Defining parameters
Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 26 \) |
Character orbit: | \([\chi]\) | \(=\) | 10.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(39\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_0(10))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 39 | 7 | 32 |
Cusp forms | 35 | 7 | 28 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
10.26.a.a | $1$ | $39.600$ | \(\Q\) | None | \(4096\) | \(162864\) | \(244140625\) | \(-17600893492\) | $-$ | $-$ | \(q+2^{12}q^{2}+162864q^{3}+2^{24}q^{4}+\cdots\) | |
10.26.a.b | $2$ | $39.600$ | \(\mathbb{Q}[x]/(x^{2} - \cdots)\) | None | \(-8192\) | \(-438588\) | \(488281250\) | \(-34008596636\) | $+$ | $-$ | \(q-2^{12}q^{2}+(-219294-\beta )q^{3}+2^{24}q^{4}+\cdots\) | |
10.26.a.c | $2$ | $39.600$ | \(\mathbb{Q}[x]/(x^{2} - \cdots)\) | None | \(-8192\) | \(545212\) | \(-488281250\) | \(38567856964\) | $+$ | $+$ | \(q-2^{12}q^{2}+(272606+\beta )q^{3}+2^{24}q^{4}+\cdots\) | |
10.26.a.d | $2$ | $39.600$ | \(\Q(\sqrt{95351}) \) | None | \(8192\) | \(-97092\) | \(-488281250\) | \(-16137160124\) | $-$ | $+$ | \(q+2^{12}q^{2}+(-48546+\beta )q^{3}+2^{24}q^{4}+\cdots\) |
Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces
\( S_{26}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{26}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)