Properties

Label 10.26
Level 10
Weight 26
Dimension 19
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 156
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 26 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(156\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_1(10))\).

Total New Old
Modular forms 79 19 60
Cusp forms 71 19 52
Eisenstein series 8 0 8

Trace form

\( 19 q - 4096 q^{2} + 172396 q^{3} - 83886080 q^{4} - 734435965 q^{5} - 6732529664 q^{6} - 29178793288 q^{7} - 68719476736 q^{8} + 75780301535 q^{9} + 636528619520 q^{10} + 33864829109988 q^{11} + 2892324929536 q^{12}+ \cdots + 12\!\cdots\!20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.26.a \(\chi_{10}(1, \cdot)\) 10.26.a.a 1 1
10.26.a.b 2
10.26.a.c 2
10.26.a.d 2
10.26.b \(\chi_{10}(9, \cdot)\) 10.26.b.a 12 1

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{26}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)