Properties

Label 10.26.b.a.9.10
Level $10$
Weight $26$
Character 10.9
Analytic conductor $39.600$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,26,Mod(9,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.9");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5996779952\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 1406300109694 x^{10} + \cdots + 56\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{8}\cdot 5^{29} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 9.10
Root \(116846. i\) of defining polynomial
Character \(\chi\) \(=\) 10.9
Dual form 10.26.b.a.9.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4096.00i q^{2} +233693. i q^{3} -1.67772e7 q^{4} +(-3.44896e8 - 4.23166e8i) q^{5} -9.57206e8 q^{6} +6.39090e10i q^{7} -6.87195e10i q^{8} +7.92676e11 q^{9} +(1.73329e12 - 1.41270e12i) q^{10} +6.04007e12 q^{11} -3.92071e12i q^{12} +1.13809e14i q^{13} -2.61771e14 q^{14} +(9.88909e13 - 8.05998e13i) q^{15} +2.81475e14 q^{16} -9.52541e14i q^{17} +3.24680e15i q^{18} -8.44950e15 q^{19} +(5.78640e15 + 7.09955e15i) q^{20} -1.49351e16 q^{21} +2.47401e16i q^{22} -1.51928e16i q^{23} +1.60592e16 q^{24} +(-6.01162e16 + 2.91897e17i) q^{25} -4.66162e17 q^{26} +3.83248e17i q^{27} -1.07222e18i q^{28} +1.63360e18 q^{29} +(3.30137e17 + 4.05057e17i) q^{30} -7.82464e18 q^{31} +1.15292e18i q^{32} +1.41152e18i q^{33} +3.90161e18 q^{34} +(2.70441e19 - 2.20420e19i) q^{35} -1.32989e19 q^{36} -3.53342e19i q^{37} -3.46091e19i q^{38} -2.65964e19 q^{39} +(-2.90798e19 + 2.37011e19i) q^{40} -2.35937e20 q^{41} -6.11741e19i q^{42} +3.29832e19i q^{43} -1.01335e20 q^{44} +(-2.73391e20 - 3.35434e20i) q^{45} +6.22296e19 q^{46} -1.82685e20i q^{47} +6.57787e19i q^{48} -2.74329e21 q^{49} +(-1.19561e21 - 2.46236e20i) q^{50} +2.22602e20 q^{51} -1.90940e21i q^{52} -5.40172e21i q^{53} -1.56978e21 q^{54} +(-2.08320e21 - 2.55595e21i) q^{55} +4.39179e21 q^{56} -1.97459e21i q^{57} +6.69124e21i q^{58} +1.13226e22 q^{59} +(-1.65911e21 + 1.35224e21i) q^{60} -2.83642e22 q^{61} -3.20497e22i q^{62} +5.06592e22i q^{63} -4.72237e21 q^{64} +(4.81602e22 - 3.92523e22i) q^{65} -5.78158e21 q^{66} +1.16196e23i q^{67} +1.59810e22i q^{68} +3.55044e21 q^{69} +(9.02840e22 + 1.10773e23i) q^{70} +1.14601e23 q^{71} -5.44723e22i q^{72} -8.85118e21i q^{73} +1.44729e23 q^{74} +(-6.82142e22 - 1.40487e22i) q^{75} +1.41759e23 q^{76} +3.86015e23i q^{77} -1.08939e23i q^{78} -2.17397e23 q^{79} +(-9.70797e22 - 1.19111e23i) q^{80} +5.82063e23 q^{81} -9.66398e23i q^{82} +6.46451e22i q^{83} +2.50569e23 q^{84} +(-4.03083e23 + 3.28528e23i) q^{85} -1.35099e23 q^{86} +3.81761e23i q^{87} -4.15070e23i q^{88} -3.57337e24 q^{89} +(1.37394e24 - 1.11981e24i) q^{90} -7.27343e24 q^{91} +2.54893e23i q^{92} -1.82856e24i q^{93} +7.48277e23 q^{94} +(2.91420e24 + 3.57554e24i) q^{95} -2.69429e23 q^{96} -2.49389e24i q^{97} -1.12365e25i q^{98} +4.78782e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 201326592 q^{4} - 490295340 q^{5} - 6565199872 q^{6} - 1082937564236 q^{9} + 1636528619520 q^{10} + 19723089228624 q^{11} + 278591122243584 q^{14} - 449884766537680 q^{15} + 33\!\cdots\!72 q^{16}+ \cdots + 41\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00i 0.707107i
\(3\) 233693.i 0.253881i 0.991910 + 0.126940i \(0.0405157\pi\)
−0.991910 + 0.126940i \(0.959484\pi\)
\(4\) −1.67772e7 −0.500000
\(5\) −3.44896e8 4.23166e8i −0.631777 0.775150i
\(6\) −9.57206e8 −0.179521
\(7\) 6.39090e10i 1.74517i 0.488466 + 0.872583i \(0.337557\pi\)
−0.488466 + 0.872583i \(0.662443\pi\)
\(8\) 6.87195e10i 0.353553i
\(9\) 7.92676e11 0.935545
\(10\) 1.73329e12 1.41270e12i 0.548114 0.446734i
\(11\) 6.04007e12 0.580274 0.290137 0.956985i \(-0.406299\pi\)
0.290137 + 0.956985i \(0.406299\pi\)
\(12\) 3.92071e12i 0.126940i
\(13\) 1.13809e14i 1.35483i 0.735601 + 0.677415i \(0.236900\pi\)
−0.735601 + 0.677415i \(0.763100\pi\)
\(14\) −2.61771e14 −1.23402
\(15\) 9.88909e13 8.05998e13i 0.196796 0.160396i
\(16\) 2.81475e14 0.250000
\(17\) 9.52541e14i 0.396526i −0.980149 0.198263i \(-0.936470\pi\)
0.980149 0.198263i \(-0.0635301\pi\)
\(18\) 3.24680e15i 0.661530i
\(19\) −8.44950e15 −0.875812 −0.437906 0.899021i \(-0.644280\pi\)
−0.437906 + 0.899021i \(0.644280\pi\)
\(20\) 5.78640e15 + 7.09955e15i 0.315888 + 0.387575i
\(21\) −1.49351e16 −0.443064
\(22\) 2.47401e16i 0.410316i
\(23\) 1.51928e16i 0.144557i −0.997384 0.0722786i \(-0.976973\pi\)
0.997384 0.0722786i \(-0.0230271\pi\)
\(24\) 1.60592e16 0.0897604
\(25\) −6.01162e16 + 2.91897e17i −0.201717 + 0.979444i
\(26\) −4.66162e17 −0.958010
\(27\) 3.83248e17i 0.491397i
\(28\) 1.07222e18i 0.872583i
\(29\) 1.63360e18 0.857376 0.428688 0.903452i \(-0.358976\pi\)
0.428688 + 0.903452i \(0.358976\pi\)
\(30\) 3.30137e17 + 4.05057e17i 0.113417 + 0.139156i
\(31\) −7.82464e18 −1.78420 −0.892099 0.451840i \(-0.850768\pi\)
−0.892099 + 0.451840i \(0.850768\pi\)
\(32\) 1.15292e18i 0.176777i
\(33\) 1.41152e18i 0.147320i
\(34\) 3.90161e18 0.280386
\(35\) 2.70441e19 2.20420e19i 1.35277 1.10255i
\(36\) −1.32989e19 −0.467772
\(37\) 3.53342e19i 0.882417i −0.897405 0.441208i \(-0.854550\pi\)
0.897405 0.441208i \(-0.145450\pi\)
\(38\) 3.46091e19i 0.619293i
\(39\) −2.65964e19 −0.343965
\(40\) −2.90798e19 + 2.37011e19i −0.274057 + 0.223367i
\(41\) −2.35937e20 −1.63304 −0.816522 0.577315i \(-0.804101\pi\)
−0.816522 + 0.577315i \(0.804101\pi\)
\(42\) 6.11741e19i 0.313293i
\(43\) 3.29832e19i 0.125874i 0.998017 + 0.0629372i \(0.0200468\pi\)
−0.998017 + 0.0629372i \(0.979953\pi\)
\(44\) −1.01335e20 −0.290137
\(45\) −2.73391e20 3.35434e20i −0.591055 0.725188i
\(46\) 6.22296e19 0.102217
\(47\) 1.82685e20i 0.229340i −0.993404 0.114670i \(-0.963419\pi\)
0.993404 0.114670i \(-0.0365810\pi\)
\(48\) 6.57787e19i 0.0634702i
\(49\) −2.74329e21 −2.04560
\(50\) −1.19561e21 2.46236e20i −0.692571 0.142635i
\(51\) 2.22602e20 0.100670
\(52\) 1.90940e21i 0.677415i
\(53\) 5.40172e21i 1.51037i −0.655511 0.755186i \(-0.727547\pi\)
0.655511 0.755186i \(-0.272453\pi\)
\(54\) −1.56978e21 −0.347470
\(55\) −2.08320e21 2.55595e21i −0.366604 0.449800i
\(56\) 4.39179e21 0.617009
\(57\) 1.97459e21i 0.222352i
\(58\) 6.69124e21i 0.606257i
\(59\) 1.13226e22 0.828509 0.414254 0.910161i \(-0.364042\pi\)
0.414254 + 0.910161i \(0.364042\pi\)
\(60\) −1.65911e21 + 1.35224e21i −0.0983979 + 0.0801979i
\(61\) −2.83642e22 −1.36820 −0.684098 0.729390i \(-0.739804\pi\)
−0.684098 + 0.729390i \(0.739804\pi\)
\(62\) 3.20497e22i 1.26162i
\(63\) 5.06592e22i 1.63268i
\(64\) −4.72237e21 −0.125000
\(65\) 4.81602e22 3.92523e22i 1.05020 0.855950i
\(66\) −5.78158e21 −0.104171
\(67\) 1.16196e23i 1.73483i 0.497586 + 0.867415i \(0.334220\pi\)
−0.497586 + 0.867415i \(0.665780\pi\)
\(68\) 1.59810e22i 0.198263i
\(69\) 3.55044e21 0.0367003
\(70\) 9.02840e22 + 1.10773e23i 0.779624 + 0.956550i
\(71\) 1.14601e23 0.828816 0.414408 0.910091i \(-0.363989\pi\)
0.414408 + 0.910091i \(0.363989\pi\)
\(72\) 5.44723e22i 0.330765i
\(73\) 8.85118e21i 0.0452340i −0.999744 0.0226170i \(-0.992800\pi\)
0.999744 0.0226170i \(-0.00719983\pi\)
\(74\) 1.44729e23 0.623963
\(75\) −6.82142e22 1.40487e22i −0.248662 0.0512119i
\(76\) 1.41759e23 0.437906
\(77\) 3.86015e23i 1.01267i
\(78\) 1.08939e23i 0.243220i
\(79\) −2.17397e23 −0.413918 −0.206959 0.978350i \(-0.566357\pi\)
−0.206959 + 0.978350i \(0.566357\pi\)
\(80\) −9.70797e22 1.19111e23i −0.157944 0.193788i
\(81\) 5.82063e23 0.810788
\(82\) 9.66398e23i 1.15474i
\(83\) 6.46451e22i 0.0663834i 0.999449 + 0.0331917i \(0.0105672\pi\)
−0.999449 + 0.0331917i \(0.989433\pi\)
\(84\) 2.50569e23 0.221532
\(85\) −4.03083e23 + 3.28528e23i −0.307368 + 0.250516i
\(86\) −1.35099e23 −0.0890067
\(87\) 3.81761e23i 0.217671i
\(88\) 4.15070e23i 0.205158i
\(89\) −3.57337e24 −1.53357 −0.766783 0.641906i \(-0.778144\pi\)
−0.766783 + 0.641906i \(0.778144\pi\)
\(90\) 1.37394e24 1.11981e24i 0.512785 0.417939i
\(91\) −7.27343e24 −2.36440
\(92\) 2.54893e23i 0.0722786i
\(93\) 1.82856e24i 0.452973i
\(94\) 7.48277e23 0.162168
\(95\) 2.91420e24 + 3.57554e24i 0.553317 + 0.678886i
\(96\) −2.69429e23 −0.0448802
\(97\) 2.49389e24i 0.364948i −0.983211 0.182474i \(-0.941589\pi\)
0.983211 0.182474i \(-0.0584105\pi\)
\(98\) 1.12365e25i 1.44646i
\(99\) 4.78782e24 0.542872
\(100\) 1.00858e24 4.89722e24i 0.100858 0.489722i
\(101\) −1.34804e25 −1.19038 −0.595192 0.803584i \(-0.702924\pi\)
−0.595192 + 0.803584i \(0.702924\pi\)
\(102\) 9.11777e23i 0.0711847i
\(103\) 1.98475e25i 1.37164i 0.727769 + 0.685822i \(0.240557\pi\)
−0.727769 + 0.685822i \(0.759443\pi\)
\(104\) 7.82090e24 0.479005
\(105\) 5.15105e24 + 6.32002e24i 0.279917 + 0.343441i
\(106\) 2.21255e25 1.06799
\(107\) 6.60004e24i 0.283302i −0.989917 0.141651i \(-0.954759\pi\)
0.989917 0.141651i \(-0.0452411\pi\)
\(108\) 6.42983e24i 0.245699i
\(109\) 6.35443e24 0.216394 0.108197 0.994129i \(-0.465492\pi\)
0.108197 + 0.994129i \(0.465492\pi\)
\(110\) 1.04692e25 8.53277e24i 0.318056 0.259228i
\(111\) 8.25735e24 0.224029
\(112\) 1.79888e25i 0.436291i
\(113\) 5.12661e25i 1.11263i 0.830973 + 0.556313i \(0.187785\pi\)
−0.830973 + 0.556313i \(0.812215\pi\)
\(114\) 8.08791e24 0.157226
\(115\) −6.42907e24 + 5.23994e24i −0.112054 + 0.0913278i
\(116\) −2.74073e25 −0.428688
\(117\) 9.02138e25i 1.26750i
\(118\) 4.63775e25i 0.585844i
\(119\) 6.08759e25 0.692004
\(120\) −5.53878e24 6.79573e24i −0.0567085 0.0695778i
\(121\) −7.18647e25 −0.663282
\(122\) 1.16180e26i 0.967460i
\(123\) 5.51368e25i 0.414598i
\(124\) 1.31276e26 0.892099
\(125\) 1.44255e26 7.52351e25i 0.886656 0.462429i
\(126\) −2.07500e26 −1.15448
\(127\) 1.52068e26i 0.766462i −0.923653 0.383231i \(-0.874811\pi\)
0.923653 0.383231i \(-0.125189\pi\)
\(128\) 1.93428e25i 0.0883883i
\(129\) −7.70794e24 −0.0319571
\(130\) 1.60778e26 + 1.97264e26i 0.605248 + 0.742602i
\(131\) −4.54456e26 −1.55454 −0.777268 0.629170i \(-0.783395\pi\)
−0.777268 + 0.629170i \(0.783395\pi\)
\(132\) 2.36814e25i 0.0736602i
\(133\) 5.39999e26i 1.52844i
\(134\) −4.75940e26 −1.22671
\(135\) 1.62178e26 1.32181e26i 0.380907 0.310453i
\(136\) −6.54581e25 −0.140193
\(137\) 5.90117e25i 0.115327i −0.998336 0.0576635i \(-0.981635\pi\)
0.998336 0.0576635i \(-0.0183651\pi\)
\(138\) 1.45426e25i 0.0259510i
\(139\) 1.48479e26 0.242091 0.121046 0.992647i \(-0.461375\pi\)
0.121046 + 0.992647i \(0.461375\pi\)
\(140\) −4.53725e26 + 3.69803e26i −0.676383 + 0.551277i
\(141\) 4.26921e25 0.0582249
\(142\) 4.69405e26i 0.586062i
\(143\) 6.87414e26i 0.786173i
\(144\) 2.23119e26 0.233886
\(145\) −5.63424e26 6.91286e26i −0.541670 0.664596i
\(146\) 3.62544e25 0.0319853
\(147\) 6.41088e26i 0.519339i
\(148\) 5.92809e26i 0.441208i
\(149\) 5.34888e26 0.365961 0.182981 0.983117i \(-0.441425\pi\)
0.182981 + 0.983117i \(0.441425\pi\)
\(150\) 5.75436e25 2.79406e26i 0.0362123 0.175831i
\(151\) 2.12275e27 1.22938 0.614691 0.788768i \(-0.289281\pi\)
0.614691 + 0.788768i \(0.289281\pi\)
\(152\) 5.80645e26i 0.309646i
\(153\) 7.55056e26i 0.370968i
\(154\) −1.58112e27 −0.716069
\(155\) 2.69869e27 + 3.31112e27i 1.12721 + 1.38302i
\(156\) 4.46213e26 0.171983
\(157\) 1.66162e26i 0.0591271i −0.999563 0.0295636i \(-0.990588\pi\)
0.999563 0.0295636i \(-0.00941174\pi\)
\(158\) 8.90456e26i 0.292684i
\(159\) 1.26234e27 0.383454
\(160\) 4.87878e26 3.97638e26i 0.137029 0.111683i
\(161\) 9.70956e26 0.252276
\(162\) 2.38413e27i 0.573314i
\(163\) 2.97944e27i 0.663421i 0.943381 + 0.331710i \(0.107626\pi\)
−0.943381 + 0.331710i \(0.892374\pi\)
\(164\) 3.95837e27 0.816522
\(165\) 5.97308e26 4.86828e26i 0.114195 0.0930735i
\(166\) −2.64786e26 −0.0469401
\(167\) 8.95870e27i 1.47329i −0.676278 0.736647i \(-0.736408\pi\)
0.676278 0.736647i \(-0.263592\pi\)
\(168\) 1.02633e27i 0.156647i
\(169\) −5.89610e27 −0.835567
\(170\) −1.34565e27 1.65103e27i −0.177142 0.217342i
\(171\) −6.69772e27 −0.819361
\(172\) 5.53367e26i 0.0629372i
\(173\) 1.40879e28i 1.49028i 0.666905 + 0.745142i \(0.267619\pi\)
−0.666905 + 0.745142i \(0.732381\pi\)
\(174\) −1.56369e27 −0.153917
\(175\) −1.86549e28 3.84197e27i −1.70929 0.352029i
\(176\) 1.70013e27 0.145068
\(177\) 2.64602e27i 0.210342i
\(178\) 1.46365e28i 1.08440i
\(179\) −9.19738e27 −0.635333 −0.317667 0.948202i \(-0.602899\pi\)
−0.317667 + 0.948202i \(0.602899\pi\)
\(180\) 4.58674e27 + 5.62765e27i 0.295528 + 0.362594i
\(181\) 2.77373e28 1.66756 0.833782 0.552094i \(-0.186171\pi\)
0.833782 + 0.552094i \(0.186171\pi\)
\(182\) 2.97920e28i 1.67189i
\(183\) 6.62852e27i 0.347358i
\(184\) −1.04404e27 −0.0511087
\(185\) −1.49522e28 + 1.21866e28i −0.684006 + 0.557490i
\(186\) 7.48979e27 0.320301
\(187\) 5.75341e27i 0.230094i
\(188\) 3.06494e27i 0.114670i
\(189\) −2.44930e28 −0.857570
\(190\) −1.46454e28 + 1.19366e28i −0.480045 + 0.391255i
\(191\) −1.68120e28 −0.516064 −0.258032 0.966136i \(-0.583074\pi\)
−0.258032 + 0.966136i \(0.583074\pi\)
\(192\) 1.10358e27i 0.0317351i
\(193\) 2.97967e28i 0.802975i −0.915865 0.401487i \(-0.868493\pi\)
0.915865 0.401487i \(-0.131507\pi\)
\(194\) 1.02150e28 0.258057
\(195\) 9.17299e27 + 1.12547e28i 0.217309 + 0.266625i
\(196\) 4.60248e28 1.02280
\(197\) 8.93281e27i 0.186277i 0.995653 + 0.0931387i \(0.0296900\pi\)
−0.995653 + 0.0931387i \(0.970310\pi\)
\(198\) 1.96109e28i 0.383869i
\(199\) 9.58646e28 1.76196 0.880978 0.473157i \(-0.156886\pi\)
0.880978 + 0.473157i \(0.156886\pi\)
\(200\) 2.00590e28 + 4.13116e27i 0.346286 + 0.0713176i
\(201\) −2.71542e28 −0.440440
\(202\) 5.52159e28i 0.841728i
\(203\) 1.04402e29i 1.49626i
\(204\) −3.73464e27 −0.0503352
\(205\) 8.13738e28 + 9.98406e28i 1.03172 + 1.26585i
\(206\) −8.12956e28 −0.969899
\(207\) 1.20430e28i 0.135240i
\(208\) 3.20344e28i 0.338708i
\(209\) −5.10355e28 −0.508211
\(210\) −2.58868e28 + 2.10987e28i −0.242850 + 0.197931i
\(211\) 5.69613e27 0.0503558 0.0251779 0.999683i \(-0.491985\pi\)
0.0251779 + 0.999683i \(0.491985\pi\)
\(212\) 9.06259e28i 0.755186i
\(213\) 2.67814e28i 0.210420i
\(214\) 2.70338e28 0.200325
\(215\) 1.39574e28 1.13758e28i 0.0975716 0.0795245i
\(216\) 2.63366e28 0.173735
\(217\) 5.00065e29i 3.11372i
\(218\) 2.60278e28i 0.153014i
\(219\) 2.06846e27 0.0114840
\(220\) 3.49502e28 + 4.28818e28i 0.183302 + 0.224900i
\(221\) 1.08408e29 0.537226
\(222\) 3.38221e28i 0.158412i
\(223\) 5.84548e28i 0.258827i 0.991591 + 0.129413i \(0.0413094\pi\)
−0.991591 + 0.129413i \(0.958691\pi\)
\(224\) −7.36821e28 −0.308505
\(225\) −4.76527e28 + 2.31380e29i −0.188715 + 0.916313i
\(226\) −2.09986e29 −0.786746
\(227\) 5.52270e29i 1.95807i −0.203691 0.979035i \(-0.565294\pi\)
0.203691 0.979035i \(-0.434706\pi\)
\(228\) 3.31281e28i 0.111176i
\(229\) 5.80273e28 0.184369 0.0921847 0.995742i \(-0.470615\pi\)
0.0921847 + 0.995742i \(0.470615\pi\)
\(230\) −2.14628e28 2.63335e28i −0.0645785 0.0792338i
\(231\) −9.02088e28 −0.257098
\(232\) 1.12260e29i 0.303128i
\(233\) 1.93762e29i 0.495816i −0.968784 0.247908i \(-0.920257\pi\)
0.968784 0.247908i \(-0.0797430\pi\)
\(234\) −3.69516e29 −0.896261
\(235\) −7.73061e28 + 6.30073e28i −0.177773 + 0.144892i
\(236\) −1.89962e29 −0.414254
\(237\) 5.08040e28i 0.105086i
\(238\) 2.49348e29i 0.489321i
\(239\) −7.15964e28 −0.133327 −0.0666634 0.997776i \(-0.521235\pi\)
−0.0666634 + 0.997776i \(0.521235\pi\)
\(240\) 2.78353e28 2.26868e28i 0.0491989 0.0400990i
\(241\) −8.42045e29 −1.41293 −0.706467 0.707746i \(-0.749712\pi\)
−0.706467 + 0.707746i \(0.749712\pi\)
\(242\) 2.94358e29i 0.469011i
\(243\) 4.60746e29i 0.697241i
\(244\) 4.75873e29 0.684098
\(245\) 9.46152e29 + 1.16087e30i 1.29236 + 1.58565i
\(246\) 2.25840e29 0.293165
\(247\) 9.61630e29i 1.18658i
\(248\) 5.37705e29i 0.630809i
\(249\) −1.51071e28 −0.0168535
\(250\) 3.08163e29 + 5.90868e29i 0.326987 + 0.626961i
\(251\) −3.23321e28 −0.0326372 −0.0163186 0.999867i \(-0.505195\pi\)
−0.0163186 + 0.999867i \(0.505195\pi\)
\(252\) 8.49920e29i 0.816340i
\(253\) 9.17654e28i 0.0838827i
\(254\) 6.22869e29 0.541970
\(255\) −7.67746e28 9.41976e28i −0.0636012 0.0780347i
\(256\) 7.92282e28 0.0625000
\(257\) 2.39756e29i 0.180138i 0.995936 + 0.0900689i \(0.0287087\pi\)
−0.995936 + 0.0900689i \(0.971291\pi\)
\(258\) 3.15717e28i 0.0225971i
\(259\) 2.25817e30 1.53996
\(260\) −8.07994e29 + 6.58545e29i −0.525099 + 0.427975i
\(261\) 1.29492e30 0.802114
\(262\) 1.86145e30i 1.09922i
\(263\) 2.50236e30i 1.40898i 0.709716 + 0.704488i \(0.248823\pi\)
−0.709716 + 0.704488i \(0.751177\pi\)
\(264\) 9.69989e28 0.0520856
\(265\) −2.28583e30 + 1.86303e30i −1.17077 + 0.954218i
\(266\) 2.21184e30 1.08077
\(267\) 8.35070e29i 0.389343i
\(268\) 1.94945e30i 0.867415i
\(269\) −3.20998e30 −1.36332 −0.681662 0.731667i \(-0.738743\pi\)
−0.681662 + 0.731667i \(0.738743\pi\)
\(270\) 5.41413e29 + 6.64280e29i 0.219524 + 0.269342i
\(271\) 1.88885e30 0.731277 0.365638 0.930757i \(-0.380851\pi\)
0.365638 + 0.930757i \(0.380851\pi\)
\(272\) 2.68116e29i 0.0991316i
\(273\) 1.69975e30i 0.600277i
\(274\) 2.41712e29 0.0815485
\(275\) −3.63106e29 + 1.76308e30i −0.117051 + 0.568346i
\(276\) −5.95666e28 −0.0183501
\(277\) 2.14925e29i 0.0632835i −0.999499 0.0316417i \(-0.989926\pi\)
0.999499 0.0316417i \(-0.0100736\pi\)
\(278\) 6.08169e29i 0.171184i
\(279\) −6.20241e30 −1.66920
\(280\) −1.51471e30 1.85846e30i −0.389812 0.478275i
\(281\) −1.34905e30 −0.332048 −0.166024 0.986122i \(-0.553093\pi\)
−0.166024 + 0.986122i \(0.553093\pi\)
\(282\) 1.74867e29i 0.0411712i
\(283\) 7.01801e30i 1.58082i 0.612576 + 0.790412i \(0.290133\pi\)
−0.612576 + 0.790412i \(0.709867\pi\)
\(284\) −1.92268e30 −0.414408
\(285\) −8.35578e29 + 6.81028e29i −0.172356 + 0.140477i
\(286\) −2.81565e30 −0.555908
\(287\) 1.50785e31i 2.84993i
\(288\) 9.13894e29i 0.165382i
\(289\) 4.86329e30 0.842767
\(290\) 2.83151e30 2.30778e30i 0.469940 0.383019i
\(291\) 5.82805e29 0.0926533
\(292\) 1.48498e29i 0.0226170i
\(293\) 4.23132e30i 0.617491i −0.951145 0.308746i \(-0.900091\pi\)
0.951145 0.308746i \(-0.0999092\pi\)
\(294\) 2.62590e30 0.367228
\(295\) −3.90513e30 4.79136e30i −0.523433 0.642219i
\(296\) −2.42815e30 −0.311981
\(297\) 2.31484e30i 0.285145i
\(298\) 2.19090e30i 0.258774i
\(299\) 1.72908e30 0.195850
\(300\) 1.14445e30 + 2.35699e29i 0.124331 + 0.0256060i
\(301\) −2.10793e30 −0.219672
\(302\) 8.69478e30i 0.869304i
\(303\) 3.15028e30i 0.302215i
\(304\) −2.37832e30 −0.218953
\(305\) 9.78272e30 + 1.20028e31i 0.864394 + 1.06056i
\(306\) 3.09271e30 0.262314
\(307\) 3.15394e30i 0.256817i 0.991721 + 0.128409i \(0.0409869\pi\)
−0.991721 + 0.128409i \(0.959013\pi\)
\(308\) 6.47625e30i 0.506337i
\(309\) −4.63823e30 −0.348234
\(310\) −1.35624e31 + 1.10538e31i −0.977944 + 0.797061i
\(311\) 1.98559e31 1.37526 0.687628 0.726063i \(-0.258652\pi\)
0.687628 + 0.726063i \(0.258652\pi\)
\(312\) 1.82769e30i 0.121610i
\(313\) 5.47200e29i 0.0349818i −0.999847 0.0174909i \(-0.994432\pi\)
0.999847 0.0174909i \(-0.00556781\pi\)
\(314\) 6.80601e29 0.0418092
\(315\) 2.14373e31 1.74722e31i 1.26557 1.03149i
\(316\) 3.64731e30 0.206959
\(317\) 2.18550e31i 1.19209i 0.802950 + 0.596046i \(0.203263\pi\)
−0.802950 + 0.596046i \(0.796737\pi\)
\(318\) 5.17056e30i 0.271143i
\(319\) 9.86707e30 0.497513
\(320\) 1.62873e30 + 1.99835e30i 0.0789721 + 0.0968938i
\(321\) 1.54238e30 0.0719249
\(322\) 3.97704e30i 0.178386i
\(323\) 8.04849e30i 0.347282i
\(324\) −9.76540e30 −0.405394
\(325\) −3.32205e31 6.84177e30i −1.32698 0.273292i
\(326\) −1.22038e31 −0.469109
\(327\) 1.48499e30i 0.0549383i
\(328\) 1.62135e31i 0.577368i
\(329\) 1.16752e31 0.400236
\(330\) 1.99405e30 + 2.44657e30i 0.0658129 + 0.0807484i
\(331\) −2.93057e31 −0.931325 −0.465663 0.884962i \(-0.654184\pi\)
−0.465663 + 0.884962i \(0.654184\pi\)
\(332\) 1.08456e30i 0.0331917i
\(333\) 2.80086e31i 0.825540i
\(334\) 3.66949e31 1.04178
\(335\) 4.91703e31 4.00756e31i 1.34475 1.09602i
\(336\) −4.20385e30 −0.110766
\(337\) 4.60143e31i 1.16821i 0.811680 + 0.584103i \(0.198553\pi\)
−0.811680 + 0.584103i \(0.801447\pi\)
\(338\) 2.41504e31i 0.590835i
\(339\) −1.19805e31 −0.282474
\(340\) 6.76261e30 5.51178e30i 0.153684 0.125258i
\(341\) −4.72613e31 −1.03532
\(342\) 2.74338e31i 0.579376i
\(343\) 8.96148e31i 1.82475i
\(344\) 2.26659e30 0.0445033
\(345\) −1.22454e30 1.50243e30i −0.0231864 0.0284482i
\(346\) −5.77039e31 −1.05379
\(347\) 7.38077e31i 1.30012i 0.759883 + 0.650060i \(0.225256\pi\)
−0.759883 + 0.650060i \(0.774744\pi\)
\(348\) 6.40489e30i 0.108836i
\(349\) −3.56553e31 −0.584530 −0.292265 0.956337i \(-0.594409\pi\)
−0.292265 + 0.956337i \(0.594409\pi\)
\(350\) 1.57367e31 7.64103e31i 0.248922 1.20865i
\(351\) −4.36171e31 −0.665760
\(352\) 6.96372e30i 0.102579i
\(353\) 8.69355e31i 1.23599i 0.786184 + 0.617993i \(0.212054\pi\)
−0.786184 + 0.617993i \(0.787946\pi\)
\(354\) −1.08381e31 −0.148735
\(355\) −3.95254e31 4.84952e31i −0.523627 0.642457i
\(356\) 5.99512e31 0.766783
\(357\) 1.42263e31i 0.175686i
\(358\) 3.76725e31i 0.449248i
\(359\) −2.26294e30 −0.0260611 −0.0130305 0.999915i \(-0.504148\pi\)
−0.0130305 + 0.999915i \(0.504148\pi\)
\(360\) −2.30508e31 + 1.87873e31i −0.256393 + 0.208970i
\(361\) −2.16825e31 −0.232954
\(362\) 1.13612e32i 1.17915i
\(363\) 1.67943e31i 0.168395i
\(364\) 1.22028e32 1.18220
\(365\) −3.74552e30 + 3.05274e30i −0.0350632 + 0.0285778i
\(366\) 2.71504e31 0.245619
\(367\) 3.34192e31i 0.292193i 0.989270 + 0.146096i \(0.0466710\pi\)
−0.989270 + 0.146096i \(0.953329\pi\)
\(368\) 4.27639e30i 0.0361393i
\(369\) −1.87022e32 −1.52779
\(370\) −4.99165e31 6.12444e31i −0.394205 0.483665i
\(371\) 3.45219e32 2.63585
\(372\) 3.06782e31i 0.226487i
\(373\) 1.79027e32i 1.27808i 0.769172 + 0.639041i \(0.220669\pi\)
−0.769172 + 0.639041i \(0.779331\pi\)
\(374\) 2.35660e31 0.162701
\(375\) 1.75819e31 + 3.37113e31i 0.117402 + 0.225105i
\(376\) −1.25540e31 −0.0810839
\(377\) 1.85919e32i 1.16160i
\(378\) 1.00323e32i 0.606393i
\(379\) 9.45760e31 0.553084 0.276542 0.961002i \(-0.410812\pi\)
0.276542 + 0.961002i \(0.410812\pi\)
\(380\) −4.88922e31 5.99876e31i −0.276659 0.339443i
\(381\) 3.55371e31 0.194590
\(382\) 6.88621e31i 0.364912i
\(383\) 2.01782e32i 1.03490i −0.855714 0.517449i \(-0.826882\pi\)
0.855714 0.517449i \(-0.173118\pi\)
\(384\) 4.52028e30 0.0224401
\(385\) 1.63348e32 1.33135e32i 0.784975 0.639784i
\(386\) 1.22047e32 0.567789
\(387\) 2.61450e31i 0.117761i
\(388\) 4.18406e31i 0.182474i
\(389\) −1.16247e32 −0.490921 −0.245460 0.969407i \(-0.578939\pi\)
−0.245460 + 0.969407i \(0.578939\pi\)
\(390\) −4.60992e31 + 3.75726e31i −0.188532 + 0.153661i
\(391\) −1.44717e31 −0.0573207
\(392\) 1.88518e32i 0.723230i
\(393\) 1.06203e32i 0.394667i
\(394\) −3.65888e31 −0.131718
\(395\) 7.49793e31 + 9.19949e31i 0.261504 + 0.320849i
\(396\) −8.03262e31 −0.271436
\(397\) 2.03760e32i 0.667172i 0.942720 + 0.333586i \(0.108259\pi\)
−0.942720 + 0.333586i \(0.891741\pi\)
\(398\) 3.92662e32i 1.24589i
\(399\) 1.26194e32 0.388041
\(400\) −1.69212e31 + 8.21617e31i −0.0504291 + 0.244861i
\(401\) −1.67418e32 −0.483613 −0.241806 0.970324i \(-0.577740\pi\)
−0.241806 + 0.970324i \(0.577740\pi\)
\(402\) 1.11224e32i 0.311438i
\(403\) 8.90515e32i 2.41729i
\(404\) 2.26164e32 0.595192
\(405\) −2.00752e32 2.46310e32i −0.512237 0.628483i
\(406\) −4.27630e32 −1.05802
\(407\) 2.13421e32i 0.512043i
\(408\) 1.52971e31i 0.0355924i
\(409\) −7.52295e32 −1.69765 −0.848823 0.528678i \(-0.822688\pi\)
−0.848823 + 0.528678i \(0.822688\pi\)
\(410\) −4.08947e32 + 3.33307e32i −0.895094 + 0.729535i
\(411\) 1.37906e31 0.0292793
\(412\) 3.32987e32i 0.685822i
\(413\) 7.23618e32i 1.44589i
\(414\) 4.93280e31 0.0956288
\(415\) 2.73556e31 2.22959e31i 0.0514571 0.0419395i
\(416\) −1.31213e32 −0.239503
\(417\) 3.46984e31i 0.0614623i
\(418\) 2.09041e32i 0.359359i
\(419\) 6.25496e31 0.104364 0.0521818 0.998638i \(-0.483382\pi\)
0.0521818 + 0.998638i \(0.483382\pi\)
\(420\) −8.64203e31 1.06032e32i −0.139959 0.171721i
\(421\) 8.02159e32 1.26106 0.630528 0.776167i \(-0.282838\pi\)
0.630528 + 0.776167i \(0.282838\pi\)
\(422\) 2.33314e31i 0.0356069i
\(423\) 1.44810e32i 0.214558i
\(424\) −3.71204e32 −0.533997
\(425\) 2.78044e32 + 5.72631e31i 0.388375 + 0.0799859i
\(426\) −1.09697e32 −0.148790
\(427\) 1.81273e33i 2.38773i
\(428\) 1.10730e32i 0.141651i
\(429\) −1.60644e32 −0.199594
\(430\) 4.65953e31 + 5.71695e31i 0.0562323 + 0.0689936i
\(431\) 1.32299e33 1.55092 0.775460 0.631397i \(-0.217518\pi\)
0.775460 + 0.631397i \(0.217518\pi\)
\(432\) 1.07875e32i 0.122849i
\(433\) 1.44206e33i 1.59546i 0.603015 + 0.797730i \(0.293966\pi\)
−0.603015 + 0.797730i \(0.706034\pi\)
\(434\) 2.04827e33 2.20173
\(435\) 1.61549e32 1.31668e32i 0.168728 0.137520i
\(436\) −1.06610e32 −0.108197
\(437\) 1.28371e32i 0.126605i
\(438\) 8.47240e30i 0.00812045i
\(439\) −9.88019e32 −0.920362 −0.460181 0.887825i \(-0.652215\pi\)
−0.460181 + 0.887825i \(0.652215\pi\)
\(440\) −1.75644e32 + 1.43156e32i −0.159028 + 0.129614i
\(441\) −2.17454e33 −1.91375
\(442\) 4.44038e32i 0.379876i
\(443\) 6.78172e32i 0.564018i 0.959412 + 0.282009i \(0.0910008\pi\)
−0.959412 + 0.282009i \(0.908999\pi\)
\(444\) −1.38535e32 −0.112014
\(445\) 1.23244e33 + 1.51213e33i 0.968872 + 1.18874i
\(446\) −2.39431e32 −0.183018
\(447\) 1.25000e32i 0.0929104i
\(448\) 3.01802e32i 0.218146i
\(449\) 1.40094e33 0.984784 0.492392 0.870374i \(-0.336123\pi\)
0.492392 + 0.870374i \(0.336123\pi\)
\(450\) −9.47732e32 1.95185e32i −0.647931 0.133442i
\(451\) −1.42507e33 −0.947613
\(452\) 8.60102e32i 0.556313i
\(453\) 4.96071e32i 0.312116i
\(454\) 2.26210e33 1.38456
\(455\) 2.50858e33 + 3.07787e33i 1.49378 + 1.83277i
\(456\) −1.35693e32 −0.0786132
\(457\) 2.87797e33i 1.62231i −0.584830 0.811156i \(-0.698839\pi\)
0.584830 0.811156i \(-0.301161\pi\)
\(458\) 2.37680e32i 0.130369i
\(459\) 3.65059e32 0.194852
\(460\) 1.07862e32 8.79115e31i 0.0560268 0.0456639i
\(461\) −4.62750e32 −0.233930 −0.116965 0.993136i \(-0.537316\pi\)
−0.116965 + 0.993136i \(0.537316\pi\)
\(462\) 3.69495e32i 0.181796i
\(463\) 2.53220e32i 0.121265i 0.998160 + 0.0606325i \(0.0193118\pi\)
−0.998160 + 0.0606325i \(0.980688\pi\)
\(464\) 4.59818e32 0.214344
\(465\) −7.73786e32 + 6.30664e32i −0.351123 + 0.286178i
\(466\) 7.93650e32 0.350595
\(467\) 1.56052e33i 0.671134i 0.942016 + 0.335567i \(0.108928\pi\)
−0.942016 + 0.335567i \(0.891072\pi\)
\(468\) 1.51354e33i 0.633752i
\(469\) −7.42598e33 −3.02757
\(470\) −2.58078e32 3.16646e32i −0.102454 0.125704i
\(471\) 3.88309e31 0.0150112
\(472\) 7.78085e32i 0.292922i
\(473\) 1.99221e32i 0.0730416i
\(474\) 2.08093e32 0.0743068
\(475\) 5.07952e32 2.46638e33i 0.176666 0.857809i
\(476\) −1.02133e33 −0.346002
\(477\) 4.28182e33i 1.41302i
\(478\) 2.93259e32i 0.0942763i
\(479\) −7.23567e32 −0.226613 −0.113306 0.993560i \(-0.536144\pi\)
−0.113306 + 0.993560i \(0.536144\pi\)
\(480\) 9.29252e31 + 1.14013e32i 0.0283543 + 0.0347889i
\(481\) 4.02135e33 1.19553
\(482\) 3.44901e33i 0.999096i
\(483\) 2.26905e32i 0.0640480i
\(484\) 1.20569e33 0.331641
\(485\) −1.05533e33 + 8.60134e32i −0.282890 + 0.230566i
\(486\) −1.88721e33 −0.493024
\(487\) 3.11091e33i 0.792091i −0.918231 0.396046i \(-0.870382\pi\)
0.918231 0.396046i \(-0.129618\pi\)
\(488\) 1.94918e33i 0.483730i
\(489\) −6.96273e32 −0.168430
\(490\) −4.75492e33 + 3.87544e33i −1.12122 + 0.913839i
\(491\) 3.51132e33 0.807146 0.403573 0.914948i \(-0.367768\pi\)
0.403573 + 0.914948i \(0.367768\pi\)
\(492\) 9.25042e32i 0.207299i
\(493\) 1.55607e33i 0.339972i
\(494\) 3.93883e33 0.839037
\(495\) −1.65130e33 2.02604e33i −0.342974 0.420808i
\(496\) −2.20244e33 −0.446050
\(497\) 7.32402e33i 1.44642i
\(498\) 6.18787e31i 0.0119172i
\(499\) −8.78119e33 −1.64929 −0.824644 0.565652i \(-0.808624\pi\)
−0.824644 + 0.565652i \(0.808624\pi\)
\(500\) −2.42019e33 + 1.26224e33i −0.443328 + 0.231215i
\(501\) 2.09358e33 0.374041
\(502\) 1.32432e32i 0.0230780i
\(503\) 1.68186e33i 0.285883i −0.989731 0.142942i \(-0.954344\pi\)
0.989731 0.142942i \(-0.0456562\pi\)
\(504\) 3.48127e33 0.577240
\(505\) 4.64936e33 + 5.70447e33i 0.752057 + 0.922727i
\(506\) 3.75871e32 0.0593140
\(507\) 1.37788e33i 0.212134i
\(508\) 2.55127e33i 0.383231i
\(509\) 5.67785e33 0.832169 0.416084 0.909326i \(-0.363402\pi\)
0.416084 + 0.909326i \(0.363402\pi\)
\(510\) 3.85833e32 3.14469e32i 0.0551789 0.0449728i
\(511\) 5.65670e32 0.0789409
\(512\) 3.24519e32i 0.0441942i
\(513\) 3.23825e33i 0.430372i
\(514\) −9.82039e32 −0.127377
\(515\) 8.39881e33 6.84535e33i 1.06323 0.866573i
\(516\) 1.29318e32 0.0159785
\(517\) 1.10343e33i 0.133080i
\(518\) 9.24948e33i 1.08892i
\(519\) −3.29224e33 −0.378355
\(520\) −2.69740e33 3.30954e33i −0.302624 0.371301i
\(521\) 8.57848e33 0.939591 0.469796 0.882775i \(-0.344328\pi\)
0.469796 + 0.882775i \(0.344328\pi\)
\(522\) 5.30399e33i 0.567180i
\(523\) 1.65708e34i 1.73010i 0.501683 + 0.865052i \(0.332714\pi\)
−0.501683 + 0.865052i \(0.667286\pi\)
\(524\) 7.62451e33 0.777268
\(525\) 8.97840e32 4.35950e33i 0.0893733 0.433956i
\(526\) −1.02497e34 −0.996296
\(527\) 7.45329e33i 0.707482i
\(528\) 3.97307e32i 0.0368301i
\(529\) 1.08149e34 0.979103
\(530\) −7.63099e33 9.36275e33i −0.674734 0.827856i
\(531\) 8.97518e33 0.775107
\(532\) 9.05968e33i 0.764218i
\(533\) 2.68518e34i 2.21250i
\(534\) 3.42045e33 0.275307
\(535\) −2.79292e33 + 2.27633e33i −0.219602 + 0.178984i
\(536\) 7.98494e33 0.613355
\(537\) 2.14936e33i 0.161299i
\(538\) 1.31481e34i 0.964016i
\(539\) −1.65697e34 −1.18701
\(540\) −2.72089e33 + 2.21763e33i −0.190453 + 0.155227i
\(541\) −4.23198e33 −0.289453 −0.144727 0.989472i \(-0.546230\pi\)
−0.144727 + 0.989472i \(0.546230\pi\)
\(542\) 7.73674e33i 0.517091i
\(543\) 6.48202e33i 0.423362i
\(544\) 1.09820e33 0.0700966
\(545\) −2.19162e33 2.68898e33i −0.136713 0.167738i
\(546\) 6.96217e33 0.424460
\(547\) 5.57179e33i 0.332011i 0.986125 + 0.166006i \(0.0530870\pi\)
−0.986125 + 0.166006i \(0.946913\pi\)
\(548\) 9.90052e32i 0.0576635i
\(549\) −2.24837e34 −1.28001
\(550\) −7.22156e33 1.48728e33i −0.401881 0.0827675i
\(551\) −1.38031e34 −0.750900
\(552\) 2.43985e32i 0.0129755i
\(553\) 1.38936e34i 0.722355i
\(554\) 8.80334e32 0.0447482
\(555\) −2.84793e33 3.49423e33i −0.141536 0.173656i
\(556\) −2.49106e33 −0.121046
\(557\) 1.51207e34i 0.718427i 0.933255 + 0.359213i \(0.116955\pi\)
−0.933255 + 0.359213i \(0.883045\pi\)
\(558\) 2.54051e34i 1.18030i
\(559\) −3.75379e33 −0.170539
\(560\) 7.61225e33 6.20427e33i 0.338191 0.275639i
\(561\) 1.34453e33 0.0584164
\(562\) 5.52573e33i 0.234793i
\(563\) 1.21471e34i 0.504799i 0.967623 + 0.252400i \(0.0812198\pi\)
−0.967623 + 0.252400i \(0.918780\pi\)
\(564\) −7.16255e32 −0.0291125
\(565\) 2.16941e34 1.76815e34i 0.862453 0.702932i
\(566\) −2.87458e34 −1.11781
\(567\) 3.71991e34i 1.41496i
\(568\) 7.87531e33i 0.293031i
\(569\) −2.58692e34 −0.941628 −0.470814 0.882232i \(-0.656040\pi\)
−0.470814 + 0.882232i \(0.656040\pi\)
\(570\) −2.78949e33 3.42253e33i −0.0993320 0.121874i
\(571\) −3.34607e34 −1.16569 −0.582846 0.812583i \(-0.698061\pi\)
−0.582846 + 0.812583i \(0.698061\pi\)
\(572\) 1.15329e34i 0.393086i
\(573\) 3.92885e33i 0.131019i
\(574\) 6.17615e34 2.01521
\(575\) 4.43473e33 + 9.13333e32i 0.141586 + 0.0291596i
\(576\) −3.74331e33 −0.116943
\(577\) 1.34968e34i 0.412603i 0.978488 + 0.206302i \(0.0661428\pi\)
−0.978488 + 0.206302i \(0.933857\pi\)
\(578\) 1.99201e34i 0.595926i
\(579\) 6.96328e33 0.203860
\(580\) 9.45268e33 + 1.15978e34i 0.270835 + 0.332298i
\(581\) −4.13140e33 −0.115850
\(582\) 2.38717e33i 0.0655158i
\(583\) 3.26268e34i 0.876429i
\(584\) −6.08248e32 −0.0159926
\(585\) 3.81754e34 3.11144e34i 0.982507 0.800780i
\(586\) 1.73315e34 0.436632
\(587\) 4.17737e34i 1.03021i 0.857126 + 0.515107i \(0.172248\pi\)
−0.857126 + 0.515107i \(0.827752\pi\)
\(588\) 1.07557e34i 0.259670i
\(589\) 6.61143e34 1.56262
\(590\) 1.96254e34 1.59954e34i 0.454117 0.370123i
\(591\) −2.08753e33 −0.0472923
\(592\) 9.94569e33i 0.220604i
\(593\) 2.55607e33i 0.0555123i −0.999615 0.0277562i \(-0.991164\pi\)
0.999615 0.0277562i \(-0.00883620\pi\)
\(594\) −9.48160e33 −0.201628
\(595\) −2.09959e34 2.57606e34i −0.437192 0.536407i
\(596\) −8.97394e33 −0.182981
\(597\) 2.24029e34i 0.447327i
\(598\) 7.08230e33i 0.138487i
\(599\) −4.70324e34 −0.900662 −0.450331 0.892862i \(-0.648694\pi\)
−0.450331 + 0.892862i \(0.648694\pi\)
\(600\) −9.65421e32 + 4.68765e33i −0.0181062 + 0.0879153i
\(601\) 5.96787e34 1.09620 0.548099 0.836414i \(-0.315352\pi\)
0.548099 + 0.836414i \(0.315352\pi\)
\(602\) 8.63406e33i 0.155331i
\(603\) 9.21060e34i 1.62301i
\(604\) −3.56138e34 −0.614691
\(605\) 2.47859e34 + 3.04107e34i 0.419046 + 0.514143i
\(606\) 1.29036e34 0.213699
\(607\) 2.92667e34i 0.474804i 0.971411 + 0.237402i \(0.0762959\pi\)
−0.971411 + 0.237402i \(0.923704\pi\)
\(608\) 9.74161e33i 0.154823i
\(609\) −2.43980e34 −0.379872
\(610\) −4.91634e34 + 4.00700e34i −0.749927 + 0.611219i
\(611\) 2.07912e34 0.310717
\(612\) 1.26677e34i 0.185484i
\(613\) 8.48844e34i 1.21779i 0.793251 + 0.608895i \(0.208387\pi\)
−0.793251 + 0.608895i \(0.791613\pi\)
\(614\) −1.29186e34 −0.181597
\(615\) −2.33320e34 + 1.90165e34i −0.321376 + 0.261933i
\(616\) 2.65267e34 0.358034
\(617\) 1.30414e35i 1.72488i −0.506156 0.862442i \(-0.668934\pi\)
0.506156 0.862442i \(-0.331066\pi\)
\(618\) 1.89982e34i 0.246239i
\(619\) 8.02670e34 1.01954 0.509770 0.860311i \(-0.329731\pi\)
0.509770 + 0.860311i \(0.329731\pi\)
\(620\) −4.52765e34 5.55514e34i −0.563607 0.691511i
\(621\) 5.82260e33 0.0710350
\(622\) 8.13296e34i 0.972453i
\(623\) 2.28370e35i 2.67633i
\(624\) −7.48621e33 −0.0859913
\(625\) −8.15899e34 3.50955e34i −0.918621 0.395140i
\(626\) 2.24133e33 0.0247359
\(627\) 1.19266e34i 0.129025i
\(628\) 2.78774e33i 0.0295636i
\(629\) −3.36573e34 −0.349901
\(630\) 7.15660e34 + 8.78070e34i 0.729373 + 0.894895i
\(631\) −3.51125e34 −0.350828 −0.175414 0.984495i \(-0.556126\pi\)
−0.175414 + 0.984495i \(0.556126\pi\)
\(632\) 1.49394e34i 0.146342i
\(633\) 1.33115e33i 0.0127844i
\(634\) −8.95181e34 −0.842937
\(635\) −6.43499e34 + 5.24476e34i −0.594123 + 0.484233i
\(636\) −2.11786e34 −0.191727
\(637\) 3.12212e35i 2.77145i
\(638\) 4.04155e34i 0.351795i
\(639\) 9.08413e34 0.775394
\(640\) −8.18523e33 + 6.67127e33i −0.0685143 + 0.0558417i
\(641\) −1.10476e35 −0.906862 −0.453431 0.891291i \(-0.649800\pi\)
−0.453431 + 0.891291i \(0.649800\pi\)
\(642\) 6.31760e33i 0.0508586i
\(643\) 5.33371e34i 0.421107i 0.977582 + 0.210553i \(0.0675266\pi\)
−0.977582 + 0.210553i \(0.932473\pi\)
\(644\) −1.62899e34 −0.126138
\(645\) 2.65844e33 + 3.26174e33i 0.0201897 + 0.0247715i
\(646\) −3.29666e34 −0.245566
\(647\) 2.39579e34i 0.175043i −0.996163 0.0875216i \(-0.972105\pi\)
0.996163 0.0875216i \(-0.0278947\pi\)
\(648\) 3.99991e34i 0.286657i
\(649\) 6.83894e34 0.480762
\(650\) 2.80239e34 1.36071e35i 0.193246 0.938317i
\(651\) 1.16862e35 0.790514
\(652\) 4.99866e34i 0.331710i
\(653\) 6.46858e34i 0.421109i 0.977582 + 0.210554i \(0.0675269\pi\)
−0.977582 + 0.210554i \(0.932473\pi\)
\(654\) −6.08250e33 −0.0388472
\(655\) 1.56740e35 + 1.92310e35i 0.982119 + 1.20500i
\(656\) −6.64104e34 −0.408261
\(657\) 7.01612e33i 0.0423185i
\(658\) 4.78217e34i 0.283010i
\(659\) −1.74748e35 −1.01471 −0.507357 0.861736i \(-0.669377\pi\)
−0.507357 + 0.861736i \(0.669377\pi\)
\(660\) −1.00212e34 + 8.16762e33i −0.0570977 + 0.0465368i
\(661\) 2.05707e35 1.15009 0.575044 0.818123i \(-0.304985\pi\)
0.575044 + 0.818123i \(0.304985\pi\)
\(662\) 1.20036e35i 0.658547i
\(663\) 2.53341e34i 0.136391i
\(664\) 4.44238e33 0.0234701
\(665\) −2.28509e35 + 1.86244e35i −1.18477 + 0.965631i
\(666\) 1.14723e35 0.583745
\(667\) 2.48190e34i 0.123940i
\(668\) 1.50302e35i 0.736647i
\(669\) −1.36605e34 −0.0657112
\(670\) 1.64150e35 + 2.01402e35i 0.775007 + 0.950885i
\(671\) −1.71322e35 −0.793928
\(672\) 1.72190e34i 0.0783234i
\(673\) 1.94000e35i 0.866190i 0.901348 + 0.433095i \(0.142579\pi\)
−0.901348 + 0.433095i \(0.857421\pi\)
\(674\) −1.88475e35 −0.826046
\(675\) −1.11869e35 2.30394e34i −0.481296 0.0991230i
\(676\) 9.89201e34 0.417783
\(677\) 1.50061e35i 0.622172i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(678\) 4.90722e34i 0.199740i
\(679\) 1.59382e35 0.636895
\(680\) 2.25763e34 + 2.76997e34i 0.0885708 + 0.108671i
\(681\) 1.29062e35 0.497116
\(682\) 1.93582e35i 0.732084i
\(683\) 2.23175e35i 0.828679i −0.910122 0.414339i \(-0.864013\pi\)
0.910122 0.414339i \(-0.135987\pi\)
\(684\) 1.12369e35 0.409681
\(685\) −2.49718e34 + 2.03529e34i −0.0893958 + 0.0728609i
\(686\) 3.67062e35 1.29029
\(687\) 1.35606e34i 0.0468078i
\(688\) 9.28395e33i 0.0314686i
\(689\) 6.14765e35 2.04630
\(690\) 6.15395e33 5.01570e33i 0.0201159 0.0163952i
\(691\) 4.24403e34 0.136240 0.0681198 0.997677i \(-0.478300\pi\)
0.0681198 + 0.997677i \(0.478300\pi\)
\(692\) 2.36355e35i 0.745142i
\(693\) 3.05985e35i 0.947402i
\(694\) −3.02316e35 −0.919324
\(695\) −5.12098e34 6.28312e34i −0.152948 0.187657i
\(696\) 2.62344e34 0.0769584
\(697\) 2.24740e35i 0.647545i
\(698\) 1.46044e35i 0.413325i
\(699\) 4.52808e34 0.125878
\(700\) 3.12977e35 + 6.44575e34i 0.854646 + 0.176014i
\(701\) −6.67347e35 −1.79010 −0.895048 0.445969i \(-0.852859\pi\)
−0.895048 + 0.445969i \(0.852859\pi\)
\(702\) 1.78656e35i 0.470764i
\(703\) 2.98556e35i 0.772831i
\(704\) −2.85234e34 −0.0725342
\(705\) −1.47244e34 1.80659e34i −0.0367852 0.0451331i
\(706\) −3.56088e35 −0.873974
\(707\) 8.61522e35i 2.07742i
\(708\) 4.43928e34i 0.105171i
\(709\) −5.82085e35 −1.35490 −0.677452 0.735567i \(-0.736916\pi\)
−0.677452 + 0.735567i \(0.736916\pi\)
\(710\) 1.98636e35 1.61896e35i 0.454286 0.370260i
\(711\) −1.72325e35 −0.387238
\(712\) 2.45560e35i 0.542198i
\(713\) 1.18878e35i 0.257919i
\(714\) −5.82708e34 −0.124229
\(715\) 2.90891e35 2.37087e35i 0.609402 0.496686i
\(716\) 1.54307e35 0.317667
\(717\) 1.67316e34i 0.0338491i
\(718\) 9.26900e33i 0.0184280i
\(719\) 4.08106e35 0.797374 0.398687 0.917087i \(-0.369466\pi\)
0.398687 + 0.917087i \(0.369466\pi\)
\(720\) −7.69528e34 9.44162e34i −0.147764 0.181297i
\(721\) −1.26844e36 −2.39375
\(722\) 8.88115e34i 0.164723i
\(723\) 1.96780e35i 0.358717i
\(724\) −4.65355e35 −0.833782
\(725\) −9.82060e34 + 4.76844e35i −0.172947 + 0.839752i
\(726\) 6.87893e34 0.119073
\(727\) 7.44759e34i 0.126717i −0.997991 0.0633586i \(-0.979819\pi\)
0.997991 0.0633586i \(-0.0201812\pi\)
\(728\) 4.99826e35i 0.835943i
\(729\) 3.85503e35 0.633772
\(730\) −1.25040e34 1.53417e34i −0.0202076 0.0247934i
\(731\) 3.14179e34 0.0499125
\(732\) 1.11208e35i 0.173679i
\(733\) 1.00546e36i 1.54371i −0.635802 0.771853i \(-0.719330\pi\)
0.635802 0.771853i \(-0.280670\pi\)
\(734\) −1.36885e35 −0.206612
\(735\) −2.71287e35 + 2.21109e35i −0.402566 + 0.328106i
\(736\) 1.75161e34 0.0255543
\(737\) 7.01833e35i 1.00668i
\(738\) 7.66041e35i 1.08031i
\(739\) 7.42029e35 1.02888 0.514441 0.857526i \(-0.327999\pi\)
0.514441 + 0.857526i \(0.327999\pi\)
\(740\) 2.50857e35 2.04458e35i 0.342003 0.278745i
\(741\) 2.24726e35 0.301249
\(742\) 1.41402e36i 1.86383i
\(743\) 4.93877e35i 0.640115i −0.947398 0.320058i \(-0.896298\pi\)
0.947398 0.320058i \(-0.103702\pi\)
\(744\) −1.25658e35 −0.160150
\(745\) −1.84481e35 2.26347e35i −0.231206 0.283675i
\(746\) −7.33296e35 −0.903741
\(747\) 5.12426e34i 0.0621046i
\(748\) 9.65262e34i 0.115047i
\(749\) 4.21802e35 0.494409
\(750\) −1.38082e35 + 7.20154e34i −0.159173 + 0.0830156i
\(751\) 1.60017e36 1.81413 0.907063 0.420995i \(-0.138319\pi\)
0.907063 + 0.420995i \(0.138319\pi\)
\(752\) 5.14212e34i 0.0573349i
\(753\) 7.55579e33i 0.00828595i
\(754\) −7.61524e35 −0.821375
\(755\) −7.32128e35 8.98276e35i −0.776695 0.952956i
\(756\) 4.10924e35 0.428785
\(757\) 9.77978e34i 0.100376i −0.998740 0.0501881i \(-0.984018\pi\)
0.998740 0.0501881i \(-0.0159821\pi\)
\(758\) 3.87383e35i 0.391089i
\(759\) 2.14449e34 0.0212962
\(760\) 2.45709e35 2.00262e35i 0.240022 0.195627i
\(761\) 1.42035e36 1.36485 0.682427 0.730954i \(-0.260924\pi\)
0.682427 + 0.730954i \(0.260924\pi\)
\(762\) 1.45560e35i 0.137596i
\(763\) 4.06106e35i 0.377644i
\(764\) 2.82059e35 0.258032
\(765\) −3.19514e35 + 2.60416e35i −0.287556 + 0.234369i
\(766\) 8.26499e35 0.731784
\(767\) 1.28862e36i 1.12249i
\(768\) 1.85151e34i 0.0158675i
\(769\) −4.43106e35 −0.373619 −0.186809 0.982396i \(-0.559815\pi\)
−0.186809 + 0.982396i \(0.559815\pi\)
\(770\) 5.45321e35 + 6.69075e35i 0.452395 + 0.555061i
\(771\) −5.60292e34 −0.0457335
\(772\) 4.99906e35i 0.401487i
\(773\) 1.04683e36i 0.827241i 0.910449 + 0.413621i \(0.135736\pi\)
−0.910449 + 0.413621i \(0.864264\pi\)
\(774\) −1.07090e35 −0.0832697
\(775\) 4.70388e35 2.28399e36i 0.359902 1.74752i
\(776\) −1.71379e35 −0.129029
\(777\) 5.27719e35i 0.390967i
\(778\) 4.76147e35i 0.347133i
\(779\) 1.99355e36 1.43024
\(780\) −1.53897e35 1.88822e35i −0.108655 0.133312i
\(781\) 6.92196e35 0.480940
\(782\) 5.92763e34i 0.0405319i
\(783\) 6.26075e35i 0.421313i
\(784\) −7.72169e35 −0.511401
\(785\) −7.03143e34 + 5.73088e34i −0.0458324 + 0.0373551i
\(786\) 4.35008e35 0.279071
\(787\) 1.02940e36i 0.649977i 0.945718 + 0.324989i \(0.105360\pi\)
−0.945718 + 0.324989i \(0.894640\pi\)
\(788\) 1.49868e35i 0.0931387i
\(789\) −5.84784e35 −0.357712
\(790\) −3.76811e35 + 3.07115e35i −0.226874 + 0.184911i
\(791\) −3.27636e36 −1.94172
\(792\) 3.29016e35i 0.191934i
\(793\) 3.22811e36i 1.85367i
\(794\) −8.34601e35 −0.471762
\(795\) −4.35378e35 5.34181e35i −0.242257 0.297235i
\(796\) −1.60834e36 −0.880978
\(797\) 2.74499e36i 1.48017i 0.672512 + 0.740086i \(0.265215\pi\)
−0.672512 + 0.740086i \(0.734785\pi\)
\(798\) 5.16890e35i 0.274386i
\(799\) −1.74015e35 −0.0909393
\(800\) −3.36534e35 6.93093e34i −0.173143 0.0356588i
\(801\) −2.83252e36 −1.43472
\(802\) 6.85745e35i 0.341966i
\(803\) 5.34617e34i 0.0262481i
\(804\) 4.55572e35 0.220220
\(805\) −3.34879e35 4.10876e35i −0.159382 0.195552i
\(806\) 3.64755e36 1.70928
\(807\) 7.50150e35i 0.346122i
\(808\) 9.26369e35i 0.420864i
\(809\) −2.35511e36 −1.05355 −0.526776 0.850004i \(-0.676599\pi\)
−0.526776 + 0.850004i \(0.676599\pi\)
\(810\) 1.00888e36 8.22278e35i 0.444405 0.362206i
\(811\) 3.33343e36 1.44587 0.722936 0.690915i \(-0.242792\pi\)
0.722936 + 0.690915i \(0.242792\pi\)
\(812\) 1.75157e36i 0.748132i
\(813\) 4.41411e35i 0.185657i
\(814\) 8.74172e35 0.362069
\(815\) 1.26080e36 1.02760e36i 0.514251 0.419134i
\(816\) 6.26569e34 0.0251676
\(817\) 2.78692e35i 0.110242i
\(818\) 3.08140e36i 1.20042i
\(819\) −5.76547e36 −2.21201
\(820\) −1.36523e36 1.67505e36i −0.515859 0.632927i
\(821\) 1.82523e36 0.679249 0.339625 0.940561i \(-0.389700\pi\)
0.339625 + 0.940561i \(0.389700\pi\)
\(822\) 5.64864e34i 0.0207036i
\(823\) 1.63571e36i 0.590483i −0.955423 0.295241i \(-0.904600\pi\)
0.955423 0.295241i \(-0.0954001\pi\)
\(824\) 1.36391e36 0.484950
\(825\) −4.12018e35 8.48552e34i −0.144292 0.0297170i
\(826\) −2.96394e36 −1.02240
\(827\) 3.73907e36i 1.27041i 0.772342 + 0.635206i \(0.219085\pi\)
−0.772342 + 0.635206i \(0.780915\pi\)
\(828\) 2.02047e35i 0.0676198i
\(829\) 3.08664e36 1.01755 0.508773 0.860901i \(-0.330099\pi\)
0.508773 + 0.860901i \(0.330099\pi\)
\(830\) 9.13238e34 + 1.12049e35i 0.0296557 + 0.0363857i
\(831\) 5.02265e34 0.0160665
\(832\) 5.37448e35i 0.169354i
\(833\) 2.61310e36i 0.811135i
\(834\) −1.42125e35 −0.0434604
\(835\) −3.79102e36 + 3.08982e36i −1.14202 + 0.930792i
\(836\) 8.56234e35 0.254105
\(837\) 2.99878e36i 0.876750i
\(838\) 2.56203e35i 0.0737963i
\(839\) 3.69450e36 1.04841 0.524205 0.851592i \(-0.324363\pi\)
0.524205 + 0.851592i \(0.324363\pi\)
\(840\) 4.34309e35 3.53978e35i 0.121425 0.0989657i
\(841\) −9.61704e35 −0.264906
\(842\) 3.28564e36i 0.891701i
\(843\) 3.15264e35i 0.0843005i
\(844\) −9.55652e34 −0.0251779
\(845\) 2.03354e36 + 2.49503e36i 0.527891 + 0.647690i
\(846\) 5.93142e35 0.151715
\(847\) 4.59280e36i 1.15754i
\(848\) 1.52045e36i 0.377593i
\(849\) −1.64006e36 −0.401341
\(850\) −2.34550e35 + 1.13887e36i −0.0565586 + 0.274623i
\(851\) −5.36825e35 −0.127560
\(852\) 4.49317e35i 0.105210i
\(853\) 7.36060e35i 0.169844i 0.996388 + 0.0849220i \(0.0270641\pi\)
−0.996388 + 0.0849220i \(0.972936\pi\)
\(854\) 7.42494e36 1.68838
\(855\) 2.31002e36 + 2.83425e36i 0.517653 + 0.635128i
\(856\) −4.53551e35 −0.100162
\(857\) 5.06811e35i 0.110303i 0.998478 + 0.0551513i \(0.0175641\pi\)
−0.998478 + 0.0551513i \(0.982436\pi\)
\(858\) 6.57997e35i 0.141134i
\(859\) −7.80778e33 −0.00165049 −0.000825245 1.00000i \(-0.500263\pi\)
−0.000825245 1.00000i \(0.500263\pi\)
\(860\) −2.34166e35 + 1.90854e35i −0.0487858 + 0.0397623i
\(861\) 3.52374e36 0.723543
\(862\) 5.41895e36i 1.09667i
\(863\) 8.60176e36i 1.71574i 0.513864 + 0.857871i \(0.328213\pi\)
−0.513864 + 0.857871i \(0.671787\pi\)
\(864\) −4.41855e35 −0.0868676
\(865\) 5.96152e36 4.85886e36i 1.15520 0.941527i
\(866\) −5.90669e36 −1.12816
\(867\) 1.13652e36i 0.213962i
\(868\) 8.38970e36i 1.55686i
\(869\) −1.31309e36 −0.240186
\(870\) 5.39312e35 + 6.61703e35i 0.0972411 + 0.119309i
\(871\) −1.32242e37 −2.35040
\(872\) 4.36673e35i 0.0765069i
\(873\) 1.97685e36i 0.341425i
\(874\) −5.25809e35 −0.0895231
\(875\) 4.80820e36 + 9.21919e36i 0.807015 + 1.54736i
\(876\) −3.47029e34 −0.00574202
\(877\) 7.33903e36i 1.19714i −0.801072 0.598568i \(-0.795737\pi\)
0.801072 0.598568i \(-0.204263\pi\)
\(878\) 4.04692e36i 0.650794i
\(879\) 9.88829e35 0.156769
\(880\) −5.86368e35 7.19437e35i −0.0916509 0.112450i
\(881\) 7.73442e36 1.19187 0.595935 0.803032i \(-0.296781\pi\)
0.595935 + 0.803032i \(0.296781\pi\)
\(882\) 8.90693e36i 1.35323i
\(883\) 1.11931e37i 1.67664i −0.545178 0.838320i \(-0.683538\pi\)
0.545178 0.838320i \(-0.316462\pi\)
\(884\) −1.81878e36 −0.268613
\(885\) 1.11971e36 9.12602e35i 0.163047 0.132889i
\(886\) −2.77779e36 −0.398821
\(887\) 9.94167e36i 1.40739i −0.710502 0.703695i \(-0.751532\pi\)
0.710502 0.703695i \(-0.248468\pi\)
\(888\) 5.67441e35i 0.0792060i
\(889\) 9.71850e36 1.33760
\(890\) −6.19368e36 + 5.04808e36i −0.840570 + 0.685096i
\(891\) 3.51570e36 0.470479
\(892\) 9.80709e35i 0.129413i
\(893\) 1.54360e36i 0.200858i
\(894\) −5.11998e35 −0.0656976
\(895\) 3.17214e36 + 3.89202e36i 0.401389 + 0.492479i
\(896\) 1.23618e36 0.154252
\(897\) 4.04073e35i 0.0497226i
\(898\) 5.73826e36i 0.696347i
\(899\) −1.27824e37 −1.52973
\(900\) 7.99480e35 3.88191e36i 0.0943574 0.458157i
\(901\) −5.14536e36 −0.598902
\(902\) 5.83711e36i 0.670063i
\(903\) 4.92607e35i 0.0557704i
\(904\) 3.52298e36 0.393373
\(905\) −9.56651e36 1.17375e37i −1.05353 1.29261i
\(906\) −2.03191e36 −0.220700
\(907\) 2.49643e36i 0.267441i 0.991019 + 0.133721i \(0.0426924\pi\)
−0.991019 + 0.133721i \(0.957308\pi\)
\(908\) 9.26555e36i 0.979035i
\(909\) −1.06856e37 −1.11366
\(910\) −1.26070e37 + 1.02751e37i −1.29596 + 1.05626i
\(911\) 9.34594e36 0.947640 0.473820 0.880622i \(-0.342875\pi\)
0.473820 + 0.880622i \(0.342875\pi\)
\(912\) 5.55797e35i 0.0555879i
\(913\) 3.90461e35i 0.0385205i
\(914\) 1.17882e37 1.14715
\(915\) −2.80497e36 + 2.28615e36i −0.269255 + 0.219453i
\(916\) −9.73537e35 −0.0921847
\(917\) 2.90438e37i 2.71292i
\(918\) 1.49528e36i 0.137781i
\(919\) −2.08298e37 −1.89340 −0.946698 0.322122i \(-0.895604\pi\)
−0.946698 + 0.322122i \(0.895604\pi\)
\(920\) 3.60086e35 + 4.41803e35i 0.0322893 + 0.0396169i
\(921\) −7.37054e35 −0.0652010
\(922\) 1.89543e36i 0.165413i
\(923\) 1.30426e37i 1.12291i
\(924\) 1.51345e36 0.128549
\(925\) 1.03139e37 + 2.12416e36i 0.864278 + 0.177998i
\(926\) −1.03719e36 −0.0857474
\(927\) 1.57327e37i 1.28323i
\(928\) 1.88342e36i 0.151564i
\(929\) 2.93833e36 0.233294 0.116647 0.993173i \(-0.462785\pi\)
0.116647 + 0.993173i \(0.462785\pi\)
\(930\) −2.58320e36 3.16943e36i −0.202358 0.248281i
\(931\) 2.31795e37 1.79156
\(932\) 3.25079e36i 0.247908i
\(933\) 4.64017e36i 0.349151i
\(934\) −6.39190e36 −0.474563
\(935\) −2.43465e36 + 1.98433e36i −0.178357 + 0.145368i
\(936\) 6.19944e36 0.448131
\(937\) 1.33465e37i 0.951968i 0.879454 + 0.475984i \(0.157908\pi\)
−0.879454 + 0.475984i \(0.842092\pi\)
\(938\) 3.04168e37i 2.14081i
\(939\) 1.27877e35 0.00888120
\(940\) 1.29698e36 1.05709e36i 0.0888864 0.0724458i
\(941\) −1.37070e37 −0.926983 −0.463492 0.886101i \(-0.653404\pi\)
−0.463492 + 0.886101i \(0.653404\pi\)
\(942\) 1.59051e35i 0.0106145i
\(943\) 3.58454e36i 0.236068i
\(944\) 3.18704e36 0.207127
\(945\) 8.44755e36 + 1.03646e37i 0.541793 + 0.664746i
\(946\) −8.16009e35 −0.0516482
\(947\) 3.73876e36i 0.233535i −0.993159 0.116768i \(-0.962747\pi\)
0.993159 0.116768i \(-0.0372533\pi\)
\(948\) 8.52350e35i 0.0525429i
\(949\) 1.00734e36 0.0612845
\(950\) 1.01023e37 + 2.08057e36i 0.606562 + 0.124922i
\(951\) −5.10736e36 −0.302649
\(952\) 4.18336e36i 0.244660i
\(953\) 4.80715e36i 0.277477i −0.990329 0.138738i \(-0.955695\pi\)
0.990329 0.138738i \(-0.0443047\pi\)
\(954\) 1.75383e37 0.999156
\(955\) 5.79841e36 + 7.11429e36i 0.326037 + 0.400027i
\(956\) 1.20119e36 0.0666634
\(957\) 2.30586e36i 0.126309i
\(958\) 2.96373e36i 0.160240i
\(959\) 3.77138e36 0.201265
\(960\) −4.66999e35 + 3.80622e35i −0.0245995 + 0.0200495i
\(961\) 4.19922e37 2.18336
\(962\) 1.64715e37i 0.845364i
\(963\) 5.23170e36i 0.265042i
\(964\) 1.41272e37 0.706467
\(965\) −1.26090e37 + 1.02768e37i −0.622426 + 0.507301i
\(966\) −9.29405e35 −0.0452888
\(967\) 1.46042e37i 0.702498i −0.936282 0.351249i \(-0.885757\pi\)
0.936282 0.351249i \(-0.114243\pi\)
\(968\) 4.93850e36i 0.234506i
\(969\) −1.88087e36 −0.0881683
\(970\) −3.52311e36 4.32264e36i −0.163035 0.200033i
\(971\) −3.16381e37 −1.44534 −0.722670 0.691193i \(-0.757085\pi\)
−0.722670 + 0.691193i \(0.757085\pi\)
\(972\) 7.73003e36i 0.348620i
\(973\) 9.48913e36i 0.422490i
\(974\) 1.27423e37 0.560093
\(975\) 1.59887e36 7.76340e36i 0.0693835 0.336895i
\(976\) −7.98382e36 −0.342049
\(977\) 3.15815e37i 1.33583i 0.744239 + 0.667914i \(0.232812\pi\)
−0.744239 + 0.667914i \(0.767188\pi\)
\(978\) 2.85193e36i 0.119098i
\(979\) −2.15834e37 −0.889889
\(980\) −1.58738e37 1.94762e37i −0.646182 0.792825i
\(981\) 5.03701e36 0.202446
\(982\) 1.43824e37i 0.570738i
\(983\) 1.30026e37i 0.509461i 0.967012 + 0.254731i \(0.0819868\pi\)
−0.967012 + 0.254731i \(0.918013\pi\)
\(984\) −3.78897e36 −0.146583
\(985\) 3.78006e36 3.08089e36i 0.144393 0.117686i
\(986\) 6.37368e36 0.240397
\(987\) 2.72841e36i 0.101612i
\(988\) 1.61335e37i 0.593288i
\(989\) 5.01107e35 0.0181960
\(990\) 8.29867e36 6.76373e36i 0.297556 0.242519i
\(991\) 1.69845e37 0.601355 0.300677 0.953726i \(-0.402787\pi\)
0.300677 + 0.953726i \(0.402787\pi\)
\(992\) 9.02119e36i 0.315405i
\(993\) 6.84852e36i 0.236446i
\(994\) −2.99992e37 −1.02277
\(995\) −3.30634e37 4.05667e37i −1.11316 1.36578i
\(996\) 2.53455e35 0.00842673
\(997\) 1.43944e37i 0.472612i −0.971679 0.236306i \(-0.924063\pi\)
0.971679 0.236306i \(-0.0759368\pi\)
\(998\) 3.59677e37i 1.16622i
\(999\) 1.35418e37 0.433617
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.26.b.a.9.10 yes 12
5.2 odd 4 50.26.a.k.1.4 6
5.3 odd 4 50.26.a.l.1.3 6
5.4 even 2 inner 10.26.b.a.9.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.b.a.9.3 12 5.4 even 2 inner
10.26.b.a.9.10 yes 12 1.1 even 1 trivial
50.26.a.k.1.4 6 5.2 odd 4
50.26.a.l.1.3 6 5.3 odd 4