Properties

Label 10.26.a
Level $10$
Weight $26$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $4$
Sturm bound $39$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(39\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_0(10))\).

Total New Old
Modular forms 39 7 32
Cusp forms 35 7 28
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(3\)
Minus space\(-\)\(4\)

Trace form

\( 7 q - 4096 q^{2} + 172396 q^{3} + 117440512 q^{4} - 244140625 q^{5} - 167329792 q^{6} - 29178793288 q^{7} - 68719476736 q^{8} + 1158717865771 q^{9} - 1000000000000 q^{10} + 14141739881364 q^{11} + 2892324929536 q^{12}+ \cdots + 78\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.26.a.a 10.a 1.a $1$ $39.600$ \(\Q\) None 10.26.a.a \(4096\) \(162864\) \(244140625\) \(-17600893492\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{12}q^{2}+162864q^{3}+2^{24}q^{4}+\cdots\)
10.26.a.b 10.a 1.a $2$ $39.600$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.26.a.b \(-8192\) \(-438588\) \(488281250\) \(-34008596636\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{12}q^{2}+(-219294-\beta )q^{3}+2^{24}q^{4}+\cdots\)
10.26.a.c 10.a 1.a $2$ $39.600$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.26.a.c \(-8192\) \(545212\) \(-488281250\) \(38567856964\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{12}q^{2}+(272606+\beta )q^{3}+2^{24}q^{4}+\cdots\)
10.26.a.d 10.a 1.a $2$ $39.600$ \(\Q(\sqrt{95351}) \) None 10.26.a.d \(8192\) \(-97092\) \(-488281250\) \(-16137160124\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{12}q^{2}+(-48546+\beta )q^{3}+2^{24}q^{4}+\cdots\)

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{26}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)