Defining parameters
Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 26 \) |
Character orbit: | \([\chi]\) | \(=\) | 10.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(39\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{26}(10, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 12 | 28 |
Cusp forms | 36 | 12 | 24 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{26}^{\mathrm{new}}(10, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
10.26.b.a | $12$ | $39.600$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(-490295340\) | \(0\) | \(q+\beta _{2}q^{2}+(33\beta _{2}+\beta _{3})q^{3}-2^{24}q^{4}+\cdots\) |
Decomposition of \(S_{26}^{\mathrm{old}}(10, [\chi])\) into lower level spaces
\( S_{26}^{\mathrm{old}}(10, [\chi]) \simeq \) \(S_{26}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)