Properties

Label 10.24.a.b.1.2
Level $10$
Weight $24$
Character 10.1
Self dual yes
Analytic conductor $33.520$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,24,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 24, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 24);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.5204037345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{117349}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 29337 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-170.781\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2048.00 q^{2} +589887. q^{3} +4.19430e6 q^{4} -4.88281e7 q^{5} -1.20809e9 q^{6} -8.65943e9 q^{7} -8.58993e9 q^{8} +2.53823e11 q^{9} +1.00000e11 q^{10} -3.41600e11 q^{11} +2.47417e12 q^{12} +9.37599e12 q^{13} +1.77345e13 q^{14} -2.88031e13 q^{15} +1.75922e13 q^{16} +1.26651e14 q^{17} -5.19830e14 q^{18} +2.68434e14 q^{19} -2.04800e14 q^{20} -5.10808e15 q^{21} +6.99597e14 q^{22} +4.00352e15 q^{23} -5.06709e15 q^{24} +2.38419e15 q^{25} -1.92020e16 q^{26} +9.41933e16 q^{27} -3.63203e16 q^{28} +7.20419e16 q^{29} +5.89887e16 q^{30} +8.44456e16 q^{31} -3.60288e16 q^{32} -2.01505e17 q^{33} -2.59382e17 q^{34} +4.22824e17 q^{35} +1.06461e18 q^{36} -8.22837e17 q^{37} -5.49753e17 q^{38} +5.53078e18 q^{39} +4.19430e17 q^{40} -1.49837e18 q^{41} +1.04614e19 q^{42} +4.28965e18 q^{43} -1.43277e18 q^{44} -1.23937e19 q^{45} -8.19921e18 q^{46} -8.20255e18 q^{47} +1.03774e19 q^{48} +4.76169e19 q^{49} -4.88281e18 q^{50} +7.47099e19 q^{51} +3.93258e19 q^{52} -1.87100e19 q^{53} -1.92908e20 q^{54} +1.66797e19 q^{55} +7.43839e19 q^{56} +1.58346e20 q^{57} -1.47542e20 q^{58} -1.04739e20 q^{59} -1.20809e20 q^{60} -1.53791e20 q^{61} -1.72945e20 q^{62} -2.19797e21 q^{63} +7.37870e19 q^{64} -4.57812e20 q^{65} +4.12683e20 q^{66} +1.63830e21 q^{67} +5.31214e20 q^{68} +2.36163e21 q^{69} -8.65943e20 q^{70} +2.80919e21 q^{71} -2.18033e21 q^{72} -1.84822e21 q^{73} +1.68517e21 q^{74} +1.40640e21 q^{75} +1.12589e21 q^{76} +2.95806e21 q^{77} -1.13270e22 q^{78} -8.75087e21 q^{79} -8.58993e20 q^{80} +3.16676e22 q^{81} +3.06866e21 q^{82} +6.73667e21 q^{83} -2.14249e22 q^{84} -6.18414e21 q^{85} -8.78520e21 q^{86} +4.24965e22 q^{87} +2.93432e21 q^{88} +1.65512e22 q^{89} +2.53823e22 q^{90} -8.11907e22 q^{91} +1.67920e22 q^{92} +4.98134e22 q^{93} +1.67988e22 q^{94} -1.31071e22 q^{95} -2.12529e22 q^{96} -4.48228e22 q^{97} -9.75195e22 q^{98} -8.67060e22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4096 q^{2} + 686484 q^{3} + 8388608 q^{4} - 97656250 q^{5} - 1405919232 q^{6} - 3529595108 q^{7} - 17179869184 q^{8} + 169011226674 q^{9} + 200000000000 q^{10} + 936557269824 q^{11} + 2879322587136 q^{12}+ \cdots - 19\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2048.00 −0.707107
\(3\) 589887. 1.92254 0.961268 0.275616i \(-0.0888820\pi\)
0.961268 + 0.275616i \(0.0888820\pi\)
\(4\) 4.19430e6 0.500000
\(5\) −4.88281e7 −0.447214
\(6\) −1.20809e9 −1.35944
\(7\) −8.65943e9 −1.65524 −0.827621 0.561287i \(-0.810307\pi\)
−0.827621 + 0.561287i \(0.810307\pi\)
\(8\) −8.58993e9 −0.353553
\(9\) 2.53823e11 2.69614
\(10\) 1.00000e11 0.316228
\(11\) −3.41600e11 −0.360996 −0.180498 0.983575i \(-0.557771\pi\)
−0.180498 + 0.983575i \(0.557771\pi\)
\(12\) 2.47417e12 0.961268
\(13\) 9.37599e12 1.45100 0.725502 0.688220i \(-0.241608\pi\)
0.725502 + 0.688220i \(0.241608\pi\)
\(14\) 1.77345e13 1.17043
\(15\) −2.88031e13 −0.859784
\(16\) 1.75922e13 0.250000
\(17\) 1.26651e14 0.896286 0.448143 0.893962i \(-0.352085\pi\)
0.448143 + 0.893962i \(0.352085\pi\)
\(18\) −5.19830e14 −1.90646
\(19\) 2.68434e14 0.528654 0.264327 0.964433i \(-0.414850\pi\)
0.264327 + 0.964433i \(0.414850\pi\)
\(20\) −2.04800e14 −0.223607
\(21\) −5.10808e15 −3.18226
\(22\) 6.99597e14 0.255262
\(23\) 4.00352e15 0.876137 0.438069 0.898942i \(-0.355663\pi\)
0.438069 + 0.898942i \(0.355663\pi\)
\(24\) −5.06709e15 −0.679719
\(25\) 2.38419e15 0.200000
\(26\) −1.92020e16 −1.02602
\(27\) 9.41933e16 3.26089
\(28\) −3.63203e16 −0.827621
\(29\) 7.20419e16 1.09650 0.548249 0.836315i \(-0.315295\pi\)
0.548249 + 0.836315i \(0.315295\pi\)
\(30\) 5.89887e16 0.607959
\(31\) 8.44456e16 0.596922 0.298461 0.954422i \(-0.403527\pi\)
0.298461 + 0.954422i \(0.403527\pi\)
\(32\) −3.60288e16 −0.176777
\(33\) −2.01505e17 −0.694027
\(34\) −2.59382e17 −0.633770
\(35\) 4.22824e17 0.740247
\(36\) 1.06461e18 1.34807
\(37\) −8.22837e17 −0.760316 −0.380158 0.924922i \(-0.624130\pi\)
−0.380158 + 0.924922i \(0.624130\pi\)
\(38\) −5.49753e17 −0.373815
\(39\) 5.53078e18 2.78961
\(40\) 4.19430e17 0.158114
\(41\) −1.49837e18 −0.425211 −0.212605 0.977138i \(-0.568195\pi\)
−0.212605 + 0.977138i \(0.568195\pi\)
\(42\) 1.04614e19 2.25020
\(43\) 4.28965e18 0.703938 0.351969 0.936012i \(-0.385512\pi\)
0.351969 + 0.936012i \(0.385512\pi\)
\(44\) −1.43277e18 −0.180498
\(45\) −1.23937e19 −1.20575
\(46\) −8.19921e18 −0.619523
\(47\) −8.20255e18 −0.483976 −0.241988 0.970279i \(-0.577799\pi\)
−0.241988 + 0.970279i \(0.577799\pi\)
\(48\) 1.03774e19 0.480634
\(49\) 4.76169e19 1.73983
\(50\) −4.88281e18 −0.141421
\(51\) 7.47099e19 1.72314
\(52\) 3.93258e19 0.725502
\(53\) −1.87100e19 −0.277269 −0.138635 0.990344i \(-0.544271\pi\)
−0.138635 + 0.990344i \(0.544271\pi\)
\(54\) −1.92908e20 −2.30580
\(55\) 1.66797e19 0.161442
\(56\) 7.43839e19 0.585217
\(57\) 1.58346e20 1.01636
\(58\) −1.47542e20 −0.775341
\(59\) −1.04739e20 −0.452178 −0.226089 0.974107i \(-0.572594\pi\)
−0.226089 + 0.974107i \(0.572594\pi\)
\(60\) −1.20809e20 −0.429892
\(61\) −1.53791e20 −0.452519 −0.226259 0.974067i \(-0.572650\pi\)
−0.226259 + 0.974067i \(0.572650\pi\)
\(62\) −1.72945e20 −0.422088
\(63\) −2.19797e21 −4.46277
\(64\) 7.37870e19 0.125000
\(65\) −4.57812e20 −0.648909
\(66\) 4.12683e20 0.490751
\(67\) 1.63830e21 1.63883 0.819415 0.573200i \(-0.194298\pi\)
0.819415 + 0.573200i \(0.194298\pi\)
\(68\) 5.31214e20 0.448143
\(69\) 2.36163e21 1.68440
\(70\) −8.65943e20 −0.523434
\(71\) 2.80919e21 1.44248 0.721241 0.692684i \(-0.243572\pi\)
0.721241 + 0.692684i \(0.243572\pi\)
\(72\) −2.18033e21 −0.953230
\(73\) −1.84822e21 −0.689510 −0.344755 0.938693i \(-0.612038\pi\)
−0.344755 + 0.938693i \(0.612038\pi\)
\(74\) 1.68517e21 0.537625
\(75\) 1.40640e21 0.384507
\(76\) 1.12589e21 0.264327
\(77\) 2.95806e21 0.597535
\(78\) −1.13270e22 −1.97255
\(79\) −8.75087e21 −1.31625 −0.658127 0.752907i \(-0.728651\pi\)
−0.658127 + 0.752907i \(0.728651\pi\)
\(80\) −8.58993e20 −0.111803
\(81\) 3.16676e22 3.57304
\(82\) 3.06866e21 0.300669
\(83\) 6.73667e21 0.574179 0.287090 0.957904i \(-0.407312\pi\)
0.287090 + 0.957904i \(0.407312\pi\)
\(84\) −2.14249e22 −1.59113
\(85\) −6.18414e21 −0.400831
\(86\) −8.78520e21 −0.497759
\(87\) 4.24965e22 2.10806
\(88\) 2.93432e21 0.127631
\(89\) 1.65512e22 0.632185 0.316092 0.948728i \(-0.397629\pi\)
0.316092 + 0.948728i \(0.397629\pi\)
\(90\) 2.53823e22 0.852595
\(91\) −8.11907e22 −2.40176
\(92\) 1.67920e22 0.438069
\(93\) 4.98134e22 1.14760
\(94\) 1.67988e22 0.342223
\(95\) −1.31071e22 −0.236421
\(96\) −2.12529e22 −0.339859
\(97\) −4.48228e22 −0.636244 −0.318122 0.948050i \(-0.603052\pi\)
−0.318122 + 0.948050i \(0.603052\pi\)
\(98\) −9.75195e22 −1.23024
\(99\) −8.67060e22 −0.973295
\(100\) 1.00000e22 0.100000
\(101\) −1.48622e23 −1.32552 −0.662760 0.748832i \(-0.730615\pi\)
−0.662760 + 0.748832i \(0.730615\pi\)
\(102\) −1.53006e23 −1.21845
\(103\) 6.64435e22 0.472960 0.236480 0.971636i \(-0.424006\pi\)
0.236480 + 0.971636i \(0.424006\pi\)
\(104\) −8.05392e22 −0.513008
\(105\) 2.49418e23 1.42315
\(106\) 3.83181e22 0.196059
\(107\) 3.18955e22 0.146493 0.0732463 0.997314i \(-0.476664\pi\)
0.0732463 + 0.997314i \(0.476664\pi\)
\(108\) 3.95075e23 1.63045
\(109\) 1.27271e22 0.0472418 0.0236209 0.999721i \(-0.492481\pi\)
0.0236209 + 0.999721i \(0.492481\pi\)
\(110\) −3.41600e22 −0.114157
\(111\) −4.85381e23 −1.46173
\(112\) −1.52338e23 −0.413811
\(113\) 1.29270e23 0.317027 0.158513 0.987357i \(-0.449330\pi\)
0.158513 + 0.987357i \(0.449330\pi\)
\(114\) −3.24292e23 −0.718672
\(115\) −1.95484e23 −0.391820
\(116\) 3.02165e23 0.548249
\(117\) 2.37985e24 3.91211
\(118\) 2.14505e23 0.319738
\(119\) −1.09673e24 −1.48357
\(120\) 2.47417e23 0.303980
\(121\) −7.78740e23 −0.869682
\(122\) 3.14963e23 0.319979
\(123\) −8.83868e23 −0.817482
\(124\) 3.54191e23 0.298461
\(125\) −1.16415e23 −0.0894427
\(126\) 4.50143e24 3.15566
\(127\) −2.37120e24 −1.51784 −0.758918 0.651187i \(-0.774271\pi\)
−0.758918 + 0.651187i \(0.774271\pi\)
\(128\) −1.51116e23 −0.0883883
\(129\) 2.53041e24 1.35335
\(130\) 9.37599e23 0.458848
\(131\) 2.08233e24 0.933103 0.466551 0.884494i \(-0.345496\pi\)
0.466551 + 0.884494i \(0.345496\pi\)
\(132\) −8.45175e23 −0.347013
\(133\) −2.32449e24 −0.875051
\(134\) −3.35525e24 −1.15883
\(135\) −4.59928e24 −1.45832
\(136\) −1.08793e24 −0.316885
\(137\) −2.45853e24 −0.658248 −0.329124 0.944287i \(-0.606753\pi\)
−0.329124 + 0.944287i \(0.606753\pi\)
\(138\) −4.83661e24 −1.19105
\(139\) 2.83898e24 0.643417 0.321708 0.946839i \(-0.395743\pi\)
0.321708 + 0.946839i \(0.395743\pi\)
\(140\) 1.77345e24 0.370124
\(141\) −4.83858e24 −0.930461
\(142\) −5.75323e24 −1.01999
\(143\) −3.20284e24 −0.523806
\(144\) 4.46531e24 0.674036
\(145\) −3.51767e24 −0.490369
\(146\) 3.78515e24 0.487557
\(147\) 2.80886e25 3.34488
\(148\) −3.45123e24 −0.380158
\(149\) −1.04342e25 −1.06370 −0.531849 0.846839i \(-0.678503\pi\)
−0.531849 + 0.846839i \(0.678503\pi\)
\(150\) −2.88031e24 −0.271888
\(151\) −3.94859e24 −0.345308 −0.172654 0.984982i \(-0.555234\pi\)
−0.172654 + 0.984982i \(0.555234\pi\)
\(152\) −2.30583e24 −0.186907
\(153\) 3.21470e25 2.41652
\(154\) −6.05811e24 −0.422521
\(155\) −4.12332e24 −0.266952
\(156\) 2.31978e25 1.39480
\(157\) −1.85824e25 −1.03814 −0.519070 0.854732i \(-0.673722\pi\)
−0.519070 + 0.854732i \(0.673722\pi\)
\(158\) 1.79218e25 0.930732
\(159\) −1.10368e25 −0.533060
\(160\) 1.75922e24 0.0790569
\(161\) −3.46682e25 −1.45022
\(162\) −6.48553e25 −2.52652
\(163\) 4.00527e25 1.45370 0.726849 0.686798i \(-0.240984\pi\)
0.726849 + 0.686798i \(0.240984\pi\)
\(164\) −6.28461e24 −0.212605
\(165\) 9.83913e24 0.310378
\(166\) −1.37967e25 −0.406006
\(167\) 7.99548e24 0.219586 0.109793 0.993954i \(-0.464981\pi\)
0.109793 + 0.993954i \(0.464981\pi\)
\(168\) 4.38781e25 1.12510
\(169\) 4.61554e25 1.10541
\(170\) 1.26651e25 0.283431
\(171\) 6.81349e25 1.42533
\(172\) 1.79921e25 0.351969
\(173\) 8.98445e25 1.64423 0.822113 0.569325i \(-0.192795\pi\)
0.822113 + 0.569325i \(0.192795\pi\)
\(174\) −8.70329e25 −1.49062
\(175\) −2.06457e25 −0.331049
\(176\) −6.00949e24 −0.0902489
\(177\) −6.17841e25 −0.869329
\(178\) −3.38968e25 −0.447022
\(179\) 1.18230e26 1.46190 0.730949 0.682433i \(-0.239078\pi\)
0.730949 + 0.682433i \(0.239078\pi\)
\(180\) −5.19830e25 −0.602876
\(181\) −1.17668e26 −1.28043 −0.640213 0.768198i \(-0.721154\pi\)
−0.640213 + 0.768198i \(0.721154\pi\)
\(182\) 1.66279e26 1.69830
\(183\) −9.07191e25 −0.869983
\(184\) −3.43900e25 −0.309761
\(185\) 4.01776e25 0.340024
\(186\) −1.02018e26 −0.811478
\(187\) −4.32640e25 −0.323555
\(188\) −3.44040e25 −0.241988
\(189\) −8.15660e26 −5.39757
\(190\) 2.68434e25 0.167175
\(191\) 2.94896e26 1.72896 0.864480 0.502668i \(-0.167648\pi\)
0.864480 + 0.502668i \(0.167648\pi\)
\(192\) 4.35260e25 0.240317
\(193\) 1.41854e26 0.737789 0.368894 0.929471i \(-0.379736\pi\)
0.368894 + 0.929471i \(0.379736\pi\)
\(194\) 9.17970e25 0.449892
\(195\) −2.70057e26 −1.24755
\(196\) 1.99720e26 0.869915
\(197\) −1.89037e25 −0.0776580 −0.0388290 0.999246i \(-0.512363\pi\)
−0.0388290 + 0.999246i \(0.512363\pi\)
\(198\) 1.77574e26 0.688224
\(199\) −4.29000e26 −1.56909 −0.784543 0.620074i \(-0.787102\pi\)
−0.784543 + 0.620074i \(0.787102\pi\)
\(200\) −2.04800e25 −0.0707107
\(201\) 9.66414e26 3.15071
\(202\) 3.04377e26 0.937284
\(203\) −6.23841e26 −1.81497
\(204\) 3.13356e26 0.861571
\(205\) 7.31625e25 0.190160
\(206\) −1.36076e26 −0.334433
\(207\) 1.01619e27 2.36219
\(208\) 1.64944e26 0.362751
\(209\) −9.16971e25 −0.190842
\(210\) −5.10808e26 −1.00632
\(211\) −5.54819e26 −1.03491 −0.517456 0.855710i \(-0.673121\pi\)
−0.517456 + 0.855710i \(0.673121\pi\)
\(212\) −7.84756e25 −0.138635
\(213\) 1.65711e27 2.77322
\(214\) −6.53220e25 −0.103586
\(215\) −2.09456e26 −0.314811
\(216\) −8.09114e26 −1.15290
\(217\) −7.31251e26 −0.988051
\(218\) −2.60652e25 −0.0334050
\(219\) −1.09024e27 −1.32561
\(220\) 6.99597e25 0.0807211
\(221\) 1.18748e27 1.30052
\(222\) 9.94060e26 1.03360
\(223\) −1.18597e26 −0.117103 −0.0585517 0.998284i \(-0.518648\pi\)
−0.0585517 + 0.998284i \(0.518648\pi\)
\(224\) 3.11989e26 0.292608
\(225\) 6.05162e26 0.539228
\(226\) −2.64745e26 −0.224172
\(227\) −4.65610e26 −0.374736 −0.187368 0.982290i \(-0.559996\pi\)
−0.187368 + 0.982290i \(0.559996\pi\)
\(228\) 6.64151e26 0.508178
\(229\) −9.14229e26 −0.665192 −0.332596 0.943069i \(-0.607925\pi\)
−0.332596 + 0.943069i \(0.607925\pi\)
\(230\) 4.00352e26 0.277059
\(231\) 1.74492e27 1.14878
\(232\) −6.18835e26 −0.387671
\(233\) 1.71939e25 0.0102514 0.00512569 0.999987i \(-0.498368\pi\)
0.00512569 + 0.999987i \(0.498368\pi\)
\(234\) −4.87393e27 −2.76628
\(235\) 4.00515e26 0.216441
\(236\) −4.39307e26 −0.226089
\(237\) −5.16203e27 −2.53055
\(238\) 2.24610e27 1.04904
\(239\) −1.37899e27 −0.613741 −0.306870 0.951751i \(-0.599282\pi\)
−0.306870 + 0.951751i \(0.599282\pi\)
\(240\) −5.06709e26 −0.214946
\(241\) −4.72718e27 −1.91164 −0.955821 0.293950i \(-0.905030\pi\)
−0.955821 + 0.293950i \(0.905030\pi\)
\(242\) 1.59486e27 0.614958
\(243\) 9.81267e27 3.60840
\(244\) −6.45044e26 −0.226259
\(245\) −2.32505e27 −0.778075
\(246\) 1.81016e27 0.578047
\(247\) 2.51684e27 0.767079
\(248\) −7.25382e26 −0.211044
\(249\) 3.97388e27 1.10388
\(250\) 2.38419e26 0.0632456
\(251\) −4.79993e27 −1.21615 −0.608075 0.793879i \(-0.708058\pi\)
−0.608075 + 0.793879i \(0.708058\pi\)
\(252\) −9.21894e27 −2.23139
\(253\) −1.36760e27 −0.316282
\(254\) 4.85621e27 1.07327
\(255\) −3.64794e27 −0.770613
\(256\) 3.09485e26 0.0625000
\(257\) 9.07525e27 1.75238 0.876189 0.481968i \(-0.160078\pi\)
0.876189 + 0.481968i \(0.160078\pi\)
\(258\) −5.18228e27 −0.956960
\(259\) 7.12530e27 1.25851
\(260\) −1.92020e27 −0.324454
\(261\) 1.82859e28 2.95632
\(262\) −4.26461e27 −0.659803
\(263\) −8.09758e25 −0.0119912 −0.00599562 0.999982i \(-0.501908\pi\)
−0.00599562 + 0.999982i \(0.501908\pi\)
\(264\) 1.73092e27 0.245375
\(265\) 9.13576e26 0.123999
\(266\) 4.76055e27 0.618754
\(267\) 9.76333e27 1.21540
\(268\) 6.87154e27 0.819415
\(269\) −1.72812e28 −1.97435 −0.987173 0.159656i \(-0.948962\pi\)
−0.987173 + 0.159656i \(0.948962\pi\)
\(270\) 9.41933e27 1.03119
\(271\) −1.25531e28 −1.31706 −0.658528 0.752557i \(-0.728820\pi\)
−0.658528 + 0.752557i \(0.728820\pi\)
\(272\) 2.22807e27 0.224072
\(273\) −4.78934e28 −4.61748
\(274\) 5.03507e27 0.465451
\(275\) −8.14438e26 −0.0721991
\(276\) 9.90538e27 0.842202
\(277\) −5.00554e27 −0.408257 −0.204129 0.978944i \(-0.565436\pi\)
−0.204129 + 0.978944i \(0.565436\pi\)
\(278\) −5.81423e27 −0.454964
\(279\) 2.14343e28 1.60939
\(280\) −3.63203e27 −0.261717
\(281\) −2.40666e27 −0.166453 −0.0832265 0.996531i \(-0.526522\pi\)
−0.0832265 + 0.996531i \(0.526522\pi\)
\(282\) 9.90941e27 0.657935
\(283\) 2.62143e28 1.67107 0.835535 0.549438i \(-0.185158\pi\)
0.835535 + 0.549438i \(0.185158\pi\)
\(284\) 1.17826e28 0.721241
\(285\) −7.73173e27 −0.454528
\(286\) 6.55941e27 0.370387
\(287\) 1.29750e28 0.703827
\(288\) −9.14495e27 −0.476615
\(289\) −3.92704e27 −0.196671
\(290\) 7.20419e27 0.346743
\(291\) −2.64404e28 −1.22320
\(292\) −7.75199e27 −0.344755
\(293\) −3.01791e27 −0.129041 −0.0645206 0.997916i \(-0.520552\pi\)
−0.0645206 + 0.997916i \(0.520552\pi\)
\(294\) −5.75255e28 −2.36519
\(295\) 5.11420e27 0.202220
\(296\) 7.06812e27 0.268812
\(297\) −3.21764e28 −1.17717
\(298\) 2.13693e28 0.752149
\(299\) 3.75370e28 1.27128
\(300\) 5.89887e27 0.192254
\(301\) −3.71459e28 −1.16519
\(302\) 8.08671e27 0.244170
\(303\) −8.76699e28 −2.54836
\(304\) 4.72235e27 0.132164
\(305\) 7.50931e27 0.202373
\(306\) −6.58371e28 −1.70873
\(307\) −2.03128e28 −0.507784 −0.253892 0.967233i \(-0.581711\pi\)
−0.253892 + 0.967233i \(0.581711\pi\)
\(308\) 1.24070e28 0.298768
\(309\) 3.91941e28 0.909282
\(310\) 8.44456e27 0.188763
\(311\) 6.48885e28 1.39773 0.698865 0.715254i \(-0.253689\pi\)
0.698865 + 0.715254i \(0.253689\pi\)
\(312\) −4.75090e28 −0.986275
\(313\) 4.80190e28 0.960845 0.480423 0.877037i \(-0.340483\pi\)
0.480423 + 0.877037i \(0.340483\pi\)
\(314\) 3.80568e28 0.734076
\(315\) 1.07323e29 1.99581
\(316\) −3.67038e28 −0.658127
\(317\) 5.25019e28 0.907807 0.453903 0.891051i \(-0.350031\pi\)
0.453903 + 0.891051i \(0.350031\pi\)
\(318\) 2.26034e28 0.376931
\(319\) −2.46095e28 −0.395831
\(320\) −3.60288e27 −0.0559017
\(321\) 1.88147e28 0.281637
\(322\) 7.10005e28 1.02546
\(323\) 3.39975e28 0.473825
\(324\) 1.32824e29 1.78652
\(325\) 2.23541e28 0.290201
\(326\) −8.20279e28 −1.02792
\(327\) 7.50758e27 0.0908240
\(328\) 1.28709e28 0.150335
\(329\) 7.10294e28 0.801097
\(330\) −2.01505e28 −0.219471
\(331\) −1.29656e28 −0.136386 −0.0681930 0.997672i \(-0.521723\pi\)
−0.0681930 + 0.997672i \(0.521723\pi\)
\(332\) 2.82557e28 0.287090
\(333\) −2.08855e29 −2.04992
\(334\) −1.63747e28 −0.155271
\(335\) −7.99953e28 −0.732907
\(336\) −8.98624e28 −0.795566
\(337\) 9.04429e28 0.773803 0.386902 0.922121i \(-0.373545\pi\)
0.386902 + 0.922121i \(0.373545\pi\)
\(338\) −9.45262e28 −0.781646
\(339\) 7.62548e28 0.609495
\(340\) −2.59382e28 −0.200416
\(341\) −2.88466e28 −0.215486
\(342\) −1.39540e29 −1.00786
\(343\) −1.75338e29 −1.22460
\(344\) −3.68478e28 −0.248880
\(345\) −1.15314e29 −0.753289
\(346\) −1.84002e29 −1.16264
\(347\) −1.49288e29 −0.912504 −0.456252 0.889851i \(-0.650808\pi\)
−0.456252 + 0.889851i \(0.650808\pi\)
\(348\) 1.78243e29 1.05403
\(349\) −1.52139e29 −0.870459 −0.435230 0.900319i \(-0.643333\pi\)
−0.435230 + 0.900319i \(0.643333\pi\)
\(350\) 4.22824e28 0.234087
\(351\) 8.83156e29 4.73157
\(352\) 1.23074e28 0.0638156
\(353\) 2.49410e29 1.25171 0.625857 0.779938i \(-0.284750\pi\)
0.625857 + 0.779938i \(0.284750\pi\)
\(354\) 1.26534e29 0.614708
\(355\) −1.37168e29 −0.645098
\(356\) 6.94207e28 0.316092
\(357\) −6.46945e29 −2.85222
\(358\) −2.42134e29 −1.03372
\(359\) 3.91702e29 1.61946 0.809728 0.586805i \(-0.199614\pi\)
0.809728 + 0.586805i \(0.199614\pi\)
\(360\) 1.06461e29 0.426298
\(361\) −1.85773e29 −0.720525
\(362\) 2.40984e29 0.905398
\(363\) −4.59368e29 −1.67199
\(364\) −3.40539e29 −1.20088
\(365\) 9.02451e28 0.308358
\(366\) 1.85793e29 0.615171
\(367\) 1.79517e29 0.576032 0.288016 0.957626i \(-0.407004\pi\)
0.288016 + 0.957626i \(0.407004\pi\)
\(368\) 7.04307e28 0.219034
\(369\) −3.80321e29 −1.14643
\(370\) −8.22837e28 −0.240433
\(371\) 1.62018e29 0.458948
\(372\) 2.08932e29 0.573802
\(373\) −7.00737e29 −1.86597 −0.932983 0.359920i \(-0.882804\pi\)
−0.932983 + 0.359920i \(0.882804\pi\)
\(374\) 8.86048e28 0.228788
\(375\) −6.86719e28 −0.171957
\(376\) 7.04594e28 0.171111
\(377\) 6.75464e29 1.59102
\(378\) 1.67047e30 3.81666
\(379\) 7.85722e28 0.174148 0.0870739 0.996202i \(-0.472248\pi\)
0.0870739 + 0.996202i \(0.472248\pi\)
\(380\) −5.49753e28 −0.118211
\(381\) −1.39874e30 −2.91809
\(382\) −6.03947e29 −1.22256
\(383\) 4.36132e29 0.856707 0.428353 0.903611i \(-0.359094\pi\)
0.428353 + 0.903611i \(0.359094\pi\)
\(384\) −8.91412e28 −0.169930
\(385\) −1.44437e29 −0.267226
\(386\) −2.90517e29 −0.521696
\(387\) 1.08881e30 1.89792
\(388\) −1.88000e29 −0.318122
\(389\) −8.02563e28 −0.131844 −0.0659218 0.997825i \(-0.520999\pi\)
−0.0659218 + 0.997825i \(0.520999\pi\)
\(390\) 5.53078e29 0.882151
\(391\) 5.07051e29 0.785270
\(392\) −4.09026e29 −0.615122
\(393\) 1.22834e30 1.79392
\(394\) 3.87148e28 0.0549125
\(395\) 4.27289e29 0.588647
\(396\) −3.63672e29 −0.486648
\(397\) −1.82014e29 −0.236600 −0.118300 0.992978i \(-0.537744\pi\)
−0.118300 + 0.992978i \(0.537744\pi\)
\(398\) 8.78592e29 1.10951
\(399\) −1.37118e30 −1.68232
\(400\) 4.19430e28 0.0500000
\(401\) 1.22321e30 1.41691 0.708454 0.705757i \(-0.249393\pi\)
0.708454 + 0.705757i \(0.249393\pi\)
\(402\) −1.97922e30 −2.22789
\(403\) 7.91762e29 0.866137
\(404\) −6.23364e29 −0.662760
\(405\) −1.54627e30 −1.59791
\(406\) 1.27763e30 1.28338
\(407\) 2.81081e29 0.274471
\(408\) −6.41753e29 −0.609223
\(409\) −1.28273e30 −1.18391 −0.591954 0.805972i \(-0.701643\pi\)
−0.591954 + 0.805972i \(0.701643\pi\)
\(410\) −1.49837e29 −0.134463
\(411\) −1.45026e30 −1.26550
\(412\) 2.78684e29 0.236480
\(413\) 9.06979e29 0.748465
\(414\) −2.08115e30 −1.67032
\(415\) −3.28939e29 −0.256781
\(416\) −3.37806e29 −0.256504
\(417\) 1.67468e30 1.23699
\(418\) 1.87796e29 0.134946
\(419\) 3.03804e29 0.212389 0.106194 0.994345i \(-0.466133\pi\)
0.106194 + 0.994345i \(0.466133\pi\)
\(420\) 1.04614e30 0.711576
\(421\) 1.27738e30 0.845427 0.422714 0.906263i \(-0.361078\pi\)
0.422714 + 0.906263i \(0.361078\pi\)
\(422\) 1.13627e30 0.731793
\(423\) −2.08200e30 −1.30487
\(424\) 1.60718e29 0.0980296
\(425\) 3.01960e29 0.179257
\(426\) −3.39375e30 −1.96097
\(427\) 1.33174e30 0.749029
\(428\) 1.33779e29 0.0732463
\(429\) −1.88931e30 −1.00704
\(430\) 4.28965e29 0.222605
\(431\) −1.22639e30 −0.619642 −0.309821 0.950795i \(-0.600269\pi\)
−0.309821 + 0.950795i \(0.600269\pi\)
\(432\) 1.65707e30 0.815223
\(433\) −2.34066e30 −1.12132 −0.560658 0.828047i \(-0.689452\pi\)
−0.560658 + 0.828047i \(0.689452\pi\)
\(434\) 1.49760e30 0.698658
\(435\) −2.07503e30 −0.942752
\(436\) 5.33815e28 0.0236209
\(437\) 1.07468e30 0.463174
\(438\) 2.23281e30 0.937346
\(439\) 2.33966e30 0.956779 0.478389 0.878148i \(-0.341221\pi\)
0.478389 + 0.878148i \(0.341221\pi\)
\(440\) −1.43277e29 −0.0570784
\(441\) 1.20863e31 4.69083
\(442\) −2.43196e30 −0.919603
\(443\) −5.19485e30 −1.91395 −0.956974 0.290175i \(-0.906286\pi\)
−0.956974 + 0.290175i \(0.906286\pi\)
\(444\) −2.03584e30 −0.730867
\(445\) −8.08163e29 −0.282722
\(446\) 2.42888e29 0.0828046
\(447\) −6.15502e30 −2.04500
\(448\) −6.38953e29 −0.206905
\(449\) 8.46675e29 0.267229 0.133615 0.991033i \(-0.457342\pi\)
0.133615 + 0.991033i \(0.457342\pi\)
\(450\) −1.23937e30 −0.381292
\(451\) 5.11842e29 0.153499
\(452\) 5.42198e29 0.158513
\(453\) −2.32922e30 −0.663868
\(454\) 9.53569e29 0.264978
\(455\) 3.96439e30 1.07410
\(456\) −1.36018e30 −0.359336
\(457\) 4.30243e30 1.10835 0.554176 0.832399i \(-0.313033\pi\)
0.554176 + 0.832399i \(0.313033\pi\)
\(458\) 1.87234e30 0.470362
\(459\) 1.19297e31 2.92269
\(460\) −8.19921e29 −0.195910
\(461\) 5.59904e30 1.30483 0.652413 0.757863i \(-0.273757\pi\)
0.652413 + 0.757863i \(0.273757\pi\)
\(462\) −3.57360e30 −0.812312
\(463\) 6.54677e30 1.45160 0.725798 0.687908i \(-0.241471\pi\)
0.725798 + 0.687908i \(0.241471\pi\)
\(464\) 1.26737e30 0.274125
\(465\) −2.43229e30 −0.513224
\(466\) −3.52132e28 −0.00724882
\(467\) −2.46045e30 −0.494163 −0.247082 0.968995i \(-0.579472\pi\)
−0.247082 + 0.968995i \(0.579472\pi\)
\(468\) 9.98180e30 1.95606
\(469\) −1.41868e31 −2.71266
\(470\) −8.20255e29 −0.153047
\(471\) −1.09615e31 −1.99586
\(472\) 8.99700e29 0.159869
\(473\) −1.46534e30 −0.254119
\(474\) 1.05718e31 1.78937
\(475\) 6.39997e29 0.105731
\(476\) −4.60001e30 −0.741786
\(477\) −4.74904e30 −0.747558
\(478\) 2.82417e30 0.433980
\(479\) −6.11043e30 −0.916671 −0.458336 0.888779i \(-0.651554\pi\)
−0.458336 + 0.888779i \(0.651554\pi\)
\(480\) 1.03774e30 0.151990
\(481\) −7.71492e30 −1.10322
\(482\) 9.68127e30 1.35173
\(483\) −2.04503e31 −2.78810
\(484\) −3.26627e30 −0.434841
\(485\) 2.18861e30 0.284537
\(486\) −2.00964e31 −2.55153
\(487\) −5.95367e30 −0.738247 −0.369124 0.929380i \(-0.620342\pi\)
−0.369124 + 0.929380i \(0.620342\pi\)
\(488\) 1.32105e30 0.159990
\(489\) 2.36265e31 2.79478
\(490\) 4.76169e30 0.550182
\(491\) −4.90871e30 −0.554026 −0.277013 0.960866i \(-0.589345\pi\)
−0.277013 + 0.960866i \(0.589345\pi\)
\(492\) −3.70721e30 −0.408741
\(493\) 9.12419e30 0.982776
\(494\) −5.15448e30 −0.542407
\(495\) 4.23369e30 0.435271
\(496\) 1.48558e30 0.149231
\(497\) −2.43260e31 −2.38766
\(498\) −8.13850e30 −0.780561
\(499\) 1.58005e29 0.0148087 0.00740433 0.999973i \(-0.497643\pi\)
0.00740433 + 0.999973i \(0.497643\pi\)
\(500\) −4.88281e29 −0.0447214
\(501\) 4.71643e30 0.422162
\(502\) 9.83026e30 0.859948
\(503\) −7.88073e30 −0.673805 −0.336903 0.941539i \(-0.609379\pi\)
−0.336903 + 0.941539i \(0.609379\pi\)
\(504\) 1.88804e31 1.57783
\(505\) 7.25691e30 0.592790
\(506\) 2.80085e30 0.223645
\(507\) 2.72264e31 2.12520
\(508\) −9.94552e30 −0.758918
\(509\) −1.29230e31 −0.964070 −0.482035 0.876152i \(-0.660102\pi\)
−0.482035 + 0.876152i \(0.660102\pi\)
\(510\) 7.47099e30 0.544905
\(511\) 1.60045e31 1.14131
\(512\) −6.33825e29 −0.0441942
\(513\) 2.52847e31 1.72388
\(514\) −1.85861e31 −1.23912
\(515\) −3.24431e30 −0.211514
\(516\) 1.06133e31 0.676673
\(517\) 2.80199e30 0.174713
\(518\) −1.45926e31 −0.889899
\(519\) 5.29981e31 3.16108
\(520\) 3.93258e30 0.229424
\(521\) 2.00059e31 1.14163 0.570814 0.821079i \(-0.306628\pi\)
0.570814 + 0.821079i \(0.306628\pi\)
\(522\) −3.74495e31 −2.09043
\(523\) −3.24415e31 −1.77146 −0.885731 0.464199i \(-0.846342\pi\)
−0.885731 + 0.464199i \(0.846342\pi\)
\(524\) 8.73392e30 0.466551
\(525\) −1.21786e31 −0.636453
\(526\) 1.65838e29 0.00847908
\(527\) 1.06951e31 0.535013
\(528\) −3.54492e30 −0.173507
\(529\) −4.85228e30 −0.232383
\(530\) −1.87100e30 −0.0876803
\(531\) −2.65852e31 −1.21914
\(532\) −9.74961e30 −0.437525
\(533\) −1.40487e31 −0.616982
\(534\) −1.99953e31 −0.859416
\(535\) −1.55740e30 −0.0655135
\(536\) −1.40729e31 −0.579414
\(537\) 6.97422e31 2.81055
\(538\) 3.53919e31 1.39607
\(539\) −1.62659e31 −0.628071
\(540\) −1.92908e31 −0.729158
\(541\) −3.62031e31 −1.33961 −0.669804 0.742538i \(-0.733622\pi\)
−0.669804 + 0.742538i \(0.733622\pi\)
\(542\) 2.57087e31 0.931299
\(543\) −6.94108e31 −2.46166
\(544\) −4.56309e30 −0.158443
\(545\) −6.21443e29 −0.0211272
\(546\) 9.80856e31 3.26505
\(547\) 3.22624e31 1.05158 0.525791 0.850614i \(-0.323769\pi\)
0.525791 + 0.850614i \(0.323769\pi\)
\(548\) −1.03118e31 −0.329124
\(549\) −3.90357e31 −1.22006
\(550\) 1.66797e30 0.0510525
\(551\) 1.93385e31 0.579668
\(552\) −2.02862e31 −0.595527
\(553\) 7.57776e31 2.17872
\(554\) 1.02514e31 0.288681
\(555\) 2.37002e31 0.653707
\(556\) 1.19076e31 0.321708
\(557\) 4.85642e31 1.28523 0.642616 0.766189i \(-0.277849\pi\)
0.642616 + 0.766189i \(0.277849\pi\)
\(558\) −4.38974e31 −1.13801
\(559\) 4.02197e31 1.02142
\(560\) 7.43839e30 0.185062
\(561\) −2.55209e31 −0.622047
\(562\) 4.92884e30 0.117700
\(563\) −5.02515e31 −1.17572 −0.587858 0.808964i \(-0.700028\pi\)
−0.587858 + 0.808964i \(0.700028\pi\)
\(564\) −2.02945e31 −0.465230
\(565\) −6.31202e30 −0.141779
\(566\) −5.36869e31 −1.18162
\(567\) −2.74224e32 −5.91425
\(568\) −2.41308e31 −0.509995
\(569\) −7.80283e31 −1.61607 −0.808037 0.589132i \(-0.799470\pi\)
−0.808037 + 0.589132i \(0.799470\pi\)
\(570\) 1.58346e31 0.321400
\(571\) −4.11699e31 −0.818963 −0.409481 0.912319i \(-0.634290\pi\)
−0.409481 + 0.912319i \(0.634290\pi\)
\(572\) −1.34337e31 −0.261903
\(573\) 1.73955e32 3.32399
\(574\) −2.65728e31 −0.497681
\(575\) 9.54514e30 0.175227
\(576\) 1.87289e31 0.337018
\(577\) 7.34525e31 1.29564 0.647820 0.761793i \(-0.275681\pi\)
0.647820 + 0.761793i \(0.275681\pi\)
\(578\) 8.04257e30 0.139067
\(579\) 8.36777e31 1.41843
\(580\) −1.47542e31 −0.245184
\(581\) −5.83357e31 −0.950406
\(582\) 5.41499e31 0.864934
\(583\) 6.39134e30 0.100093
\(584\) 1.58761e31 0.243779
\(585\) −1.16203e32 −1.74955
\(586\) 6.18068e30 0.0912460
\(587\) 5.81709e31 0.842107 0.421054 0.907036i \(-0.361660\pi\)
0.421054 + 0.907036i \(0.361660\pi\)
\(588\) 1.17812e32 1.67244
\(589\) 2.26681e31 0.315565
\(590\) −1.04739e31 −0.142991
\(591\) −1.11511e31 −0.149300
\(592\) −1.44755e31 −0.190079
\(593\) 7.52337e31 0.968909 0.484455 0.874816i \(-0.339018\pi\)
0.484455 + 0.874816i \(0.339018\pi\)
\(594\) 6.58973e31 0.832384
\(595\) 5.35511e31 0.663473
\(596\) −4.37644e31 −0.531849
\(597\) −2.53061e32 −3.01662
\(598\) −7.68758e31 −0.898930
\(599\) −5.59333e31 −0.641597 −0.320798 0.947147i \(-0.603951\pi\)
−0.320798 + 0.947147i \(0.603951\pi\)
\(600\) −1.20809e31 −0.135944
\(601\) 5.72895e31 0.632439 0.316220 0.948686i \(-0.397586\pi\)
0.316220 + 0.948686i \(0.397586\pi\)
\(602\) 7.60748e31 0.823913
\(603\) 4.15840e32 4.41852
\(604\) −1.65616e31 −0.172654
\(605\) 3.80244e31 0.388934
\(606\) 1.79548e32 1.80196
\(607\) 1.73060e32 1.70423 0.852114 0.523356i \(-0.175320\pi\)
0.852114 + 0.523356i \(0.175320\pi\)
\(608\) −9.67136e30 −0.0934537
\(609\) −3.67996e32 −3.48935
\(610\) −1.53791e31 −0.143099
\(611\) −7.69071e31 −0.702251
\(612\) 1.34834e32 1.20826
\(613\) −4.07291e29 −0.00358186 −0.00179093 0.999998i \(-0.500570\pi\)
−0.00179093 + 0.999998i \(0.500570\pi\)
\(614\) 4.16006e31 0.359057
\(615\) 4.31576e31 0.365589
\(616\) −2.54095e31 −0.211261
\(617\) −1.95659e32 −1.59669 −0.798346 0.602199i \(-0.794292\pi\)
−0.798346 + 0.602199i \(0.794292\pi\)
\(618\) −8.02696e31 −0.642959
\(619\) −2.00768e32 −1.57853 −0.789264 0.614054i \(-0.789538\pi\)
−0.789264 + 0.614054i \(0.789538\pi\)
\(620\) −1.72945e31 −0.133476
\(621\) 3.77105e32 2.85699
\(622\) −1.32892e32 −0.988344
\(623\) −1.43324e32 −1.04642
\(624\) 9.72984e31 0.697402
\(625\) 5.68434e30 0.0400000
\(626\) −9.83430e31 −0.679420
\(627\) −5.40909e31 −0.366900
\(628\) −7.79402e31 −0.519070
\(629\) −1.04213e32 −0.681461
\(630\) −2.19797e32 −1.41125
\(631\) 2.41339e32 1.52156 0.760782 0.649007i \(-0.224816\pi\)
0.760782 + 0.649007i \(0.224816\pi\)
\(632\) 7.51694e31 0.465366
\(633\) −3.27281e32 −1.98965
\(634\) −1.07524e32 −0.641916
\(635\) 1.15781e32 0.678797
\(636\) −4.62917e31 −0.266530
\(637\) 4.46456e32 2.52450
\(638\) 5.04002e31 0.279895
\(639\) 7.13039e32 3.88914
\(640\) 7.37870e30 0.0395285
\(641\) −1.22253e32 −0.643268 −0.321634 0.946864i \(-0.604232\pi\)
−0.321634 + 0.946864i \(0.604232\pi\)
\(642\) −3.85326e31 −0.199148
\(643\) −2.71424e32 −1.37792 −0.688958 0.724801i \(-0.741932\pi\)
−0.688958 + 0.724801i \(0.741932\pi\)
\(644\) −1.45409e32 −0.725110
\(645\) −1.23555e32 −0.605235
\(646\) −6.96269e31 −0.335045
\(647\) −2.71917e31 −0.128540 −0.0642699 0.997933i \(-0.520472\pi\)
−0.0642699 + 0.997933i \(0.520472\pi\)
\(648\) −2.72023e32 −1.26326
\(649\) 3.57788e31 0.163234
\(650\) −4.57812e31 −0.205203
\(651\) −4.31355e32 −1.89956
\(652\) 1.67993e32 0.726849
\(653\) 1.78163e32 0.757384 0.378692 0.925523i \(-0.376374\pi\)
0.378692 + 0.925523i \(0.376374\pi\)
\(654\) −1.53755e31 −0.0642223
\(655\) −1.01676e32 −0.417296
\(656\) −2.63596e31 −0.106303
\(657\) −4.69121e32 −1.85902
\(658\) −1.45468e32 −0.566461
\(659\) −2.28601e32 −0.874774 −0.437387 0.899273i \(-0.644096\pi\)
−0.437387 + 0.899273i \(0.644096\pi\)
\(660\) 4.12683e31 0.155189
\(661\) −1.82780e32 −0.675478 −0.337739 0.941240i \(-0.609662\pi\)
−0.337739 + 0.941240i \(0.609662\pi\)
\(662\) 2.65535e31 0.0964394
\(663\) 7.00480e32 2.50029
\(664\) −5.78676e31 −0.203003
\(665\) 1.13500e32 0.391335
\(666\) 4.27736e32 1.44951
\(667\) 2.88421e32 0.960683
\(668\) 3.35355e31 0.109793
\(669\) −6.99591e31 −0.225135
\(670\) 1.63830e32 0.518244
\(671\) 5.25348e31 0.163357
\(672\) 1.84038e32 0.562550
\(673\) −4.40091e32 −1.32242 −0.661210 0.750201i \(-0.729957\pi\)
−0.661210 + 0.750201i \(0.729957\pi\)
\(674\) −1.85227e32 −0.547162
\(675\) 2.24574e32 0.652179
\(676\) 1.93590e32 0.552707
\(677\) 3.63271e32 1.01967 0.509837 0.860271i \(-0.329706\pi\)
0.509837 + 0.860271i \(0.329706\pi\)
\(678\) −1.56170e32 −0.430978
\(679\) 3.88139e32 1.05314
\(680\) 5.31214e31 0.141715
\(681\) −2.74657e32 −0.720443
\(682\) 5.90779e31 0.152372
\(683\) 4.83335e31 0.122577 0.0612887 0.998120i \(-0.480479\pi\)
0.0612887 + 0.998120i \(0.480479\pi\)
\(684\) 2.85779e32 0.712663
\(685\) 1.20046e32 0.294377
\(686\) 3.59092e32 0.865921
\(687\) −5.39292e32 −1.27885
\(688\) 7.54643e31 0.175985
\(689\) −1.75425e32 −0.402319
\(690\) 2.36163e32 0.532656
\(691\) 1.13967e32 0.252802 0.126401 0.991979i \(-0.459657\pi\)
0.126401 + 0.991979i \(0.459657\pi\)
\(692\) 3.76835e32 0.822113
\(693\) 7.50825e32 1.61104
\(694\) 3.05741e32 0.645238
\(695\) −1.38622e32 −0.287745
\(696\) −3.65043e32 −0.745311
\(697\) −1.89770e32 −0.381110
\(698\) 3.11581e32 0.615508
\(699\) 1.01425e31 0.0197086
\(700\) −8.65943e31 −0.165524
\(701\) −2.14787e32 −0.403879 −0.201939 0.979398i \(-0.564724\pi\)
−0.201939 + 0.979398i \(0.564724\pi\)
\(702\) −1.80870e33 −3.34573
\(703\) −2.20878e32 −0.401944
\(704\) −2.52056e31 −0.0451244
\(705\) 2.36259e32 0.416115
\(706\) −5.10792e32 −0.885095
\(707\) 1.28698e33 2.19406
\(708\) −2.59141e32 −0.434664
\(709\) −2.27478e32 −0.375412 −0.187706 0.982225i \(-0.560105\pi\)
−0.187706 + 0.982225i \(0.560105\pi\)
\(710\) 2.80919e32 0.456153
\(711\) −2.22118e33 −3.54881
\(712\) −1.42174e32 −0.223511
\(713\) 3.38080e32 0.522986
\(714\) 1.32494e33 2.01682
\(715\) 1.56389e32 0.234253
\(716\) 4.95891e32 0.730949
\(717\) −8.13448e32 −1.17994
\(718\) −8.02205e32 −1.14513
\(719\) 8.12373e32 1.14123 0.570615 0.821217i \(-0.306705\pi\)
0.570615 + 0.821217i \(0.306705\pi\)
\(720\) −2.18033e32 −0.301438
\(721\) −5.75362e32 −0.782863
\(722\) 3.80462e32 0.509488
\(723\) −2.78850e33 −3.67520
\(724\) −4.93535e32 −0.640213
\(725\) 1.71761e32 0.219300
\(726\) 9.40786e32 1.18228
\(727\) −8.49369e32 −1.05063 −0.525316 0.850907i \(-0.676053\pi\)
−0.525316 + 0.850907i \(0.676053\pi\)
\(728\) 6.97423e32 0.849152
\(729\) 2.80708e33 3.36424
\(730\) −1.84822e32 −0.218042
\(731\) 5.43289e32 0.630930
\(732\) −3.80503e32 −0.434992
\(733\) 1.06482e33 1.19834 0.599171 0.800621i \(-0.295497\pi\)
0.599171 + 0.800621i \(0.295497\pi\)
\(734\) −3.67651e32 −0.407316
\(735\) −1.37151e33 −1.49588
\(736\) −1.44242e32 −0.154881
\(737\) −5.59644e32 −0.591611
\(738\) 7.78897e32 0.810647
\(739\) −4.97066e32 −0.509334 −0.254667 0.967029i \(-0.581966\pi\)
−0.254667 + 0.967029i \(0.581966\pi\)
\(740\) 1.68517e32 0.170012
\(741\) 1.48465e33 1.47474
\(742\) −3.31813e32 −0.324525
\(743\) −6.27596e32 −0.604379 −0.302189 0.953248i \(-0.597717\pi\)
−0.302189 + 0.953248i \(0.597717\pi\)
\(744\) −4.27894e32 −0.405739
\(745\) 5.09484e32 0.475701
\(746\) 1.43511e33 1.31944
\(747\) 1.70993e33 1.54807
\(748\) −1.81463e32 −0.161778
\(749\) −2.76197e32 −0.242481
\(750\) 1.40640e32 0.121592
\(751\) 2.25567e33 1.92051 0.960254 0.279128i \(-0.0900455\pi\)
0.960254 + 0.279128i \(0.0900455\pi\)
\(752\) −1.44301e32 −0.120994
\(753\) −2.83142e33 −2.33809
\(754\) −1.38335e33 −1.12502
\(755\) 1.92802e32 0.154427
\(756\) −3.42113e33 −2.69879
\(757\) −5.24347e32 −0.407396 −0.203698 0.979034i \(-0.565296\pi\)
−0.203698 + 0.979034i \(0.565296\pi\)
\(758\) −1.60916e32 −0.123141
\(759\) −8.06731e32 −0.608063
\(760\) 1.12589e32 0.0835875
\(761\) −1.07047e33 −0.782799 −0.391400 0.920221i \(-0.628009\pi\)
−0.391400 + 0.920221i \(0.628009\pi\)
\(762\) 2.86461e33 2.06340
\(763\) −1.10210e32 −0.0781966
\(764\) 1.23688e33 0.864480
\(765\) −1.56968e33 −1.08070
\(766\) −8.93199e32 −0.605783
\(767\) −9.82031e32 −0.656113
\(768\) 1.82561e32 0.120158
\(769\) 1.76963e32 0.114744 0.0573719 0.998353i \(-0.481728\pi\)
0.0573719 + 0.998353i \(0.481728\pi\)
\(770\) 2.95806e32 0.188957
\(771\) 5.35337e33 3.36901
\(772\) 5.94978e32 0.368894
\(773\) −1.34952e32 −0.0824354 −0.0412177 0.999150i \(-0.513124\pi\)
−0.0412177 + 0.999150i \(0.513124\pi\)
\(774\) −2.22989e33 −1.34203
\(775\) 2.01334e32 0.119384
\(776\) 3.85025e32 0.224946
\(777\) 4.20312e33 2.41953
\(778\) 1.64365e32 0.0932275
\(779\) −4.02213e32 −0.224789
\(780\) −1.13270e33 −0.623775
\(781\) −9.59620e32 −0.520730
\(782\) −1.03844e33 −0.555270
\(783\) 6.78586e33 3.57556
\(784\) 8.37686e32 0.434957
\(785\) 9.07344e32 0.464270
\(786\) −2.51564e33 −1.26849
\(787\) 2.58175e32 0.128293 0.0641467 0.997940i \(-0.479567\pi\)
0.0641467 + 0.997940i \(0.479567\pi\)
\(788\) −7.92880e31 −0.0388290
\(789\) −4.77665e31 −0.0230536
\(790\) −8.75087e32 −0.416236
\(791\) −1.11941e33 −0.524756
\(792\) 7.44799e32 0.344112
\(793\) −1.44194e33 −0.656607
\(794\) 3.72765e32 0.167301
\(795\) 5.38906e32 0.238392
\(796\) −1.79936e33 −0.784543
\(797\) 4.68701e32 0.201430 0.100715 0.994915i \(-0.467887\pi\)
0.100715 + 0.994915i \(0.467887\pi\)
\(798\) 2.80819e33 1.18958
\(799\) −1.03886e33 −0.433781
\(800\) −8.58993e31 −0.0353553
\(801\) 4.20108e33 1.70446
\(802\) −2.50514e33 −1.00190
\(803\) 6.31352e32 0.248910
\(804\) 4.05343e33 1.57536
\(805\) 1.69278e33 0.648558
\(806\) −1.62153e33 −0.612451
\(807\) −1.01940e34 −3.79575
\(808\) 1.27665e33 0.468642
\(809\) −1.32810e33 −0.480643 −0.240321 0.970693i \(-0.577253\pi\)
−0.240321 + 0.970693i \(0.577253\pi\)
\(810\) 3.16676e33 1.12989
\(811\) 5.54203e32 0.194952 0.0974762 0.995238i \(-0.468923\pi\)
0.0974762 + 0.995238i \(0.468923\pi\)
\(812\) −2.61658e33 −0.907485
\(813\) −7.40491e33 −2.53209
\(814\) −5.75654e32 −0.194080
\(815\) −1.95570e33 −0.650113
\(816\) 1.31431e33 0.430786
\(817\) 1.15149e33 0.372140
\(818\) 2.62704e33 0.837150
\(819\) −2.06081e34 −6.47550
\(820\) 3.06866e32 0.0950800
\(821\) −2.33985e33 −0.714895 −0.357448 0.933933i \(-0.616353\pi\)
−0.357448 + 0.933933i \(0.616353\pi\)
\(822\) 2.97012e33 0.894847
\(823\) 3.81112e33 1.13228 0.566141 0.824308i \(-0.308436\pi\)
0.566141 + 0.824308i \(0.308436\pi\)
\(824\) −5.70745e32 −0.167217
\(825\) −4.80426e32 −0.138805
\(826\) −1.85749e33 −0.529245
\(827\) 3.90417e33 1.09702 0.548511 0.836143i \(-0.315195\pi\)
0.548511 + 0.836143i \(0.315195\pi\)
\(828\) 4.26220e33 1.18110
\(829\) 2.55686e33 0.698763 0.349382 0.936981i \(-0.386392\pi\)
0.349382 + 0.936981i \(0.386392\pi\)
\(830\) 6.73667e32 0.181571
\(831\) −2.95270e33 −0.784889
\(832\) 6.91826e32 0.181376
\(833\) 6.03074e33 1.55939
\(834\) −3.42974e33 −0.874685
\(835\) −3.90404e32 −0.0982019
\(836\) −3.84606e32 −0.0954209
\(837\) 7.95421e33 1.94650
\(838\) −6.22190e32 −0.150182
\(839\) 5.90891e32 0.140684 0.0703420 0.997523i \(-0.477591\pi\)
0.0703420 + 0.997523i \(0.477591\pi\)
\(840\) −2.14249e33 −0.503160
\(841\) 8.73308e32 0.202308
\(842\) −2.61608e33 −0.597808
\(843\) −1.41966e33 −0.320012
\(844\) −2.32708e33 −0.517456
\(845\) −2.25368e33 −0.494356
\(846\) 4.26394e33 0.922681
\(847\) 6.74344e33 1.43954
\(848\) −3.29150e32 −0.0693174
\(849\) 1.54635e34 3.21269
\(850\) −6.18414e32 −0.126754
\(851\) −3.29425e33 −0.666141
\(852\) 6.95041e33 1.38661
\(853\) −3.51995e33 −0.692823 −0.346412 0.938083i \(-0.612600\pi\)
−0.346412 + 0.938083i \(0.612600\pi\)
\(854\) −2.72740e33 −0.529643
\(855\) −3.32690e33 −0.637425
\(856\) −2.73980e32 −0.0517930
\(857\) −8.93522e33 −1.66658 −0.833289 0.552837i \(-0.813545\pi\)
−0.833289 + 0.552837i \(0.813545\pi\)
\(858\) 3.86931e33 0.712082
\(859\) 4.26448e33 0.774363 0.387181 0.922004i \(-0.373449\pi\)
0.387181 + 0.922004i \(0.373449\pi\)
\(860\) −8.78520e32 −0.157405
\(861\) 7.65379e33 1.35313
\(862\) 2.51165e33 0.438153
\(863\) −7.90521e31 −0.0136078 −0.00680392 0.999977i \(-0.502166\pi\)
−0.00680392 + 0.999977i \(0.502166\pi\)
\(864\) −3.39367e33 −0.576450
\(865\) −4.38694e33 −0.735320
\(866\) 4.79368e33 0.792891
\(867\) −2.31651e33 −0.378107
\(868\) −3.06709e33 −0.494025
\(869\) 2.98930e33 0.475162
\(870\) 4.24965e33 0.666626
\(871\) 1.53607e34 2.37795
\(872\) −1.09325e32 −0.0167025
\(873\) −1.13771e34 −1.71540
\(874\) −2.20095e33 −0.327513
\(875\) 1.00809e33 0.148049
\(876\) −4.57280e33 −0.662804
\(877\) −5.32153e33 −0.761275 −0.380638 0.924724i \(-0.624295\pi\)
−0.380638 + 0.924724i \(0.624295\pi\)
\(878\) −4.79163e33 −0.676545
\(879\) −1.78023e33 −0.248086
\(880\) 2.93432e32 0.0403605
\(881\) −6.10795e33 −0.829225 −0.414613 0.909998i \(-0.636083\pi\)
−0.414613 + 0.909998i \(0.636083\pi\)
\(882\) −2.47527e34 −3.31692
\(883\) 5.57230e33 0.737032 0.368516 0.929621i \(-0.379866\pi\)
0.368516 + 0.929621i \(0.379866\pi\)
\(884\) 4.98066e33 0.650258
\(885\) 3.01680e33 0.388776
\(886\) 1.06390e34 1.35336
\(887\) −3.09075e33 −0.388099 −0.194050 0.980992i \(-0.562162\pi\)
−0.194050 + 0.980992i \(0.562162\pi\)
\(888\) 4.16939e33 0.516801
\(889\) 2.05332e34 2.51239
\(890\) 1.65512e33 0.199914
\(891\) −1.08177e34 −1.28985
\(892\) −4.97434e32 −0.0585517
\(893\) −2.20185e33 −0.255856
\(894\) 1.26055e34 1.44603
\(895\) −5.77294e33 −0.653780
\(896\) 1.30858e33 0.146304
\(897\) 2.21426e34 2.44408
\(898\) −1.73399e33 −0.188960
\(899\) 6.08362e33 0.654524
\(900\) 2.53823e33 0.269614
\(901\) −2.36965e33 −0.248513
\(902\) −1.04825e33 −0.108540
\(903\) −2.19119e34 −2.24012
\(904\) −1.11042e33 −0.112086
\(905\) 5.74550e33 0.572624
\(906\) 4.77025e33 0.469425
\(907\) 1.19132e34 1.15756 0.578781 0.815483i \(-0.303529\pi\)
0.578781 + 0.815483i \(0.303529\pi\)
\(908\) −1.95291e33 −0.187368
\(909\) −3.77236e34 −3.57379
\(910\) −8.11907e33 −0.759505
\(911\) −1.48259e34 −1.36949 −0.684747 0.728781i \(-0.740087\pi\)
−0.684747 + 0.728781i \(0.740087\pi\)
\(912\) 2.78565e33 0.254089
\(913\) −2.30125e33 −0.207276
\(914\) −8.81138e33 −0.783723
\(915\) 4.42964e33 0.389068
\(916\) −3.83455e33 −0.332596
\(917\) −1.80318e34 −1.54451
\(918\) −2.44320e34 −2.06666
\(919\) 1.05759e34 0.883461 0.441731 0.897148i \(-0.354365\pi\)
0.441731 + 0.897148i \(0.354365\pi\)
\(920\) 1.67920e33 0.138529
\(921\) −1.19823e34 −0.976232
\(922\) −1.14668e34 −0.922652
\(923\) 2.63390e34 2.09305
\(924\) 7.31873e33 0.574391
\(925\) −1.96180e33 −0.152063
\(926\) −1.34078e34 −1.02643
\(927\) 1.68649e34 1.27517
\(928\) −2.59558e33 −0.193835
\(929\) −4.72412e33 −0.348450 −0.174225 0.984706i \(-0.555742\pi\)
−0.174225 + 0.984706i \(0.555742\pi\)
\(930\) 4.98134e33 0.362904
\(931\) 1.27820e34 0.919768
\(932\) 7.21166e31 0.00512569
\(933\) 3.82769e34 2.68718
\(934\) 5.03900e33 0.349426
\(935\) 2.11250e33 0.144698
\(936\) −2.04427e34 −1.38314
\(937\) −2.82822e34 −1.89020 −0.945101 0.326779i \(-0.894037\pi\)
−0.945101 + 0.326779i \(0.894037\pi\)
\(938\) 2.90545e34 1.91814
\(939\) 2.83258e34 1.84726
\(940\) 1.67988e33 0.108220
\(941\) −1.69342e34 −1.07767 −0.538833 0.842412i \(-0.681135\pi\)
−0.538833 + 0.842412i \(0.681135\pi\)
\(942\) 2.24492e34 1.41129
\(943\) −5.99875e33 −0.372543
\(944\) −1.84259e33 −0.113045
\(945\) 3.98271e34 2.41387
\(946\) 3.00102e33 0.179689
\(947\) −8.74272e33 −0.517156 −0.258578 0.965990i \(-0.583254\pi\)
−0.258578 + 0.965990i \(0.583254\pi\)
\(948\) −2.16511e34 −1.26527
\(949\) −1.73289e34 −1.00048
\(950\) −1.31071e33 −0.0747630
\(951\) 3.09702e34 1.74529
\(952\) 9.42081e33 0.524522
\(953\) −2.80700e34 −1.54410 −0.772048 0.635564i \(-0.780768\pi\)
−0.772048 + 0.635564i \(0.780768\pi\)
\(954\) 9.72604e33 0.528603
\(955\) −1.43992e34 −0.773214
\(956\) −5.78390e33 −0.306870
\(957\) −1.45168e34 −0.760999
\(958\) 1.25142e34 0.648185
\(959\) 2.12895e34 1.08956
\(960\) −2.12529e33 −0.107473
\(961\) −1.28823e34 −0.643684
\(962\) 1.58002e34 0.780096
\(963\) 8.09582e33 0.394965
\(964\) −1.98272e34 −0.955821
\(965\) −6.92646e33 −0.329949
\(966\) 4.18823e34 1.97148
\(967\) −1.63293e34 −0.759562 −0.379781 0.925076i \(-0.624001\pi\)
−0.379781 + 0.925076i \(0.624001\pi\)
\(968\) 6.68932e33 0.307479
\(969\) 2.00547e34 0.910946
\(970\) −4.48228e33 −0.201198
\(971\) −2.94646e34 −1.30701 −0.653505 0.756922i \(-0.726702\pi\)
−0.653505 + 0.756922i \(0.726702\pi\)
\(972\) 4.11573e34 1.80420
\(973\) −2.45840e34 −1.06501
\(974\) 1.21931e34 0.522020
\(975\) 1.31864e34 0.557922
\(976\) −2.70551e33 −0.113130
\(977\) −3.20852e34 −1.32592 −0.662960 0.748655i \(-0.730700\pi\)
−0.662960 + 0.748655i \(0.730700\pi\)
\(978\) −4.83872e34 −1.97621
\(979\) −5.65388e33 −0.228216
\(980\) −9.75195e33 −0.389038
\(981\) 3.23045e33 0.127371
\(982\) 1.00530e34 0.391756
\(983\) −1.27173e34 −0.489813 −0.244906 0.969547i \(-0.578757\pi\)
−0.244906 + 0.969547i \(0.578757\pi\)
\(984\) 7.59236e33 0.289024
\(985\) 9.23034e32 0.0347297
\(986\) −1.86863e34 −0.694928
\(987\) 4.18993e34 1.54014
\(988\) 1.05564e34 0.383540
\(989\) 1.71737e34 0.616746
\(990\) −8.67060e33 −0.307783
\(991\) −3.20701e34 −1.12526 −0.562631 0.826708i \(-0.690211\pi\)
−0.562631 + 0.826708i \(0.690211\pi\)
\(992\) −3.04247e33 −0.105522
\(993\) −7.64822e33 −0.262207
\(994\) 4.98197e34 1.68833
\(995\) 2.09473e34 0.701717
\(996\) 1.66676e34 0.551940
\(997\) 4.63954e34 1.51873 0.759365 0.650665i \(-0.225510\pi\)
0.759365 + 0.650665i \(0.225510\pi\)
\(998\) −3.23595e32 −0.0104713
\(999\) −7.75057e34 −2.47931
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.24.a.b.1.2 2
5.2 odd 4 50.24.b.b.49.1 4
5.3 odd 4 50.24.b.b.49.4 4
5.4 even 2 50.24.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.24.a.b.1.2 2 1.1 even 1 trivial
50.24.a.c.1.1 2 5.4 even 2
50.24.b.b.49.1 4 5.2 odd 4
50.24.b.b.49.4 4 5.3 odd 4