Properties

Label 10.26.a.d
Level $10$
Weight $26$
Character orbit 10.a
Self dual yes
Analytic conductor $39.600$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,26,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.5996779952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{95351}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 95351 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2160\sqrt{95351}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4096 q^{2} + (\beta - 48546) q^{3} + 16777216 q^{4} - 244140625 q^{5} + (4096 \beta - 198844416) q^{6} + (83877 \beta - 8068580062) q^{7} + 68719476736 q^{8} + ( - 97092 \beta - 400062269727) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4096 q^{2} + (\beta - 48546) q^{3} + 16777216 q^{4} - 244140625 q^{5} + (4096 \beta - 198844416) q^{6} + (83877 \beta - 8068580062) q^{7} + 68719476736 q^{8} + ( - 97092 \beta - 400062269727) q^{9} - 1000000000000 q^{10} + ( - 10270242 \beta + 7208300400672) q^{11} + (16777216 \beta - 814466727936) q^{12} + (46385652 \beta + 46702274433314) q^{13} + (343560192 \beta - 33048903933952) q^{14} + ( - 244140625 \beta + 11852050781250) q^{15} + 281474976710656 q^{16} + (1884012828 \beta + 249633441090618) q^{17} + ( - 397688832 \beta - 16\!\cdots\!92) q^{18}+ \cdots + (34\!\cdots\!10 \beta - 24\!\cdots\!44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8192 q^{2} - 97092 q^{3} + 33554432 q^{4} - 488281250 q^{5} - 397688832 q^{6} - 16137160124 q^{7} + 137438953472 q^{8} - 800124539454 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8192 q^{2} - 97092 q^{3} + 33554432 q^{4} - 488281250 q^{5} - 397688832 q^{6} - 16137160124 q^{7} + 137438953472 q^{8} - 800124539454 q^{9} - 2000000000000 q^{10} + 14416600801344 q^{11} - 1628933455872 q^{12} + 93404548866628 q^{13} - 66097807867904 q^{14} + 23704101562500 q^{15} + 562949953421312 q^{16} + 499266882181236 q^{17} - 32\!\cdots\!84 q^{18}+ \cdots - 48\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−308.790
308.790
4096.00 −715531. 1.67772e7 −2.44141e8 −2.93082e9 −6.40133e10 6.87195e10 −3.35303e11 −1.00000e12
1.2 4096.00 618439. 1.67772e7 −2.44141e8 2.53313e9 4.78762e10 6.87195e10 −4.64821e11 −1.00000e12
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.26.a.d 2
5.b even 2 1 50.26.a.d 2
5.c odd 4 2 50.26.b.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.26.a.d 2 1.a even 1 1 trivial
50.26.a.d 2 5.b even 2 1
50.26.b.d 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 97092T_{3} - 442512911484 \) acting on \(S_{26}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4096)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 442512911484 \) Copy content Toggle raw display
$5$ \( (T + 244140625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 30\!\cdots\!56 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 50\!\cdots\!84 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 12\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 15\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 41\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 37\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 33\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 27\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 33\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 67\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 20\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 83\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 95\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 39\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 71\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 24\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 40\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 67\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 20\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 44\!\cdots\!24 \) Copy content Toggle raw display
show more
show less