Properties

Label 10.26.b
Level $10$
Weight $26$
Character orbit 10.b
Rep. character $\chi_{10}(9,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $1$
Sturm bound $39$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(39\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(10, [\chi])\).

Total New Old
Modular forms 40 12 28
Cusp forms 36 12 24
Eisenstein series 4 0 4

Trace form

\( 12 q - 201326592 q^{4} - 490295340 q^{5} - 6565199872 q^{6} - 1082937564236 q^{9} + 1636528619520 q^{10} + 19723089228624 q^{11} + 278591122243584 q^{14} - 449884766537680 q^{15} + 33\!\cdots\!72 q^{16}+ \cdots + 41\!\cdots\!28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(10, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
10.26.b.a 10.b 5.b $12$ $39.600$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 10.26.b.a \(0\) \(0\) \(-490295340\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(33\beta _{2}+\beta _{3})q^{3}-2^{24}q^{4}+\cdots\)

Decomposition of \(S_{26}^{\mathrm{old}}(10, [\chi])\) into lower level spaces

\( S_{26}^{\mathrm{old}}(10, [\chi]) \simeq \) \(S_{26}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)