
0.177266 + 0.984163i \(0.443275\pi\)
\(632\) 4.79772e34i 0.469972i
\(633\) 1.02087e35i 0.980445i
\(634\) −1.89793e34 −0.178716
\(635\) 8.26569e34 + 3.90226e34i 0.763146 + 0.360284i
\(636\) 1.12414e35 1.01767
\(637\) 2.83309e34i 0.251488i
\(638\) 2.70589e33i 0.0235533i
\(639\) 5.42446e34 0.463016
\(640\) 9.54888e33 + 4.50806e33i 0.0799287 + 0.0377346i
\(641\) 1.20958e35 0.992909 0.496454 0.868063i \(-0.334635\pi\)
0.496454 + 0.868063i \(0.334635\pi\)
\(642\) 1.83421e34i 0.147660i
\(643\) 4.32278e34i 0.341292i 0.985332 + 0.170646i \(0.0545855\pi\)
−0.985332 + 0.170646i \(0.945415\pi\)
\(644\) 9.38121e33 0.0726416
\(645\) −1.61653e35 + 3.42409e35i −1.22768 + 2.60045i
\(646\) −1.07287e35 −0.799173
\(647\) 4.93254e34i 0.360385i −0.983631 0.180193i \(-0.942328\pi\)
0.983631 0.180193i \(-0.0576721\pi\)
\(648\) 5.53503e33i 0.0396673i
\(649\) −1.51784e34 −0.106701
\(650\) −1.65459e34 2.01034e34i −0.114097 0.138628i
\(651\) 1.81000e34 0.122438
\(652\) 8.98095e34i 0.595974i
\(653\) 2.81796e35i 1.83451i −0.398301 0.917255i \(-0.630400\pi\)
0.398301 0.917255i \(-0.369600\pi\)
\(654\) −1.91432e35 −1.22262
\(655\) 4.42949e34 9.38245e34i 0.277547 0.587896i
\(656\) 6.11245e34 0.375766
\(657\) 1.51410e35i 0.913246i
\(658\) 9.57486e33i 0.0566642i
\(659\) 1.27642e35 0.741185 0.370592 0.928796i \(-0.379155\pi\)
0.370592 + 0.928796i \(0.379155\pi\)
\(660\) 1.32599e34 + 6.26006e33i 0.0755514 + 0.0356681i
\(661\) −3.04753e35 −1.70384 −0.851921 0.523671i \(-0.824562\pi\)
−0.851921 + 0.523671i \(0.824562\pi\)
\(662\) 6.71770e34i 0.368549i
\(663\) 1.19298e35i 0.642263i
\(664\) −8.11643e34 −0.428809
\(665\) 1.22011e34 + 5.76018e33i 0.0632599 + 0.0298652i
\(666\) 4.14101e35 2.10707
\(667\) 9.50755e34i 0.474783i
\(668\) 1.69545e35i 0.830959i
\(669\) −6.44450e35 −3.10001
\(670\) 2.90825e34 6.16019e34i 0.137308 0.290843i
\(671\) −4.66957e33 −0.0216394
\(672\) 6.08463e33i 0.0276770i
\(673\) 2.27652e35i 1.01644i 0.861227 + 0.508221i \(0.169697\pi\)
−0.861227 + 0.508221i \(0.830303\pi\)
\(674\) 3.56277e34 0.156149
\(675\) −1.62931e35 + 1.34098e35i −0.700980 + 0.576933i
\(676\) −1.10754e35 −0.467764
\(677\) 1.12736e35i 0.467416i −0.972307 0.233708i \(-0.924914\pi\)
0.972307 0.233708i \(-0.0750860\pi\)
\(678\) 3.77042e35i 1.53468i
\(679\) 3.79942e34 0.151826
\(680\) 6.07440e34 1.28667e35i 0.238310 0.504783i
\(681\) −6.65994e34 −0.256526
\(682\) 1.52508e34i 0.0576749i
\(683\) 1.62407e35i 0.603039i 0.953460 + 0.301520i \(0.0974939\pi\)
−0.953460 + 0.301520i \(0.902506\pi\)
\(684\) −1.53803e35 −0.560742
\(685\) 1.73631e35 + 8.19717e34i 0.621576 + 0.293448i
\(686\) −3.91287e34 −0.137545
\(687\) 5.84973e35i 2.01919i
\(688\) 1.32389e35i 0.448741i
\(689\) 9.69114e34 0.322578
\(690\) 4.65908e35 + 2.19957e35i 1.52295 + 0.718992i
\(691\) −2.17749e35 −0.699006 −0.349503 0.936935i \(-0.613649\pi\)
−0.349503 + 0.936935i \(0.613649\pi\)
\(692\) 1.45376e34i 0.0458316i
\(693\) 5.15741e33i 0.0159686i
\(694\) −3.30235e35 −1.00422
\(695\) 9.13142e34 1.93420e35i 0.272727 0.577685i
\(696\) −6.16657e34 −0.180896
\(697\) 8.23625e35i 2.37312i
\(698\) 3.99747e35i 1.13134i
\(699\) 3.72671e35 1.03600
\(700\) −1.38161e34 + 1.13712e34i −0.0377277 + 0.0310513i
\(701\) −1.31197e35 −0.351923 −0.175961 0.984397i \(-0.556303\pi\)
−0.175961 + 0.984397i \(0.556303\pi\)
\(702\) 6.18595e34i 0.163002i
\(703\) 5.25979e35i 1.36153i
\(704\) −5.12681e33 −0.0130373
\(705\) −2.24497e35 + 4.75525e35i −0.560850 + 1.18798i
\(706\) −5.56205e34 −0.136514
\(707\) 2.72353e34i 0.0656733i
\(708\) 3.45908e35i 0.819493i
\(709\) −1.07011e35 −0.249088 −0.124544 0.992214i \(-0.539747\pi\)
−0.124544 + 0.992214i \(0.539747\pi\)
\(710\) 8.26300e34 + 3.90099e34i 0.188977 + 0.0892166i
\(711\) 9.26759e35 2.08256
\(712\) 1.92246e35i 0.424481i
\(713\) 5.35859e35i 1.16260i
\(714\) −8.19876e34 −0.174792
\(715\) 1.14313e34 + 5.39677e33i 0.0239481 + 0.0113060i
\(716\) −3.40927e35 −0.701856
\(717\) 1.14396e36i 2.31431i
\(718\) 5.05572e35i 1.00514i
\(719\) 7.33489e35 1.43312 0.716560 0.697526i \(-0.245716\pi\)
0.716560 + 0.697526i \(0.245716\pi\)
\(720\) 8.70805e34 1.84452e35i 0.167211 0.354183i
\(721\) −5.37759e34 −0.101484
\(722\) 1.85885e35i 0.344771i
\(723\) 2.92729e34i 0.0533626i
\(724\) 1.02602e35 0.183833
\(725\) 1.15243e35 + 1.40022e35i 0.202951 + 0.246587i
\(726\) 6.47334e35 1.12052
\(727\) 1.00868e36i 1.71622i 0.513465 + 0.858111i \(0.328362\pi\)
−0.513465 + 0.858111i \(0.671638\pi\)
\(728\) 5.24553e33i 0.00877298i
\(729\) 9.91632e35 1.63026
\(730\) 1.08886e35 2.30641e35i 0.175970 0.372735i
\(731\) −1.78388e36 −2.83399
\(732\) 1.06417e35i 0.166197i
\(733\) 1.19811e36i 1.83948i 0.392525 + 0.919741i \(0.371602\pi\)
−0.392525 + 0.919741i \(0.628398\pi\)
\(734\) −7.95292e34 −0.120040
\(735\) −9.66981e35 4.56515e35i −1.43491 0.677428i
\(736\) −1.80138e35 −0.262805
\(737\) 3.30741e34i 0.0474400i
\(738\) 1.18072e36i 1.66511i
\(739\) 7.47298e35 1.03619 0.518094 0.855324i \(-0.326642\pi\)
0.518094 + 0.855324i \(0.326642\pi\)
\(740\) 6.30794e35 + 2.97800e35i 0.859985 + 0.406002i
\(741\) −2.17226e35 −0.291195
\(742\) 6.66026e34i 0.0877895i
\(743\) 1.09617e36i 1.42075i 0.703822 + 0.710376i \(0.251475\pi\)
−0.703822 + 0.710376i \(0.748525\pi\)
\(744\) −3.47557e35 −0.442960
\(745\) 4.21019e35 8.91795e35i 0.527653 1.11766i
\(746\) 7.19590e35 0.886850
\(747\) 1.56782e36i 1.90015i
\(748\) 6.90814e34i 0.0823362i
\(749\) −1.08673e34 −0.0127379
\(750\) −9.52777e35 + 2.40798e35i −1.09831 + 0.277580i
\(751\) −4.75595e34 −0.0539186 −0.0269593 0.999637i \(-0.508582\pi\)
−0.0269593 + 0.999637i \(0.508582\pi\)
\(752\) 1.83857e35i 0.205001i
\(753\) 1.34198e36i 1.47166i
\(754\) −5.31617e34 −0.0573399
\(755\) 3.92512e34 8.31411e34i 0.0416405 0.0882021i
\(756\) −4.25131e34 −0.0443609
\(757\) 1.35534e36i 1.39107i 0.718490 + 0.695537i \(0.244834\pi\)
−0.718490 + 0.695537i \(0.755166\pi\)
\(758\) 8.56475e35i 0.864669i
\(759\) −2.50147e35 −0.248412
\(760\) −2.34286e35 1.10607e35i −0.228863 0.108047i
\(761\) −4.04146e35 −0.388356 −0.194178 0.980966i \(-0.562204\pi\)
−0.194178 + 0.980966i \(0.562204\pi\)
\(762\) 1.01136e36i 0.956028i
\(763\) 1.13419e35i 0.105470i
\(764\) −2.09779e35 −0.191909
\(765\) −2.48541e36 1.17337e36i −2.23682 1.05601i
\(766\) −6.06132e35 −0.536670
\(767\) 2.98206e35i 0.259761i
\(768\) 1.16837e35i 0.100130i
\(769\) 1.59517e36 1.34502 0.672509 0.740089i \(-0.265217\pi\)
0.672509 + 0.740089i \(0.265217\pi\)
\(770\) 3.70894e33 7.85621e33i 0.00307692 0.00651747i
\(771\) 1.67023e36 1.36331
\(772\) 6.71234e35i 0.539086i
\(773\) 5.09562e35i 0.402674i 0.979522 + 0.201337i \(0.0645286\pi\)
−0.979522 + 0.201337i \(0.935471\pi\)
\(774\) −2.55730e36 −1.98848
\(775\) 6.49527e35 + 7.89182e35i 0.496965 + 0.603818i
\(776\) −7.29566e35 −0.549279
\(777\) 4.01947e35i 0.297787i
\(778\) 9.00052e35i 0.656180i
\(779\) −1.49972e36 −1.07595
\(780\) 1.22989e35 2.60514e35i 0.0868331 0.183928i
\(781\) −4.43642e34 −0.0308244
\(782\) 2.42728e36i 1.65972i
\(783\) 4.30856e35i 0.289941i
\(784\) 3.73872e35 0.247612
\(785\) 7.74787e35 + 3.65779e35i 0.505023 + 0.238423i
\(786\) 1.14801e36 0.736484
\(787\) 1.58597e36i 1.00141i 0.865619 + 0.500703i \(0.166925\pi\)
−0.865619 + 0.500703i \(0.833075\pi\)
\(788\) 2.01248e35i 0.125070i
\(789\) −1.15605e36 −0.707154
\(790\) 1.41172e36 + 6.66477e35i 0.849981 + 0.401279i
\(791\) 2.23389e35 0.132390
\(792\) 9.90327e34i 0.0577715i
\(793\) 9.17416e34i 0.0526807i
\(794\) 8.00614e35 0.452550
\(795\) 1.56160e36 3.30775e36i 0.868922 1.84053i
\(796\) 5.60980e35 0.307280
\(797\) 1.54676e36i 0.834053i −0.908894 0.417027i \(-0.863072\pi\)
0.908894 0.417027i \(-0.136928\pi\)
\(798\) 1.49289e35i 0.0792486i
\(799\) −2.47738e36 −1.29467
\(800\) 2.65297e35 2.18350e35i 0.136492 0.112338i
\(801\) 3.71355e36 1.88098
\(802\) 1.92994e36i 0.962420i
\(803\) 1.23831e35i 0.0607976i
\(804\) 7.53742e35 0.364353
\(805\) 1.30319e35 2.76040e35i 0.0620241 0.131378i
\(806\) −2.99627e35 −0.140408
\(807\) 3.26736e36i 1.50757i
\(808\) 5.22972e35i 0.237594i
\(809\) −6.21020e35 −0.277811 −0.138905 0.990306i \(-0.544358\pi\)
−0.138905 + 0.990306i \(0.544358\pi\)
\(810\) 1.62867e35 + 7.68900e34i 0.0717414 + 0.0338694i
\(811\) 4.69897e35 0.203818 0.101909 0.994794i \(-0.467505\pi\)
0.101909 + 0.994794i \(0.467505\pi\)
\(812\) 3.65355e34i 0.0156050i
\(813\) 4.93874e35i 0.207723i
\(814\) −3.38674e35 −0.140274
\(815\) −2.64262e36 1.24759e36i −1.07787 0.508865i
\(816\) 1.57433e36 0.632365
\(817\) 3.24821e36i 1.28490i
\(818\) 1.77293e36i 0.690679i
\(819\) −1.01326e35 −0.0388752
\(820\) 8.49113e35 1.79858e36i 0.320843 0.679603i
\(821\) −3.77384e36 −1.40441 −0.702205 0.711975i \(-0.747801\pi\)
−0.702205 + 0.711975i \(0.747801\pi\)
\(822\) 2.12449e36i 0.778677i
\(823\) 1.31964e36i 0.476385i −0.971218 0.238192i \(-0.923445\pi\)
0.971218 0.238192i \(-0.0765549\pi\)
\(824\) 1.03260e36 0.367150
\(825\) 3.68402e35 3.03209e35i 0.129017 0.106186i
\(826\) 2.04943e35 0.0706939
\(827\) 2.35273e36i 0.799380i 0.916650 + 0.399690i \(0.130882\pi\)
−0.916650 + 0.399690i \(0.869118\pi\)
\(828\) 3.47966e36i 1.16455i
\(829\) 1.44960e36 0.477878 0.238939 0.971035i \(-0.423200\pi\)
0.238939 + 0.971035i \(0.423200\pi\)
\(830\) −1.12750e36 + 2.38824e36i −0.366133 + 0.775536i
\(831\) 5.57877e36 1.78454
\(832\) 1.00725e35i 0.0317391i
\(833\) 5.03776e36i 1.56378i
\(834\) 2.36663e36 0.723692
\(835\) 4.98882e36 + 2.35524e36i 1.50286 + 0.709503i
\(836\) 1.25788e35 0.0373304
\(837\) 2.42837e36i 0.709980i
\(838\) 3.93977e35i 0.113480i
\(839\) 6.60849e35 0.187533 0.0937665 0.995594i \(-0.470109\pi\)
0.0937665 + 0.995594i \(0.470109\pi\)
\(840\) −1.79039e35 8.45248e34i −0.0500560 0.0236316i
\(841\) −3.26009e36 −0.898006
\(842\) 6.54019e34i 0.0177496i
\(843\) 3.03856e36i 0.812500i
\(844\) −1.16142e36 −0.305990
\(845\) −1.53855e36 + 3.25892e36i −0.399394 + 0.845989i
\(846\) −3.55149e36 −0.908408
\(847\) 3.83530e35i 0.0966623i
\(848\) 1.27890e36i 0.317607i
\(849\) −2.07541e36 −0.507877
\(850\) −2.94216e36 3.57476e36i −0.709464 0.862005i
\(851\) −1.18998e37 −2.82762
\(852\) 1.01104e36i 0.236740i
\(853\) 5.07169e35i 0.117028i −0.998287 0.0585140i \(-0.981364\pi\)
0.998287 0.0585140i \(-0.0186362\pi\)
\(854\) 6.30496e34 0.0143370
\(855\) −2.13656e36 + 4.52562e36i −0.478783 + 1.01415i
\(856\) 2.08674e35 0.0460836
\(857\) 2.45792e36i 0.534943i −0.963566 0.267471i \(-0.913812\pi\)
0.963566 0.267471i \(-0.0861881\pi\)
\(858\) 1.39870e35i 0.0300009i
\(859\) 7.15238e36 1.51194 0.755972 0.654603i \(-0.227164\pi\)
0.755972 + 0.654603i \(0.227164\pi\)
\(860\) −3.89551e36 1.83908e36i −0.811584 0.383151i
\(861\) −1.14607e36 −0.235327
\(862\) 2.91569e36i 0.590066i
\(863\) 2.16205e36i 0.431252i −0.976476 0.215626i \(-0.930821\pi\)
0.976476 0.215626i \(-0.0691792\pi\)
\(864\) 8.16337e35 0.160490
\(865\) −4.27764e35 2.01949e35i −0.0828902 0.0391327i
\(866\) −3.97211e36 −0.758660
\(867\) 1.27034e37i 2.39157i
\(868\) 2.05919e35i 0.0382121i
\(869\) −7.57953e35 −0.138642
\(870\) −8.56631e35 + 1.81450e36i −0.154455 + 0.327164i
\(871\) 6.49797e35 0.115492
\(872\) 2.17787e36i 0.381572i
\(873\) 1.40928e37i 2.43399i
\(874\) 4.41977e36 0.752500
\(875\) 1.42668e35 + 5.64499e35i 0.0239455 + 0.0947463i
\(876\) 2.82205e36 0.466943
\(877\) 6.84625e36i 1.11676i 0.829587 + 0.558378i \(0.188576\pi\)
−0.829587 + 0.558378i \(0.811424\pi\)
\(878\) 2.82365e36i 0.454077i
\(879\) −4.63526e36 −0.734874
\(880\) −7.12192e34 + 1.50855e35i −0.0111318 + 0.0235791i
\(881\) 2.59663e36 0.400139 0.200069 0.979782i \(-0.435883\pi\)
0.200069 + 0.979782i \(0.435883\pi\)
\(882\) 7.22196e36i 1.09723i
\(883\) 1.13962e36i 0.170707i −0.996351 0.0853533i \(-0.972798\pi\)
0.996351 0.0853533i \(-0.0272019\pi\)
\(884\) 1.35722e36 0.200446
\(885\) 1.01783e37 + 4.80520e36i 1.48212 + 0.699714i
\(886\) −6.03924e36 −0.867083
\(887\) 2.38557e36i 0.337713i −0.985641 0.168856i \(-0.945993\pi\)
0.985641 0.168856i \(-0.0540074\pi\)
\(888\) 7.71820e36i 1.07734i
\(889\) 5.99211e35 0.0824722
\(890\) 5.65680e36 + 2.67060e36i 0.767708 + 0.362437i
\(891\) −8.74434e34 −0.0117019
\(892\) 7.33175e36i 0.967490i
\(893\) 4.51100e36i 0.586988i
\(894\) 1.09117e37 1.40015
\(895\) −4.73599e36 + 1.00317e37i −0.599271 + 1.26936i
\(896\) 6.92234e34 0.00863779
\(897\) 4.91456e36i 0.604754i
\(898\) 9.97593e36i 1.21060i
\(899\) 2.08693e36 0.249753
\(900\) −4.21778e36 5.12465e36i −0.497798 0.604829i
\(901\) 1.72327e37 2.00582
\(902\) 9.65657e35i 0.110851i
\(903\) 2.48225e36i 0.281027i
\(904\) −4.28951e36 −0.478964
\(905\) 1.42530e36 3.01904e36i 0.156963 0.332477i
\(906\) 1.01729e36 0.110495
\(907\) 1.67063e37i 1.78974i −0.446326 0.894870i \(-0.647268\pi\)
0.446326 0.894870i \(-0.352732\pi\)
\(908\) 7.57685e35i 0.0800600i
\(909\) −1.01021e37 −1.05284
\(910\) −1.54349e35 7.28685e34i −0.0158666 0.00749070i
\(911\) 1.13215e37 1.14795 0.573976 0.818872i \(-0.305400\pi\)
0.573976 + 0.818872i \(0.305400\pi\)
\(912\) 2.86665e36i 0.286708i
\(913\) 1.28225e36i 0.126499i
\(914\) 7.20082e36 0.700736
\(915\) 3.13129e36 + 1.47829e36i 0.300580 + 0.141905i
\(916\) −6.65510e36 −0.630175
\(917\) 6.80169e35i 0.0635331i
\(918\) 1.09998e37i 1.01356i
\(919\) −1.76508e37 −1.60443 −0.802215 0.597035i \(-0.796345\pi\)
−0.802215 + 0.597035i \(0.796345\pi\)
\(920\) −2.50240e36 + 5.30052e36i −0.224392 + 0.475303i
\(921\) 9.81953e35 0.0868651
\(922\) 8.31325e36i 0.725495i
\(923\) 8.71609e35i 0.0750413i
\(924\) 9.61262e34 0.00816473
\(925\) 1.75254e37 1.44241e37i 1.46857 1.20869i
\(926\) 2.30624e36 0.190663
\(927\) 1.99465e37i 1.62693i
\(928\) 7.01556e35i 0.0564563i
\(929\) −2.88984e36 −0.229445 −0.114722 0.993398i \(-0.536598\pi\)
−0.114722 + 0.993398i \(0.536598\pi\)
\(930\) −4.82810e36 + 1.02268e37i −0.378215 + 0.801128i
\(931\) −9.17311e36 −0.708999
\(932\) 4.23978e36i 0.323329i
\(933\) 1.91942e37i 1.44428i
\(934\) −1.37300e37 −1.01938
\(935\) 2.03270e36 + 9.59646e35i 0.148912 + 0.0703017i
\(936\) 1.94566e36 0.140644
\(937\) 1.29200e37i 0.921545i 0.887518 + 0.460772i \(0.152428\pi\)
−0.887518 + 0.460772i \(0.847572\pi\)
\(938\) 4.46575e35i 0.0314310i
\(939\) −2.19493e37 −1.52441
\(940\) −5.40993e36 2.55405e36i −0.370761 0.175037i
\(941\) 2.06414e37 1.39595 0.697973 0.716124i \(-0.254086\pi\)
0.697973 + 0.716124i \(0.254086\pi\)
\(942\) 9.48005e36i 0.632666i
\(943\) 3.39299e37i 2.23453i
\(944\) −3.93532e36 −0.255758
\(945\) −5.90572e35 + 1.25094e36i −0.0378770 + 0.0802303i
\(946\) 2.09150e36 0.132379
\(947\) 2.09426e36i 0.130815i 0.997859 + 0.0654073i \(0.0208347\pi\)
−0.997859 + 0.0654073i \(0.979165\pi\)
\(948\) 1.72734e37i 1.06481i
\(949\) 2.43288e36 0.148010
\(950\) −6.50918e36 + 5.35730e36i −0.390824 + 0.321663i
\(951\) −6.83316e36 −0.404916
\(952\) 9.32753e35i 0.0545513i
\(953\) 1.70726e37i 0.985461i 0.870182 + 0.492731i \(0.164001\pi\)
−0.870182 + 0.492731i \(0.835999\pi\)
\(954\) 2.47041e37 1.40739
\(955\) −2.91416e36 + 6.17271e36i −0.163859 + 0.347083i
\(956\) 1.30146e37 0.722281
\(957\) 9.74207e35i 0.0533644i
\(958\) 1.34386e37i 0.726581i
\(959\) 1.25871e36 0.0671729
\(960\) 3.43791e36 + 1.62305e36i 0.181094 + 0.0854950i
\(961\) −7.47058e36 −0.388429
\(962\) 6.65382e36i 0.341494i
\(963\) 4.03088e36i 0.204207i
\(964\) 3.33031e35 0.0166541
\(965\) −1.97509e37 9.32447e36i −0.974980 0.460291i
\(966\) 3.37754e36 0.164584
\(967\) 1.41585e37i 0.681063i −0.940233 0.340532i \(-0.889393\pi\)
0.940233 0.340532i \(-0.110607\pi\)
\(968\) 7.36456e36i 0.349707i
\(969\) −3.86268e37 −1.81068
\(970\) −1.01348e37 + 2.14673e37i −0.468995 + 0.993415i
\(971\) −1.45645e37 −0.665357 −0.332678 0.943040i \(-0.607952\pi\)
−0.332678 + 0.943040i \(0.607952\pi\)
\(972\) 1.20580e37i 0.543808i
\(973\) 1.40217e36i 0.0624296i
\(974\) 1.16153e37 0.510554
\(975\) −5.95705e36 7.23787e36i −0.258508 0.314089i
\(976\) −1.21068e36 −0.0518688
\(977\) 2.61043e36i 0.110415i 0.998475 + 0.0552077i \(0.0175821\pi\)
−0.998475 + 0.0552077i \(0.982418\pi\)
\(978\) 3.23343e37i 1.35029i
\(979\) −3.03714e36 −0.125222
\(980\) 5.19366e36 1.10011e37i 0.211421 0.447827i
\(981\) −4.20692e37 −1.69084
\(982\) 2.53241e37i 1.00494i
\(983\) 4.36771e37i 1.71133i −0.517527 0.855667i \(-0.673147\pi\)
0.517527 0.855667i \(-0.326853\pi\)
\(984\) 2.20068e37 0.851370
\(985\) −5.92168e36 2.79565e36i −0.226200 0.106790i
\(986\) −9.45314e36 −0.356545
\(987\) 3.44726e36i 0.128384i
\(988\) 2.47133e36i 0.0908800i
\(989\) 7.34881e37 2.66848
\(990\) 2.91401e36 + 1.37572e36i 0.104484 + 0.0493274i
\(991\) 5.30135e37 1.87701 0.938503 0.345271i \(-0.112213\pi\)
0.938503 + 0.345271i \(0.112213\pi\)
\(992\) 3.95407e36i 0.138245i
\(993\) 2.41859e37i 0.835019i
\(994\) 5.99015e35 0.0204225
\(995\) 7.79287e36 1.65067e37i 0.262367 0.555740i
\(996\) −2.92218e37 −0.971549
\(997\) 4.76523e37i 1.56457i 0.622921 + 0.782284i \(0.285946\pi\)
−0.622921 + 0.782284i \(0.714054\pi\)
\(998\) 1.12038e37i 0.363275i
\(999\) 5.39268e37 1.72678
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.26.b.a.9.12 yes 12
5.2 odd 4 50.26.a.k.1.6 6
5.3 odd 4 50.26.a.l.1.1 6
5.4 even 2 inner 10.26.b.a.9.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.b.a.9.1 12 5.4 even 2 inner
10.26.b.a.9.12 yes 12 1.1 even 1 trivial
50.26.a.k.1.6 6 5.2 odd 4
50.26.a.l.1.1 6 5.3 odd 4