Properties

Label 10.26.a.c
Level $10$
Weight $26$
Character orbit 10.a
Self dual yes
Analytic conductor $39.600$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,26,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.5996779952\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 148387471 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 80\sqrt{148387471}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4096 q^{2} + (\beta + 272606) q^{3} + 16777216 q^{4} - 244140625 q^{5} + ( - 4096 \beta - 1116594176) q^{6} + (20517 \beta + 19283928482) q^{7} - 68719476736 q^{8} + (545212 \beta + 176705236193) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4096 q^{2} + (\beta + 272606) q^{3} + 16777216 q^{4} - 244140625 q^{5} + ( - 4096 \beta - 1116594176) q^{6} + (20517 \beta + 19283928482) q^{7} - 68719476736 q^{8} + (545212 \beta + 176705236193) q^{9} + 1000000000000 q^{10} + ( - 11164578 \beta - 4189584938208) q^{11} + (16777216 \beta + 4573569744896) q^{12} + ( - 72504588 \beta - 74721868598494) q^{13} + ( - 84037632 \beta - 78986971062272) q^{14} + ( - 244140625 \beta - 66554199218750) q^{15} + 281474976710656 q^{16} + ( - 386452452 \beta + 16\!\cdots\!62) q^{17}+ \cdots + ( - 42\!\cdots\!50 \beta - 65\!\cdots\!44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8192 q^{2} + 545212 q^{3} + 33554432 q^{4} - 488281250 q^{5} - 2233188352 q^{6} + 38567856964 q^{7} - 137438953472 q^{8} + 353410472386 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8192 q^{2} + 545212 q^{3} + 33554432 q^{4} - 488281250 q^{5} - 2233188352 q^{6} + 38567856964 q^{7} - 137438953472 q^{8} + 353410472386 q^{9} + 2000000000000 q^{10} - 8379169876416 q^{11} + 9147139489792 q^{12} - 149443737196988 q^{13} - 157973942124544 q^{14} - 133108398437500 q^{15} + 562949953421312 q^{16} + 33\!\cdots\!24 q^{17}+ \cdots - 13\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−12181.4
12181.4
−4096.00 −701909. 1.67772e7 −2.44141e8 2.87502e9 −7.10199e8 −6.87195e10 −3.54612e11 1.00000e12
1.2 −4096.00 1.24712e6 1.67772e7 −2.44141e8 −5.10821e9 3.92781e10 −6.87195e10 7.08023e11 1.00000e12
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.26.a.c 2
5.b even 2 1 50.26.a.e 2
5.c odd 4 2 50.26.b.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.26.a.c 2 1.a even 1 1 trivial
50.26.a.e 2 5.b even 2 1
50.26.b.c 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 545212T_{3} - 875365783164 \) acting on \(S_{26}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4096)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 875365783164 \) Copy content Toggle raw display
$5$ \( (T + 244140625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 27\!\cdots\!76 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 59\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 26\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 28\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 30\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 11\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 16\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 69\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 21\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 99\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 22\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 38\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 32\!\cdots\!04 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 36\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 13\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 32\!\cdots\!24 \) Copy content Toggle raw display
show more
show less