Properties

Label 10.24.a.b.1.1
Level $10$
Weight $24$
Character 10.1
Self dual yes
Analytic conductor $33.520$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,24,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 24, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 24);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.5204037345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{117349}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 29337 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(171.781\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2048.00 q^{2} +96597.1 q^{3} +4.19430e6 q^{4} -4.88281e7 q^{5} -1.97831e8 q^{6} +5.12983e9 q^{7} -8.58993e9 q^{8} -8.48122e10 q^{9} +1.00000e11 q^{10} +1.27816e12 q^{11} +4.05157e11 q^{12} +5.85852e11 q^{13} -1.05059e13 q^{14} -4.71665e12 q^{15} +1.75922e13 q^{16} -1.28261e14 q^{17} +1.73695e14 q^{18} -5.25349e14 q^{19} -2.04800e14 q^{20} +4.95527e14 q^{21} -2.61767e15 q^{22} -4.09420e14 q^{23} -8.29763e14 q^{24} +2.38419e15 q^{25} -1.19983e15 q^{26} -1.72866e16 q^{27} +2.15161e16 q^{28} +1.23428e17 q^{29} +9.65971e15 q^{30} +8.43658e16 q^{31} -3.60288e16 q^{32} +1.23466e17 q^{33} +2.62678e17 q^{34} -2.50480e17 q^{35} -3.55728e17 q^{36} +1.73772e18 q^{37} +1.07591e18 q^{38} +5.65916e16 q^{39} +4.19430e17 q^{40} +3.44259e18 q^{41} -1.01484e18 q^{42} -2.12762e18 q^{43} +5.36098e18 q^{44} +4.14122e18 q^{45} +8.38492e17 q^{46} +2.91020e19 q^{47} +1.69935e18 q^{48} -1.05356e18 q^{49} -4.88281e18 q^{50} -1.23896e19 q^{51} +2.45724e18 q^{52} +9.13857e19 q^{53} +3.54029e19 q^{54} -6.24100e19 q^{55} -4.40649e19 q^{56} -5.07471e19 q^{57} -2.52781e20 q^{58} -1.56524e20 q^{59} -1.97831e19 q^{60} -1.87132e20 q^{61} -1.72781e20 q^{62} -4.35072e20 q^{63} +7.37870e19 q^{64} -2.86061e19 q^{65} -2.52859e20 q^{66} +8.07966e19 q^{67} -5.37965e20 q^{68} -3.95488e19 q^{69} +5.12983e20 q^{70} +2.90638e21 q^{71} +7.28531e20 q^{72} +7.57899e20 q^{73} -3.55884e21 q^{74} +2.30305e20 q^{75} -2.20347e21 q^{76} +6.55673e21 q^{77} -1.15900e20 q^{78} +3.63951e21 q^{79} -8.58993e20 q^{80} +6.31466e21 q^{81} -7.05043e21 q^{82} +2.01482e21 q^{83} +2.07839e21 q^{84} +6.26274e21 q^{85} +4.35736e21 q^{86} +1.19228e22 q^{87} -1.09793e22 q^{88} +7.78361e21 q^{89} -8.48122e21 q^{90} +3.00532e21 q^{91} -1.71723e21 q^{92} +8.14949e21 q^{93} -5.96009e22 q^{94} +2.56518e22 q^{95} -3.48028e21 q^{96} +7.35687e22 q^{97} +2.15770e21 q^{98} -1.08403e23 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4096 q^{2} + 686484 q^{3} + 8388608 q^{4} - 97656250 q^{5} - 1405919232 q^{6} - 3529595108 q^{7} - 17179869184 q^{8} + 169011226674 q^{9} + 200000000000 q^{10} + 936557269824 q^{11} + 2879322587136 q^{12}+ \cdots - 19\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2048.00 −0.707107
\(3\) 96597.1 0.314825 0.157413 0.987533i \(-0.449685\pi\)
0.157413 + 0.987533i \(0.449685\pi\)
\(4\) 4.19430e6 0.500000
\(5\) −4.88281e7 −0.447214
\(6\) −1.97831e8 −0.222615
\(7\) 5.12983e9 0.980564 0.490282 0.871564i \(-0.336894\pi\)
0.490282 + 0.871564i \(0.336894\pi\)
\(8\) −8.58993e9 −0.353553
\(9\) −8.48122e10 −0.900885
\(10\) 1.00000e11 0.316228
\(11\) 1.27816e12 1.35073 0.675365 0.737484i \(-0.263986\pi\)
0.675365 + 0.737484i \(0.263986\pi\)
\(12\) 4.05157e11 0.157413
\(13\) 5.85852e11 0.0906650 0.0453325 0.998972i \(-0.485565\pi\)
0.0453325 + 0.998972i \(0.485565\pi\)
\(14\) −1.05059e13 −0.693363
\(15\) −4.71665e12 −0.140794
\(16\) 1.75922e13 0.250000
\(17\) −1.28261e14 −0.907678 −0.453839 0.891084i \(-0.649946\pi\)
−0.453839 + 0.891084i \(0.649946\pi\)
\(18\) 1.73695e14 0.637022
\(19\) −5.25349e14 −1.03462 −0.517310 0.855798i \(-0.673067\pi\)
−0.517310 + 0.855798i \(0.673067\pi\)
\(20\) −2.04800e14 −0.223607
\(21\) 4.95527e14 0.308706
\(22\) −2.61767e15 −0.955110
\(23\) −4.09420e14 −0.0895982 −0.0447991 0.998996i \(-0.514265\pi\)
−0.0447991 + 0.998996i \(0.514265\pi\)
\(24\) −8.29763e14 −0.111308
\(25\) 2.38419e15 0.200000
\(26\) −1.19983e15 −0.0641098
\(27\) −1.72866e16 −0.598447
\(28\) 2.15161e16 0.490282
\(29\) 1.23428e17 1.87861 0.939306 0.343080i \(-0.111470\pi\)
0.939306 + 0.343080i \(0.111470\pi\)
\(30\) 9.65971e15 0.0995565
\(31\) 8.43658e16 0.596358 0.298179 0.954510i \(-0.403621\pi\)
0.298179 + 0.954510i \(0.403621\pi\)
\(32\) −3.60288e16 −0.176777
\(33\) 1.23466e17 0.425244
\(34\) 2.62678e17 0.641825
\(35\) −2.50480e17 −0.438521
\(36\) −3.55728e17 −0.450443
\(37\) 1.73772e18 1.60568 0.802840 0.596194i \(-0.203321\pi\)
0.802840 + 0.596194i \(0.203321\pi\)
\(38\) 1.07591e18 0.731587
\(39\) 5.65916e16 0.0285436
\(40\) 4.19430e17 0.158114
\(41\) 3.44259e18 0.976948 0.488474 0.872579i \(-0.337554\pi\)
0.488474 + 0.872579i \(0.337554\pi\)
\(42\) −1.01484e18 −0.218288
\(43\) −2.12762e18 −0.349146 −0.174573 0.984644i \(-0.555854\pi\)
−0.174573 + 0.984644i \(0.555854\pi\)
\(44\) 5.36098e18 0.675365
\(45\) 4.14122e18 0.402888
\(46\) 8.38492e17 0.0633555
\(47\) 2.91020e19 1.71711 0.858553 0.512725i \(-0.171364\pi\)
0.858553 + 0.512725i \(0.171364\pi\)
\(48\) 1.69935e18 0.0787063
\(49\) −1.05356e18 −0.0384952
\(50\) −4.88281e18 −0.141421
\(51\) −1.23896e19 −0.285760
\(52\) 2.45724e18 0.0453325
\(53\) 9.13857e19 1.35427 0.677136 0.735858i \(-0.263221\pi\)
0.677136 + 0.735858i \(0.263221\pi\)
\(54\) 3.54029e19 0.423166
\(55\) −6.24100e19 −0.604065
\(56\) −4.40649e19 −0.346682
\(57\) −5.07471e19 −0.325725
\(58\) −2.52781e20 −1.32838
\(59\) −1.56524e20 −0.675746 −0.337873 0.941192i \(-0.609707\pi\)
−0.337873 + 0.941192i \(0.609707\pi\)
\(60\) −1.97831e19 −0.0703971
\(61\) −1.87132e20 −0.550622 −0.275311 0.961355i \(-0.588781\pi\)
−0.275311 + 0.961355i \(0.588781\pi\)
\(62\) −1.72781e20 −0.421689
\(63\) −4.35072e20 −0.883375
\(64\) 7.37870e19 0.125000
\(65\) −2.86061e19 −0.0405466
\(66\) −2.52859e20 −0.300693
\(67\) 8.07966e19 0.0808226 0.0404113 0.999183i \(-0.487133\pi\)
0.0404113 + 0.999183i \(0.487133\pi\)
\(68\) −5.37965e20 −0.453839
\(69\) −3.95488e19 −0.0282078
\(70\) 5.12983e20 0.310081
\(71\) 2.90638e21 1.49239 0.746193 0.665730i \(-0.231880\pi\)
0.746193 + 0.665730i \(0.231880\pi\)
\(72\) 7.28531e20 0.318511
\(73\) 7.57899e20 0.282747 0.141374 0.989956i \(-0.454848\pi\)
0.141374 + 0.989956i \(0.454848\pi\)
\(74\) −3.55884e21 −1.13539
\(75\) 2.30305e20 0.0629650
\(76\) −2.20347e21 −0.517310
\(77\) 6.55673e21 1.32448
\(78\) −1.15900e20 −0.0201834
\(79\) 3.63951e21 0.547433 0.273716 0.961810i \(-0.411747\pi\)
0.273716 + 0.961810i \(0.411747\pi\)
\(80\) −8.58993e20 −0.111803
\(81\) 6.31466e21 0.712479
\(82\) −7.05043e21 −0.690806
\(83\) 2.01482e21 0.171727 0.0858635 0.996307i \(-0.472635\pi\)
0.0858635 + 0.996307i \(0.472635\pi\)
\(84\) 2.07839e21 0.154353
\(85\) 6.26274e21 0.405926
\(86\) 4.35736e21 0.246883
\(87\) 1.19228e22 0.591435
\(88\) −1.09793e22 −0.477555
\(89\) 7.78361e21 0.297301 0.148650 0.988890i \(-0.452507\pi\)
0.148650 + 0.988890i \(0.452507\pi\)
\(90\) −8.48122e21 −0.284885
\(91\) 3.00532e21 0.0889028
\(92\) −1.71723e21 −0.0447991
\(93\) 8.14949e21 0.187748
\(94\) −5.96009e22 −1.21418
\(95\) 2.56518e22 0.462696
\(96\) −3.48028e21 −0.0556538
\(97\) 7.35687e22 1.04428 0.522141 0.852859i \(-0.325133\pi\)
0.522141 + 0.852859i \(0.325133\pi\)
\(98\) 2.15770e21 0.0272202
\(99\) −1.08403e23 −1.21685
\(100\) 1.00000e22 0.100000
\(101\) −1.90412e23 −1.69823 −0.849117 0.528205i \(-0.822865\pi\)
−0.849117 + 0.528205i \(0.822865\pi\)
\(102\) 2.53740e22 0.202063
\(103\) −1.26775e23 −0.902417 −0.451208 0.892419i \(-0.649007\pi\)
−0.451208 + 0.892419i \(0.649007\pi\)
\(104\) −5.03243e21 −0.0320549
\(105\) −2.41956e22 −0.138058
\(106\) −1.87158e23 −0.957614
\(107\) 1.51150e23 0.694218 0.347109 0.937825i \(-0.387163\pi\)
0.347109 + 0.937825i \(0.387163\pi\)
\(108\) −7.25051e22 −0.299223
\(109\) −6.22872e22 −0.231203 −0.115602 0.993296i \(-0.536880\pi\)
−0.115602 + 0.993296i \(0.536880\pi\)
\(110\) 1.27816e23 0.427138
\(111\) 1.67858e23 0.505509
\(112\) 9.02450e22 0.245141
\(113\) 2.44237e23 0.598976 0.299488 0.954100i \(-0.403184\pi\)
0.299488 + 0.954100i \(0.403184\pi\)
\(114\) 1.03930e23 0.230322
\(115\) 1.99912e22 0.0400695
\(116\) 5.17695e23 0.939306
\(117\) −4.96874e22 −0.0816787
\(118\) 3.20562e23 0.477825
\(119\) −6.57957e23 −0.890036
\(120\) 4.05157e22 0.0497782
\(121\) 7.38255e23 0.824470
\(122\) 3.83245e23 0.389349
\(123\) 3.32544e23 0.307568
\(124\) 3.53856e23 0.298179
\(125\) −1.16415e23 −0.0894427
\(126\) 8.91028e23 0.624640
\(127\) 7.30411e23 0.467546 0.233773 0.972291i \(-0.424893\pi\)
0.233773 + 0.972291i \(0.424893\pi\)
\(128\) −1.51116e23 −0.0883883
\(129\) −2.05522e23 −0.109920
\(130\) 5.85852e22 0.0286708
\(131\) −3.63647e24 −1.62952 −0.814760 0.579798i \(-0.803131\pi\)
−0.814760 + 0.579798i \(0.803131\pi\)
\(132\) 5.17855e23 0.212622
\(133\) −2.69495e24 −1.01451
\(134\) −1.65471e23 −0.0571502
\(135\) 8.44070e23 0.267633
\(136\) 1.10175e24 0.320913
\(137\) −1.38361e24 −0.370448 −0.185224 0.982696i \(-0.559301\pi\)
−0.185224 + 0.982696i \(0.559301\pi\)
\(138\) 8.09959e22 0.0199459
\(139\) −4.41623e24 −1.00088 −0.500439 0.865772i \(-0.666828\pi\)
−0.500439 + 0.865772i \(0.666828\pi\)
\(140\) −1.05059e24 −0.219261
\(141\) 2.81117e24 0.540588
\(142\) −5.95226e24 −1.05528
\(143\) 7.48811e23 0.122464
\(144\) −1.49203e24 −0.225221
\(145\) −6.02677e24 −0.840141
\(146\) −1.55218e24 −0.199932
\(147\) −1.01771e23 −0.0121193
\(148\) 7.28851e24 0.802840
\(149\) 1.34290e25 1.36899 0.684497 0.729016i \(-0.260022\pi\)
0.684497 + 0.729016i \(0.260022\pi\)
\(150\) −4.71665e23 −0.0445230
\(151\) 3.64303e24 0.318587 0.159294 0.987231i \(-0.449078\pi\)
0.159294 + 0.987231i \(0.449078\pi\)
\(152\) 4.51271e24 0.365794
\(153\) 1.08781e25 0.817714
\(154\) −1.34282e25 −0.936546
\(155\) −4.11942e24 −0.266699
\(156\) 2.37362e23 0.0142718
\(157\) −1.59126e25 −0.888984 −0.444492 0.895783i \(-0.646616\pi\)
−0.444492 + 0.895783i \(0.646616\pi\)
\(158\) −7.45371e24 −0.387093
\(159\) 8.82759e24 0.426359
\(160\) 1.75922e24 0.0790569
\(161\) −2.10026e24 −0.0878567
\(162\) −1.29324e25 −0.503799
\(163\) 4.75035e25 1.72412 0.862062 0.506803i \(-0.169173\pi\)
0.862062 + 0.506803i \(0.169173\pi\)
\(164\) 1.44393e25 0.488474
\(165\) −6.02862e24 −0.190175
\(166\) −4.12635e24 −0.121429
\(167\) 4.51339e25 1.23955 0.619774 0.784780i \(-0.287224\pi\)
0.619774 + 0.784780i \(0.287224\pi\)
\(168\) −4.25654e24 −0.109144
\(169\) −4.14107e25 −0.991780
\(170\) −1.28261e25 −0.287033
\(171\) 4.45560e25 0.932074
\(172\) −8.92388e24 −0.174573
\(173\) 7.96874e25 1.45834 0.729171 0.684332i \(-0.239906\pi\)
0.729171 + 0.684332i \(0.239906\pi\)
\(174\) −2.44179e25 −0.418207
\(175\) 1.22305e25 0.196113
\(176\) 2.24856e25 0.337682
\(177\) −1.51198e25 −0.212742
\(178\) −1.59408e25 −0.210223
\(179\) −1.43711e26 −1.77697 −0.888485 0.458905i \(-0.848242\pi\)
−0.888485 + 0.458905i \(0.848242\pi\)
\(180\) 1.73695e25 0.201444
\(181\) 5.76556e25 0.627390 0.313695 0.949524i \(-0.398433\pi\)
0.313695 + 0.949524i \(0.398433\pi\)
\(182\) −6.15490e24 −0.0628638
\(183\) −1.80764e25 −0.173350
\(184\) 3.51689e24 0.0316777
\(185\) −8.48495e25 −0.718082
\(186\) −1.66901e25 −0.132758
\(187\) −1.63938e26 −1.22603
\(188\) 1.22063e26 0.858553
\(189\) −8.86772e25 −0.586815
\(190\) −5.25349e25 −0.327176
\(191\) −7.50288e25 −0.439890 −0.219945 0.975512i \(-0.570588\pi\)
−0.219945 + 0.975512i \(0.570588\pi\)
\(192\) 7.12761e24 0.0393532
\(193\) −2.16639e26 −1.12675 −0.563376 0.826201i \(-0.690498\pi\)
−0.563376 + 0.826201i \(0.690498\pi\)
\(194\) −1.50669e26 −0.738419
\(195\) −2.76326e24 −0.0127651
\(196\) −4.41897e24 −0.0192476
\(197\) 4.39361e26 1.80493 0.902464 0.430766i \(-0.141757\pi\)
0.902464 + 0.430766i \(0.141757\pi\)
\(198\) 2.22010e26 0.860444
\(199\) −4.86048e26 −1.77774 −0.888870 0.458159i \(-0.848509\pi\)
−0.888870 + 0.458159i \(0.848509\pi\)
\(200\) −2.04800e25 −0.0707107
\(201\) 7.80472e24 0.0254450
\(202\) 3.89963e26 1.20083
\(203\) 6.33166e26 1.84210
\(204\) −5.19659e25 −0.142880
\(205\) −1.68095e26 −0.436904
\(206\) 2.59636e26 0.638105
\(207\) 3.47238e25 0.0807176
\(208\) 1.03064e25 0.0226662
\(209\) −6.71478e26 −1.39749
\(210\) 4.95527e25 0.0976215
\(211\) 7.27703e26 1.35739 0.678697 0.734419i \(-0.262545\pi\)
0.678697 + 0.734419i \(0.262545\pi\)
\(212\) 3.83299e26 0.677136
\(213\) 2.80748e26 0.469841
\(214\) −3.09556e26 −0.490886
\(215\) 1.03888e26 0.156143
\(216\) 1.48490e26 0.211583
\(217\) 4.32782e26 0.584767
\(218\) 1.27564e26 0.163485
\(219\) 7.32108e25 0.0890160
\(220\) −2.61767e26 −0.302032
\(221\) −7.51420e25 −0.0822946
\(222\) −3.43774e26 −0.357449
\(223\) 5.98167e26 0.590631 0.295315 0.955400i \(-0.404575\pi\)
0.295315 + 0.955400i \(0.404575\pi\)
\(224\) −1.84822e26 −0.173341
\(225\) −2.02208e26 −0.180177
\(226\) −5.00197e26 −0.423540
\(227\) −1.11932e27 −0.900856 −0.450428 0.892813i \(-0.648729\pi\)
−0.450428 + 0.892813i \(0.648729\pi\)
\(228\) −2.12849e26 −0.162862
\(229\) −1.94352e27 −1.41410 −0.707050 0.707164i \(-0.749974\pi\)
−0.707050 + 0.707164i \(0.749974\pi\)
\(230\) −4.09420e25 −0.0283334
\(231\) 6.33361e26 0.416978
\(232\) −1.06024e27 −0.664190
\(233\) 1.63857e27 0.976950 0.488475 0.872578i \(-0.337553\pi\)
0.488475 + 0.872578i \(0.337553\pi\)
\(234\) 1.01760e26 0.0577556
\(235\) −1.42100e27 −0.767913
\(236\) −6.56510e26 −0.337873
\(237\) 3.51566e26 0.172346
\(238\) 1.34750e27 0.629350
\(239\) −2.04624e27 −0.910712 −0.455356 0.890309i \(-0.650488\pi\)
−0.455356 + 0.890309i \(0.650488\pi\)
\(240\) −8.29763e25 −0.0351985
\(241\) 8.86273e26 0.358403 0.179202 0.983812i \(-0.442649\pi\)
0.179202 + 0.983812i \(0.442649\pi\)
\(242\) −1.51195e27 −0.582988
\(243\) 2.23739e27 0.822753
\(244\) −7.84887e26 −0.275311
\(245\) 5.14436e25 0.0172156
\(246\) −6.81051e26 −0.217483
\(247\) −3.07777e26 −0.0938039
\(248\) −7.24697e26 −0.210844
\(249\) 1.94626e26 0.0540640
\(250\) 2.38419e26 0.0632456
\(251\) 5.18484e27 1.31367 0.656837 0.754033i \(-0.271894\pi\)
0.656837 + 0.754033i \(0.271894\pi\)
\(252\) −1.82483e27 −0.441688
\(253\) −5.23303e26 −0.121023
\(254\) −1.49588e27 −0.330605
\(255\) 6.04962e26 0.127796
\(256\) 3.09485e26 0.0625000
\(257\) 3.40999e26 0.0658448 0.0329224 0.999458i \(-0.489519\pi\)
0.0329224 + 0.999458i \(0.489519\pi\)
\(258\) 4.20908e26 0.0777251
\(259\) 8.91420e27 1.57447
\(260\) −1.19983e26 −0.0202733
\(261\) −1.04682e28 −1.69241
\(262\) 7.44749e27 1.15224
\(263\) −1.92562e26 −0.0285154 −0.0142577 0.999898i \(-0.504539\pi\)
−0.0142577 + 0.999898i \(0.504539\pi\)
\(264\) −1.06057e27 −0.150346
\(265\) −4.46219e27 −0.605648
\(266\) 5.51926e27 0.717368
\(267\) 7.51874e26 0.0935978
\(268\) 3.38886e26 0.0404113
\(269\) 7.57249e27 0.865142 0.432571 0.901600i \(-0.357606\pi\)
0.432571 + 0.901600i \(0.357606\pi\)
\(270\) −1.72866e27 −0.189245
\(271\) 7.36490e27 0.772716 0.386358 0.922349i \(-0.373733\pi\)
0.386358 + 0.922349i \(0.373733\pi\)
\(272\) −2.25639e27 −0.226919
\(273\) 2.90306e26 0.0279888
\(274\) 2.83363e27 0.261946
\(275\) 3.04736e27 0.270146
\(276\) −1.65880e26 −0.0141039
\(277\) −7.09557e27 −0.578722 −0.289361 0.957220i \(-0.593443\pi\)
−0.289361 + 0.957220i \(0.593443\pi\)
\(278\) 9.04443e27 0.707728
\(279\) −7.15525e27 −0.537250
\(280\) 2.15161e27 0.155041
\(281\) −1.37982e28 −0.954335 −0.477167 0.878812i \(-0.658336\pi\)
−0.477167 + 0.878812i \(0.658336\pi\)
\(282\) −5.75727e27 −0.382254
\(283\) −2.58038e28 −1.64490 −0.822451 0.568836i \(-0.807394\pi\)
−0.822451 + 0.568836i \(0.807394\pi\)
\(284\) 1.21902e28 0.746193
\(285\) 2.47789e27 0.145668
\(286\) −1.53357e27 −0.0865950
\(287\) 1.76599e28 0.957959
\(288\) 3.05568e27 0.159255
\(289\) −3.51670e27 −0.176121
\(290\) 1.23428e28 0.594069
\(291\) 7.10652e27 0.328767
\(292\) 3.17886e27 0.141374
\(293\) −3.76122e28 −1.60824 −0.804121 0.594465i \(-0.797364\pi\)
−0.804121 + 0.594465i \(0.797364\pi\)
\(294\) 2.08428e26 0.00856961
\(295\) 7.64278e27 0.302203
\(296\) −1.49269e28 −0.567694
\(297\) −2.20949e28 −0.808339
\(298\) −2.75026e28 −0.968025
\(299\) −2.39860e26 −0.00812342
\(300\) 9.65971e26 0.0314825
\(301\) −1.09143e28 −0.342359
\(302\) −7.46093e27 −0.225275
\(303\) −1.83932e28 −0.534647
\(304\) −9.24203e27 −0.258655
\(305\) 9.13728e27 0.246246
\(306\) −2.22783e28 −0.578211
\(307\) 4.21582e28 1.05388 0.526940 0.849903i \(-0.323339\pi\)
0.526940 + 0.849903i \(0.323339\pi\)
\(308\) 2.75009e28 0.662238
\(309\) −1.22461e28 −0.284104
\(310\) 8.43658e27 0.188585
\(311\) 5.94875e26 0.0128139 0.00640695 0.999979i \(-0.497961\pi\)
0.00640695 + 0.999979i \(0.497961\pi\)
\(312\) −4.86118e26 −0.0100917
\(313\) −1.94352e28 −0.388892 −0.194446 0.980913i \(-0.562291\pi\)
−0.194446 + 0.980913i \(0.562291\pi\)
\(314\) 3.25889e28 0.628607
\(315\) 2.12438e28 0.395057
\(316\) 1.52652e28 0.273716
\(317\) 2.90468e28 0.502247 0.251123 0.967955i \(-0.419200\pi\)
0.251123 + 0.967955i \(0.419200\pi\)
\(318\) −1.80789e28 −0.301481
\(319\) 1.57761e29 2.53750
\(320\) −3.60288e27 −0.0559017
\(321\) 1.46007e28 0.218557
\(322\) 4.30133e27 0.0621241
\(323\) 6.73817e28 0.939102
\(324\) 2.64856e28 0.356239
\(325\) 1.39678e27 0.0181330
\(326\) −9.72872e28 −1.21914
\(327\) −6.01676e27 −0.0727887
\(328\) −2.95717e28 −0.345403
\(329\) 1.49288e29 1.68373
\(330\) 1.23466e28 0.134474
\(331\) 1.15568e27 0.0121567 0.00607836 0.999982i \(-0.498065\pi\)
0.00607836 + 0.999982i \(0.498065\pi\)
\(332\) 8.45077e27 0.0858635
\(333\) −1.47380e29 −1.44653
\(334\) −9.24342e28 −0.876493
\(335\) −3.94515e27 −0.0361450
\(336\) 8.71740e27 0.0771765
\(337\) −1.71663e29 −1.46870 −0.734350 0.678770i \(-0.762513\pi\)
−0.734350 + 0.678770i \(0.762513\pi\)
\(338\) 8.48091e28 0.701294
\(339\) 2.35926e28 0.188573
\(340\) 2.62678e28 0.202963
\(341\) 1.07833e29 0.805518
\(342\) −9.12506e28 −0.659076
\(343\) −1.45802e29 −1.01831
\(344\) 1.82761e28 0.123442
\(345\) 1.93109e27 0.0126149
\(346\) −1.63200e29 −1.03120
\(347\) 2.28248e29 1.39514 0.697571 0.716515i \(-0.254264\pi\)
0.697571 + 0.716515i \(0.254264\pi\)
\(348\) 5.00078e28 0.295717
\(349\) −2.74075e29 −1.56811 −0.784055 0.620691i \(-0.786852\pi\)
−0.784055 + 0.620691i \(0.786852\pi\)
\(350\) −2.50480e28 −0.138673
\(351\) −1.01274e28 −0.0542581
\(352\) −4.60505e28 −0.238777
\(353\) −2.35796e29 −1.18339 −0.591695 0.806162i \(-0.701541\pi\)
−0.591695 + 0.806162i \(0.701541\pi\)
\(354\) 3.09653e28 0.150431
\(355\) −1.41913e29 −0.667415
\(356\) 3.26468e28 0.148650
\(357\) −6.35567e28 −0.280206
\(358\) 2.94320e29 1.25651
\(359\) 3.64190e29 1.50571 0.752855 0.658186i \(-0.228676\pi\)
0.752855 + 0.658186i \(0.228676\pi\)
\(360\) −3.55728e28 −0.142442
\(361\) 1.81614e28 0.0704397
\(362\) −1.18079e29 −0.443632
\(363\) 7.13133e28 0.259564
\(364\) 1.26052e28 0.0444514
\(365\) −3.70068e28 −0.126448
\(366\) 3.70204e28 0.122577
\(367\) −3.48766e29 −1.11911 −0.559557 0.828792i \(-0.689029\pi\)
−0.559557 + 0.828792i \(0.689029\pi\)
\(368\) −7.20260e27 −0.0223995
\(369\) −2.91974e29 −0.880118
\(370\) 1.73772e29 0.507761
\(371\) 4.68793e29 1.32795
\(372\) 3.41814e28 0.0938742
\(373\) −1.01384e29 −0.269973 −0.134986 0.990847i \(-0.543099\pi\)
−0.134986 + 0.990847i \(0.543099\pi\)
\(374\) 3.35744e29 0.866932
\(375\) −1.12454e28 −0.0281588
\(376\) −2.49984e29 −0.607089
\(377\) 7.23107e28 0.170324
\(378\) 1.81611e29 0.414941
\(379\) −3.31120e29 −0.733896 −0.366948 0.930241i \(-0.619597\pi\)
−0.366948 + 0.930241i \(0.619597\pi\)
\(380\) 1.07591e29 0.231348
\(381\) 7.05556e28 0.147195
\(382\) 1.53659e29 0.311049
\(383\) 7.73906e29 1.52021 0.760103 0.649803i \(-0.225149\pi\)
0.760103 + 0.649803i \(0.225149\pi\)
\(384\) −1.45973e28 −0.0278269
\(385\) −3.20153e29 −0.592324
\(386\) 4.43677e29 0.796734
\(387\) 1.80448e29 0.314540
\(388\) 3.08570e29 0.522141
\(389\) −4.63657e29 −0.761687 −0.380844 0.924639i \(-0.624366\pi\)
−0.380844 + 0.924639i \(0.624366\pi\)
\(390\) 5.65916e27 0.00902629
\(391\) 5.25126e28 0.0813263
\(392\) 9.05005e27 0.0136101
\(393\) −3.51272e29 −0.513014
\(394\) −8.99811e29 −1.27628
\(395\) −1.77710e29 −0.244819
\(396\) −4.54676e29 −0.608426
\(397\) 8.34883e29 1.08526 0.542631 0.839971i \(-0.317428\pi\)
0.542631 + 0.839971i \(0.317428\pi\)
\(398\) 9.95425e29 1.25705
\(399\) −2.60324e29 −0.319394
\(400\) 4.19430e28 0.0500000
\(401\) 7.15041e29 0.828267 0.414134 0.910216i \(-0.364085\pi\)
0.414134 + 0.910216i \(0.364085\pi\)
\(402\) −1.59841e28 −0.0179923
\(403\) 4.94259e28 0.0540688
\(404\) −7.98644e29 −0.849117
\(405\) −3.08333e29 −0.318630
\(406\) −1.29672e30 −1.30256
\(407\) 2.22108e30 2.16884
\(408\) 1.06426e29 0.101031
\(409\) −9.14108e29 −0.843683 −0.421842 0.906670i \(-0.638616\pi\)
−0.421842 + 0.906670i \(0.638616\pi\)
\(410\) 3.44259e29 0.308938
\(411\) −1.33653e29 −0.116626
\(412\) −5.31735e29 −0.451208
\(413\) −8.02943e29 −0.662612
\(414\) −7.11144e28 −0.0570760
\(415\) −9.83800e28 −0.0767986
\(416\) −2.11076e28 −0.0160275
\(417\) −4.26595e29 −0.315102
\(418\) 1.37519e30 0.988176
\(419\) −8.72251e29 −0.609790 −0.304895 0.952386i \(-0.598621\pi\)
−0.304895 + 0.952386i \(0.598621\pi\)
\(420\) −1.01484e29 −0.0690288
\(421\) 1.00203e30 0.663188 0.331594 0.943422i \(-0.392414\pi\)
0.331594 + 0.943422i \(0.392414\pi\)
\(422\) −1.49034e30 −0.959822
\(423\) −2.46820e30 −1.54692
\(424\) −7.84997e29 −0.478807
\(425\) −3.05798e29 −0.181536
\(426\) −5.74971e29 −0.332228
\(427\) −9.59953e29 −0.539920
\(428\) 6.33971e29 0.347109
\(429\) 7.23330e28 0.0385547
\(430\) −2.12762e29 −0.110410
\(431\) 2.54277e30 1.28475 0.642376 0.766390i \(-0.277949\pi\)
0.642376 + 0.766390i \(0.277949\pi\)
\(432\) −3.04108e29 −0.149612
\(433\) 3.98569e30 1.90938 0.954690 0.297602i \(-0.0961869\pi\)
0.954690 + 0.297602i \(0.0961869\pi\)
\(434\) −8.86338e29 −0.413492
\(435\) −5.82168e29 −0.264498
\(436\) −2.61252e29 −0.115602
\(437\) 2.15088e29 0.0927001
\(438\) −1.49936e29 −0.0629438
\(439\) −1.67709e30 −0.685828 −0.342914 0.939367i \(-0.611414\pi\)
−0.342914 + 0.939367i \(0.611414\pi\)
\(440\) 5.36098e29 0.213569
\(441\) 8.93551e28 0.0346797
\(442\) 1.53891e29 0.0581911
\(443\) −2.50087e30 −0.921402 −0.460701 0.887555i \(-0.652402\pi\)
−0.460701 + 0.887555i \(0.652402\pi\)
\(444\) 7.04049e29 0.252754
\(445\) −3.80059e29 −0.132957
\(446\) −1.22505e30 −0.417639
\(447\) 1.29720e30 0.430994
\(448\) 3.78515e29 0.122570
\(449\) 4.01190e30 1.26624 0.633121 0.774053i \(-0.281774\pi\)
0.633121 + 0.774053i \(0.281774\pi\)
\(450\) 4.14122e29 0.127404
\(451\) 4.40018e30 1.31959
\(452\) 1.02440e30 0.299488
\(453\) 3.51906e29 0.100299
\(454\) 2.29236e30 0.637002
\(455\) −1.46744e29 −0.0397585
\(456\) 4.35915e29 0.115161
\(457\) 2.65155e30 0.683067 0.341534 0.939870i \(-0.389054\pi\)
0.341534 + 0.939870i \(0.389054\pi\)
\(458\) 3.98032e30 0.999919
\(459\) 2.21719e30 0.543197
\(460\) 8.38492e28 0.0200348
\(461\) −4.46767e29 −0.104117 −0.0520583 0.998644i \(-0.516578\pi\)
−0.0520583 + 0.998644i \(0.516578\pi\)
\(462\) −1.29712e30 −0.294848
\(463\) −6.05418e30 −1.34238 −0.671188 0.741287i \(-0.734216\pi\)
−0.671188 + 0.741287i \(0.734216\pi\)
\(464\) 2.17137e30 0.469653
\(465\) −3.97924e29 −0.0839637
\(466\) −3.35580e30 −0.690808
\(467\) −3.71792e30 −0.746716 −0.373358 0.927687i \(-0.621794\pi\)
−0.373358 + 0.927687i \(0.621794\pi\)
\(468\) −2.08404e29 −0.0408394
\(469\) 4.14473e29 0.0792517
\(470\) 2.91020e30 0.542997
\(471\) −1.53711e30 −0.279875
\(472\) 1.34453e30 0.238912
\(473\) −2.71943e30 −0.471601
\(474\) −7.20006e29 −0.121867
\(475\) −1.25253e30 −0.206924
\(476\) −2.75967e30 −0.445018
\(477\) −7.75062e30 −1.22004
\(478\) 4.19070e30 0.643971
\(479\) 1.06439e30 0.159677 0.0798387 0.996808i \(-0.474559\pi\)
0.0798387 + 0.996808i \(0.474559\pi\)
\(480\) 1.69935e29 0.0248891
\(481\) 1.01805e30 0.145579
\(482\) −1.81509e30 −0.253429
\(483\) −2.02879e29 −0.0276595
\(484\) 3.09647e30 0.412235
\(485\) −3.59222e30 −0.467017
\(486\) −4.58217e30 −0.581774
\(487\) −1.04192e31 −1.29197 −0.645985 0.763350i \(-0.723553\pi\)
−0.645985 + 0.763350i \(0.723553\pi\)
\(488\) 1.60745e30 0.194674
\(489\) 4.58870e30 0.542798
\(490\) −1.05356e29 −0.0121732
\(491\) −1.39431e31 −1.57370 −0.786850 0.617145i \(-0.788289\pi\)
−0.786850 + 0.617145i \(0.788289\pi\)
\(492\) 1.39479e30 0.153784
\(493\) −1.58310e31 −1.70518
\(494\) 6.30327e29 0.0663293
\(495\) 5.29313e30 0.544193
\(496\) 1.48418e30 0.149089
\(497\) 1.49092e31 1.46338
\(498\) −3.98594e29 −0.0382290
\(499\) 7.97788e30 0.747707 0.373853 0.927488i \(-0.378036\pi\)
0.373853 + 0.927488i \(0.378036\pi\)
\(500\) −4.88281e29 −0.0447214
\(501\) 4.35980e30 0.390241
\(502\) −1.06186e31 −0.928908
\(503\) −1.42305e31 −1.21671 −0.608356 0.793664i \(-0.708171\pi\)
−0.608356 + 0.793664i \(0.708171\pi\)
\(504\) 3.73724e30 0.312320
\(505\) 9.29744e30 0.759473
\(506\) 1.07173e30 0.0855761
\(507\) −4.00015e30 −0.312237
\(508\) 3.06357e30 0.233773
\(509\) 1.65075e31 1.23148 0.615738 0.787951i \(-0.288858\pi\)
0.615738 + 0.787951i \(0.288858\pi\)
\(510\) −1.23896e30 −0.0903652
\(511\) 3.88789e30 0.277252
\(512\) −6.33825e29 −0.0441942
\(513\) 9.08147e30 0.619165
\(514\) −6.98365e29 −0.0465593
\(515\) 6.19021e30 0.403573
\(516\) −8.62021e29 −0.0549599
\(517\) 3.71969e31 2.31935
\(518\) −1.82563e31 −1.11332
\(519\) 7.69756e30 0.459123
\(520\) 2.45724e29 0.0143354
\(521\) −7.10111e30 −0.405221 −0.202611 0.979259i \(-0.564943\pi\)
−0.202611 + 0.979259i \(0.564943\pi\)
\(522\) 2.14389e31 1.19672
\(523\) −4.37438e30 −0.238862 −0.119431 0.992843i \(-0.538107\pi\)
−0.119431 + 0.992843i \(0.538107\pi\)
\(524\) −1.52525e31 −0.814760
\(525\) 1.18143e30 0.0617412
\(526\) 3.94366e29 0.0201634
\(527\) −1.08208e31 −0.541301
\(528\) 2.17204e30 0.106311
\(529\) −2.07128e31 −0.991972
\(530\) 9.13857e30 0.428258
\(531\) 1.32752e31 0.608769
\(532\) −1.13034e31 −0.507256
\(533\) 2.01685e30 0.0885750
\(534\) −1.53984e30 −0.0661836
\(535\) −7.38039e30 −0.310464
\(536\) −6.94038e29 −0.0285751
\(537\) −1.38821e31 −0.559435
\(538\) −1.55085e31 −0.611748
\(539\) −1.34662e30 −0.0519966
\(540\) 3.54029e30 0.133817
\(541\) 4.49548e31 1.66344 0.831720 0.555196i \(-0.187357\pi\)
0.831720 + 0.555196i \(0.187357\pi\)
\(542\) −1.50833e31 −0.546393
\(543\) 5.56936e30 0.197518
\(544\) 4.62109e30 0.160456
\(545\) 3.04137e30 0.103397
\(546\) −5.94546e29 −0.0197911
\(547\) 2.88414e31 0.940073 0.470037 0.882647i \(-0.344241\pi\)
0.470037 + 0.882647i \(0.344241\pi\)
\(548\) −5.80328e30 −0.185224
\(549\) 1.58710e31 0.496047
\(550\) −6.24100e30 −0.191022
\(551\) −6.48428e31 −1.94365
\(552\) 3.39721e29 0.00997295
\(553\) 1.86701e31 0.536793
\(554\) 1.45317e31 0.409218
\(555\) −8.19621e30 −0.226070
\(556\) −1.85230e31 −0.500439
\(557\) −3.57987e31 −0.947399 −0.473699 0.880687i \(-0.657082\pi\)
−0.473699 + 0.880687i \(0.657082\pi\)
\(558\) 1.46539e31 0.379893
\(559\) −1.24647e30 −0.0316553
\(560\) −4.40649e30 −0.109630
\(561\) −1.58359e31 −0.385984
\(562\) 2.82588e31 0.674816
\(563\) −1.08547e31 −0.253963 −0.126981 0.991905i \(-0.540529\pi\)
−0.126981 + 0.991905i \(0.540529\pi\)
\(564\) 1.17909e31 0.270294
\(565\) −1.19256e31 −0.267870
\(566\) 5.28462e31 1.16312
\(567\) 3.23931e31 0.698631
\(568\) −2.49656e31 −0.527638
\(569\) −6.35163e31 −1.31551 −0.657755 0.753232i \(-0.728494\pi\)
−0.657755 + 0.753232i \(0.728494\pi\)
\(570\) −5.07471e30 −0.103003
\(571\) −5.61161e31 −1.11628 −0.558139 0.829748i \(-0.688484\pi\)
−0.558139 + 0.829748i \(0.688484\pi\)
\(572\) 3.14074e30 0.0612319
\(573\) −7.24756e30 −0.138488
\(574\) −3.61675e31 −0.677380
\(575\) −9.76134e29 −0.0179196
\(576\) −6.25803e30 −0.112611
\(577\) −4.70124e31 −0.829260 −0.414630 0.909990i \(-0.636089\pi\)
−0.414630 + 0.909990i \(0.636089\pi\)
\(578\) 7.20221e30 0.124536
\(579\) −2.09267e31 −0.354730
\(580\) −2.52781e31 −0.420071
\(581\) 1.03357e31 0.168389
\(582\) −1.45542e31 −0.232473
\(583\) 1.16805e32 1.82925
\(584\) −6.51030e30 −0.0999662
\(585\) 2.42614e30 0.0365278
\(586\) 7.70299e31 1.13720
\(587\) −4.84136e31 −0.700856 −0.350428 0.936590i \(-0.613964\pi\)
−0.350428 + 0.936590i \(0.613964\pi\)
\(588\) −4.26860e29 −0.00605963
\(589\) −4.43214e31 −0.617004
\(590\) −1.56524e31 −0.213690
\(591\) 4.24410e31 0.568237
\(592\) 3.05702e31 0.401420
\(593\) 1.51819e32 1.95522 0.977611 0.210421i \(-0.0674836\pi\)
0.977611 + 0.210421i \(0.0674836\pi\)
\(594\) 4.52504e31 0.571582
\(595\) 3.21268e31 0.398036
\(596\) 5.63253e31 0.684497
\(597\) −4.69508e31 −0.559678
\(598\) 4.91233e29 0.00574412
\(599\) −8.36725e31 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(600\) −1.97831e30 −0.0222615
\(601\) −1.63771e31 −0.180792 −0.0903962 0.995906i \(-0.528813\pi\)
−0.0903962 + 0.995906i \(0.528813\pi\)
\(602\) 2.23525e31 0.242085
\(603\) −6.85254e30 −0.0728119
\(604\) 1.52800e31 0.159294
\(605\) −3.60476e31 −0.368714
\(606\) 3.76693e31 0.378052
\(607\) 3.14222e31 0.309433 0.154717 0.987959i \(-0.450554\pi\)
0.154717 + 0.987959i \(0.450554\pi\)
\(608\) 1.89277e31 0.182897
\(609\) 6.11620e31 0.579939
\(610\) −1.87132e31 −0.174122
\(611\) 1.70495e31 0.155681
\(612\) 4.56260e31 0.408857
\(613\) 8.36754e31 0.735872 0.367936 0.929851i \(-0.380064\pi\)
0.367936 + 0.929851i \(0.380064\pi\)
\(614\) −8.63401e31 −0.745206
\(615\) −1.62375e31 −0.137549
\(616\) −5.63219e31 −0.468273
\(617\) −5.63274e31 −0.459664 −0.229832 0.973230i \(-0.573818\pi\)
−0.229832 + 0.973230i \(0.573818\pi\)
\(618\) 2.50801e31 0.200892
\(619\) 1.71215e32 1.34617 0.673085 0.739565i \(-0.264969\pi\)
0.673085 + 0.739565i \(0.264969\pi\)
\(620\) −1.72781e31 −0.133350
\(621\) 7.07747e30 0.0536197
\(622\) −1.21830e30 −0.00906079
\(623\) 3.99286e31 0.291522
\(624\) 9.95570e29 0.00713591
\(625\) 5.68434e30 0.0400000
\(626\) 3.98033e31 0.274988
\(627\) −6.48628e31 −0.439966
\(628\) −6.67421e31 −0.444492
\(629\) −2.22881e32 −1.45744
\(630\) −4.35072e31 −0.279348
\(631\) 1.89962e32 1.19765 0.598823 0.800882i \(-0.295635\pi\)
0.598823 + 0.800882i \(0.295635\pi\)
\(632\) −3.12631e31 −0.193547
\(633\) 7.02939e31 0.427342
\(634\) −5.94879e31 −0.355142
\(635\) −3.56646e31 −0.209093
\(636\) 3.70256e31 0.213179
\(637\) −6.17233e29 −0.00349016
\(638\) −3.23094e32 −1.79428
\(639\) −2.46496e32 −1.34447
\(640\) 7.37870e30 0.0395285
\(641\) −3.21032e32 −1.68920 −0.844600 0.535398i \(-0.820162\pi\)
−0.844600 + 0.535398i \(0.820162\pi\)
\(642\) −2.99022e31 −0.154543
\(643\) 1.99375e32 1.01215 0.506074 0.862490i \(-0.331096\pi\)
0.506074 + 0.862490i \(0.331096\pi\)
\(644\) −8.80912e30 −0.0439283
\(645\) 1.00352e31 0.0491576
\(646\) −1.37998e32 −0.664046
\(647\) 2.96466e32 1.40144 0.700721 0.713435i \(-0.252862\pi\)
0.700721 + 0.713435i \(0.252862\pi\)
\(648\) −5.42425e31 −0.251899
\(649\) −2.00063e32 −0.912750
\(650\) −2.86061e30 −0.0128220
\(651\) 4.18055e31 0.184099
\(652\) 1.99244e32 0.862062
\(653\) −2.49597e32 −1.06106 −0.530528 0.847668i \(-0.678006\pi\)
−0.530528 + 0.847668i \(0.678006\pi\)
\(654\) 1.23223e31 0.0514694
\(655\) 1.77562e32 0.728744
\(656\) 6.05627e31 0.244237
\(657\) −6.42791e31 −0.254723
\(658\) −3.05742e32 −1.19058
\(659\) 2.96418e32 1.13428 0.567142 0.823620i \(-0.308049\pi\)
0.567142 + 0.823620i \(0.308049\pi\)
\(660\) −2.52859e31 −0.0950874
\(661\) −1.53911e32 −0.568793 −0.284396 0.958707i \(-0.591793\pi\)
−0.284396 + 0.958707i \(0.591793\pi\)
\(662\) −2.36684e30 −0.00859610
\(663\) −7.25849e30 −0.0259084
\(664\) −1.73072e31 −0.0607147
\(665\) 1.31589e32 0.453703
\(666\) 3.01833e32 1.02285
\(667\) −5.05340e31 −0.168320
\(668\) 1.89305e32 0.619774
\(669\) 5.77811e31 0.185946
\(670\) 8.07966e30 0.0255584
\(671\) −2.39184e32 −0.743742
\(672\) −1.78532e31 −0.0545720
\(673\) 2.36902e32 0.711863 0.355931 0.934512i \(-0.384164\pi\)
0.355931 + 0.934512i \(0.384164\pi\)
\(674\) 3.51566e32 1.03853
\(675\) −4.12144e31 −0.119689
\(676\) −1.73689e32 −0.495890
\(677\) 5.52473e32 1.55075 0.775375 0.631501i \(-0.217561\pi\)
0.775375 + 0.631501i \(0.217561\pi\)
\(678\) −4.83176e31 −0.133341
\(679\) 3.77395e32 1.02399
\(680\) −5.37965e31 −0.143516
\(681\) −1.08123e32 −0.283612
\(682\) −2.20841e32 −0.569587
\(683\) 2.02178e32 0.512737 0.256369 0.966579i \(-0.417474\pi\)
0.256369 + 0.966579i \(0.417474\pi\)
\(684\) 1.86881e32 0.466037
\(685\) 6.75591e31 0.165669
\(686\) 2.98602e32 0.720054
\(687\) −1.87738e32 −0.445194
\(688\) −3.74295e31 −0.0872864
\(689\) 5.35385e31 0.122785
\(690\) −3.95488e30 −0.00892008
\(691\) 7.61688e31 0.168958 0.0844791 0.996425i \(-0.473077\pi\)
0.0844791 + 0.996425i \(0.473077\pi\)
\(692\) 3.34233e32 0.729171
\(693\) −5.56091e32 −1.19320
\(694\) −4.67453e32 −0.986515
\(695\) 2.15636e32 0.447606
\(696\) −1.02416e32 −0.209104
\(697\) −4.41550e32 −0.886754
\(698\) 5.61305e32 1.10882
\(699\) 1.58281e32 0.307569
\(700\) 5.12983e31 0.0980564
\(701\) 1.14010e31 0.0214382 0.0107191 0.999943i \(-0.496588\pi\)
0.0107191 + 0.999943i \(0.496588\pi\)
\(702\) 2.07409e31 0.0383663
\(703\) −9.12907e32 −1.66127
\(704\) 9.43114e31 0.168841
\(705\) −1.37264e32 −0.241758
\(706\) 4.82911e32 0.836783
\(707\) −9.76779e32 −1.66523
\(708\) −6.34170e31 −0.106371
\(709\) 1.01717e33 1.67865 0.839327 0.543627i \(-0.182949\pi\)
0.839327 + 0.543627i \(0.182949\pi\)
\(710\) 2.90638e32 0.471934
\(711\) −3.08674e32 −0.493174
\(712\) −6.68607e31 −0.105112
\(713\) −3.45410e31 −0.0534326
\(714\) 1.30164e32 0.198135
\(715\) −3.65631e31 −0.0547675
\(716\) −6.02768e32 −0.888485
\(717\) −1.97661e32 −0.286715
\(718\) −7.45860e32 −1.06470
\(719\) 1.86740e32 0.262335 0.131167 0.991360i \(-0.458127\pi\)
0.131167 + 0.991360i \(0.458127\pi\)
\(720\) 7.28531e31 0.100722
\(721\) −6.50337e32 −0.884877
\(722\) −3.71946e31 −0.0498084
\(723\) 8.56114e31 0.112834
\(724\) 2.41825e32 0.313695
\(725\) 2.94276e32 0.375723
\(726\) −1.46050e32 −0.183539
\(727\) 4.12802e32 0.510618 0.255309 0.966860i \(-0.417823\pi\)
0.255309 + 0.966860i \(0.417823\pi\)
\(728\) −2.58155e31 −0.0314319
\(729\) −3.78357e32 −0.453456
\(730\) 7.57899e31 0.0894125
\(731\) 2.72890e32 0.316912
\(732\) −7.58177e31 −0.0866749
\(733\) −1.10621e33 −1.24492 −0.622462 0.782650i \(-0.713868\pi\)
−0.622462 + 0.782650i \(0.713868\pi\)
\(734\) 7.14273e32 0.791334
\(735\) 4.96930e30 0.00541989
\(736\) 1.47509e31 0.0158389
\(737\) 1.03271e32 0.109170
\(738\) 5.97962e32 0.622337
\(739\) −3.81239e31 −0.0390649 −0.0195324 0.999809i \(-0.506218\pi\)
−0.0195324 + 0.999809i \(0.506218\pi\)
\(740\) −3.55884e32 −0.359041
\(741\) −2.97303e31 −0.0295318
\(742\) −9.60089e32 −0.939002
\(743\) 8.34595e32 0.803720 0.401860 0.915701i \(-0.368364\pi\)
0.401860 + 0.915701i \(0.368364\pi\)
\(744\) −7.00036e31 −0.0663791
\(745\) −6.55713e32 −0.612233
\(746\) 2.07635e32 0.190899
\(747\) −1.70881e32 −0.154706
\(748\) −6.87604e32 −0.613014
\(749\) 7.75376e32 0.680725
\(750\) 2.30305e31 0.0199113
\(751\) −4.78669e32 −0.407545 −0.203773 0.979018i \(-0.565320\pi\)
−0.203773 + 0.979018i \(0.565320\pi\)
\(752\) 5.11967e32 0.429277
\(753\) 5.00840e32 0.413578
\(754\) −1.48092e32 −0.120438
\(755\) −1.77882e32 −0.142476
\(756\) −3.71939e32 −0.293407
\(757\) 8.03371e32 0.624185 0.312093 0.950052i \(-0.398970\pi\)
0.312093 + 0.950052i \(0.398970\pi\)
\(758\) 6.78134e32 0.518943
\(759\) −5.05496e31 −0.0381011
\(760\) −2.20347e32 −0.163588
\(761\) 2.20093e33 1.60947 0.804733 0.593636i \(-0.202308\pi\)
0.804733 + 0.593636i \(0.202308\pi\)
\(762\) −1.44498e32 −0.104083
\(763\) −3.19523e32 −0.226710
\(764\) −3.14693e32 −0.219945
\(765\) −5.31157e32 −0.365693
\(766\) −1.58496e33 −1.07495
\(767\) −9.17001e31 −0.0612665
\(768\) 2.98953e31 0.0196766
\(769\) 1.27642e33 0.827640 0.413820 0.910359i \(-0.364194\pi\)
0.413820 + 0.910359i \(0.364194\pi\)
\(770\) 6.55673e32 0.418836
\(771\) 3.29395e31 0.0207296
\(772\) −9.08651e32 −0.563376
\(773\) 7.13411e32 0.435789 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(774\) −3.69557e32 −0.222413
\(775\) 2.01144e32 0.119272
\(776\) −6.31950e32 −0.369210
\(777\) 8.61085e32 0.495684
\(778\) 9.49570e32 0.538594
\(779\) −1.80856e33 −1.01077
\(780\) −1.15900e31 −0.00638255
\(781\) 3.71481e33 2.01581
\(782\) −1.07546e32 −0.0575064
\(783\) −2.13365e33 −1.12425
\(784\) −1.85345e31 −0.00962379
\(785\) 7.76980e32 0.397566
\(786\) 7.19405e32 0.362756
\(787\) 3.74186e33 1.85942 0.929711 0.368290i \(-0.120057\pi\)
0.929711 + 0.368290i \(0.120057\pi\)
\(788\) 1.84281e33 0.902464
\(789\) −1.86009e31 −0.00897736
\(790\) 3.63951e32 0.173113
\(791\) 1.25289e33 0.587334
\(792\) 9.31177e32 0.430222
\(793\) −1.09631e32 −0.0499222
\(794\) −1.70984e33 −0.767396
\(795\) −4.31035e32 −0.190673
\(796\) −2.03863e33 −0.888870
\(797\) −2.09675e33 −0.901106 −0.450553 0.892750i \(-0.648773\pi\)
−0.450553 + 0.892750i \(0.648773\pi\)
\(798\) 5.33144e32 0.225845
\(799\) −3.73265e33 −1.55858
\(800\) −8.58993e31 −0.0353553
\(801\) −6.60145e32 −0.267834
\(802\) −1.46440e33 −0.585673
\(803\) 9.68714e32 0.381915
\(804\) 3.27354e31 0.0127225
\(805\) 1.02552e32 0.0392907
\(806\) −1.01224e32 −0.0382324
\(807\) 7.31480e32 0.272369
\(808\) 1.63562e33 0.600416
\(809\) −3.43370e33 −1.24267 −0.621334 0.783546i \(-0.713409\pi\)
−0.621334 + 0.783546i \(0.713409\pi\)
\(810\) 6.31466e32 0.225306
\(811\) 7.84005e32 0.275790 0.137895 0.990447i \(-0.455966\pi\)
0.137895 + 0.990447i \(0.455966\pi\)
\(812\) 2.65569e33 0.921050
\(813\) 7.11428e32 0.243270
\(814\) −4.54876e33 −1.53360
\(815\) −2.31951e33 −0.771052
\(816\) −2.17961e32 −0.0714400
\(817\) 1.11774e33 0.361233
\(818\) 1.87209e33 0.596574
\(819\) −2.54888e32 −0.0800912
\(820\) −7.05043e32 −0.218452
\(821\) −5.68448e33 −1.73678 −0.868389 0.495884i \(-0.834844\pi\)
−0.868389 + 0.495884i \(0.834844\pi\)
\(822\) 2.73721e32 0.0824673
\(823\) −2.94087e33 −0.873730 −0.436865 0.899527i \(-0.643911\pi\)
−0.436865 + 0.899527i \(0.643911\pi\)
\(824\) 1.08899e33 0.319053
\(825\) 2.94366e32 0.0850487
\(826\) 1.64443e33 0.468537
\(827\) −5.39861e33 −1.51694 −0.758471 0.651707i \(-0.774053\pi\)
−0.758471 + 0.651707i \(0.774053\pi\)
\(828\) 1.45642e32 0.0403588
\(829\) −1.55567e33 −0.425148 −0.212574 0.977145i \(-0.568185\pi\)
−0.212574 + 0.977145i \(0.568185\pi\)
\(830\) 2.01482e32 0.0543048
\(831\) −6.85411e32 −0.182196
\(832\) 4.32283e31 0.0113331
\(833\) 1.35131e32 0.0349412
\(834\) 8.73666e32 0.222811
\(835\) −2.20380e33 −0.554343
\(836\) −2.81638e33 −0.698746
\(837\) −1.45839e33 −0.356888
\(838\) 1.78637e33 0.431187
\(839\) −1.92891e33 −0.459249 −0.229625 0.973279i \(-0.573750\pi\)
−0.229625 + 0.973279i \(0.573750\pi\)
\(840\) 2.07839e32 0.0488107
\(841\) 1.09178e34 2.52919
\(842\) −2.05216e33 −0.468945
\(843\) −1.33287e33 −0.300449
\(844\) 3.05221e33 0.678697
\(845\) 2.02201e33 0.443537
\(846\) 5.05488e33 1.09383
\(847\) 3.78713e33 0.808445
\(848\) 1.60767e33 0.338568
\(849\) −2.49257e33 −0.517857
\(850\) 6.26274e32 0.128365
\(851\) −7.11456e32 −0.143866
\(852\) 1.17754e33 0.234920
\(853\) 5.61734e33 1.10565 0.552824 0.833298i \(-0.313550\pi\)
0.552824 + 0.833298i \(0.313550\pi\)
\(854\) 1.96598e33 0.381781
\(855\) −2.17558e33 −0.416836
\(856\) −1.29837e33 −0.245443
\(857\) 7.42776e33 1.38541 0.692705 0.721221i \(-0.256419\pi\)
0.692705 + 0.721221i \(0.256419\pi\)
\(858\) −1.48138e32 −0.0272623
\(859\) 4.35697e33 0.791158 0.395579 0.918432i \(-0.370544\pi\)
0.395579 + 0.918432i \(0.370544\pi\)
\(860\) 4.35736e32 0.0780713
\(861\) 1.70590e33 0.301590
\(862\) −5.20760e33 −0.908457
\(863\) 3.05708e33 0.526239 0.263119 0.964763i \(-0.415249\pi\)
0.263119 + 0.964763i \(0.415249\pi\)
\(864\) 6.22814e32 0.105791
\(865\) −3.89098e33 −0.652190
\(866\) −8.16269e33 −1.35014
\(867\) −3.39703e32 −0.0554472
\(868\) 1.81522e33 0.292383
\(869\) 4.65186e33 0.739434
\(870\) 1.19228e33 0.187028
\(871\) 4.73349e31 0.00732778
\(872\) 5.35043e32 0.0817427
\(873\) −6.23952e33 −0.940779
\(874\) −4.40501e32 −0.0655489
\(875\) −5.97191e32 −0.0877043
\(876\) 3.07068e32 0.0445080
\(877\) 3.83111e33 0.548061 0.274031 0.961721i \(-0.411643\pi\)
0.274031 + 0.961721i \(0.411643\pi\)
\(878\) 3.43469e33 0.484953
\(879\) −3.63323e33 −0.506315
\(880\) −1.09793e33 −0.151016
\(881\) −3.46831e33 −0.470864 −0.235432 0.971891i \(-0.575650\pi\)
−0.235432 + 0.971891i \(0.575650\pi\)
\(882\) −1.82999e32 −0.0245223
\(883\) 4.45714e33 0.589533 0.294767 0.955569i \(-0.404758\pi\)
0.294767 + 0.955569i \(0.404758\pi\)
\(884\) −3.15168e32 −0.0411473
\(885\) 7.38271e32 0.0951410
\(886\) 5.12179e33 0.651529
\(887\) −6.02507e33 −0.756555 −0.378278 0.925692i \(-0.623484\pi\)
−0.378278 + 0.925692i \(0.623484\pi\)
\(888\) −1.44189e33 −0.178724
\(889\) 3.74689e33 0.458459
\(890\) 7.78361e32 0.0940148
\(891\) 8.07112e33 0.962366
\(892\) 2.50889e33 0.295315
\(893\) −1.52887e34 −1.77655
\(894\) −2.65667e33 −0.304759
\(895\) 7.01714e33 0.794685
\(896\) −7.75198e32 −0.0866704
\(897\) −2.31697e31 −0.00255746
\(898\) −8.21636e33 −0.895368
\(899\) 1.04131e34 1.12033
\(900\) −8.48122e32 −0.0900885
\(901\) −1.17212e34 −1.22924
\(902\) −9.01156e33 −0.933093
\(903\) −1.05429e33 −0.107783
\(904\) −2.09798e33 −0.211770
\(905\) −2.81521e33 −0.280577
\(906\) −7.20704e32 −0.0709223
\(907\) −1.36671e34 −1.32798 −0.663992 0.747740i \(-0.731139\pi\)
−0.663992 + 0.747740i \(0.731139\pi\)
\(908\) −4.69475e33 −0.450428
\(909\) 1.61492e34 1.52991
\(910\) 3.00532e32 0.0281135
\(911\) −3.04666e33 −0.281425 −0.140713 0.990050i \(-0.544939\pi\)
−0.140713 + 0.990050i \(0.544939\pi\)
\(912\) −8.92753e32 −0.0814312
\(913\) 2.57526e33 0.231957
\(914\) −5.43037e33 −0.483001
\(915\) 8.82635e32 0.0775244
\(916\) −8.15169e33 −0.707050
\(917\) −1.86545e34 −1.59785
\(918\) −4.54081e33 −0.384098
\(919\) 1.15749e34 0.966914 0.483457 0.875368i \(-0.339381\pi\)
0.483457 + 0.875368i \(0.339381\pi\)
\(920\) −1.71723e32 −0.0141667
\(921\) 4.07236e33 0.331788
\(922\) 9.14978e32 0.0736216
\(923\) 1.70271e33 0.135307
\(924\) 2.65651e33 0.208489
\(925\) 4.14304e33 0.321136
\(926\) 1.23990e34 0.949203
\(927\) 1.07521e34 0.812974
\(928\) −4.44697e33 −0.332095
\(929\) −1.30644e34 −0.963625 −0.481813 0.876274i \(-0.660021\pi\)
−0.481813 + 0.876274i \(0.660021\pi\)
\(930\) 8.14949e32 0.0593713
\(931\) 5.53489e32 0.0398279
\(932\) 6.87267e33 0.488475
\(933\) 5.74632e31 0.00403414
\(934\) 7.61429e33 0.528008
\(935\) 8.00477e33 0.548296
\(936\) 4.26812e32 0.0288778
\(937\) 5.31518e33 0.355233 0.177616 0.984100i \(-0.443161\pi\)
0.177616 + 0.984100i \(0.443161\pi\)
\(938\) −8.48841e32 −0.0560394
\(939\) −1.87738e33 −0.122433
\(940\) −5.96009e33 −0.383957
\(941\) −2.68773e34 −1.71043 −0.855215 0.518273i \(-0.826575\pi\)
−0.855215 + 0.518273i \(0.826575\pi\)
\(942\) 3.14799e33 0.197901
\(943\) −1.40947e33 −0.0875327
\(944\) −2.75360e33 −0.168936
\(945\) 4.32994e33 0.262432
\(946\) 5.56939e33 0.333472
\(947\) 2.30574e34 1.36391 0.681954 0.731395i \(-0.261130\pi\)
0.681954 + 0.731395i \(0.261130\pi\)
\(948\) 1.47457e33 0.0861728
\(949\) 4.44017e32 0.0256353
\(950\) 2.56518e33 0.146317
\(951\) 2.80584e33 0.158120
\(952\) 5.65181e33 0.314675
\(953\) 2.81392e33 0.154790 0.0773951 0.997000i \(-0.475340\pi\)
0.0773951 + 0.997000i \(0.475340\pi\)
\(954\) 1.58733e34 0.862700
\(955\) 3.66351e33 0.196725
\(956\) −8.58256e33 −0.455356
\(957\) 1.52392e34 0.798868
\(958\) −2.17987e33 −0.112909
\(959\) −7.09769e33 −0.363248
\(960\) −3.48028e32 −0.0175993
\(961\) −1.28957e34 −0.644357
\(962\) −2.08496e33 −0.102940
\(963\) −1.28194e34 −0.625411
\(964\) 3.71730e33 0.179202
\(965\) 1.05781e34 0.503899
\(966\) 4.15495e32 0.0195582
\(967\) −6.80922e33 −0.316733 −0.158366 0.987380i \(-0.550623\pi\)
−0.158366 + 0.987380i \(0.550623\pi\)
\(968\) −6.34157e33 −0.291494
\(969\) 6.50887e33 0.295653
\(970\) 7.35687e33 0.330231
\(971\) −1.01372e34 −0.449672 −0.224836 0.974397i \(-0.572185\pi\)
−0.224836 + 0.974397i \(0.572185\pi\)
\(972\) 9.38429e33 0.411376
\(973\) −2.26545e34 −0.981425
\(974\) 2.13386e34 0.913561
\(975\) 1.34925e32 0.00570872
\(976\) −3.29205e33 −0.137656
\(977\) −2.44303e34 −1.00958 −0.504791 0.863241i \(-0.668431\pi\)
−0.504791 + 0.863241i \(0.668431\pi\)
\(978\) −9.39766e33 −0.383816
\(979\) 9.94868e33 0.401573
\(980\) 2.15770e32 0.00860778
\(981\) 5.28271e33 0.208288
\(982\) 2.85554e34 1.11277
\(983\) 2.69854e34 1.03935 0.519677 0.854363i \(-0.326052\pi\)
0.519677 + 0.854363i \(0.326052\pi\)
\(984\) −2.85653e33 −0.108742
\(985\) −2.14532e34 −0.807188
\(986\) 3.24219e34 1.20574
\(987\) 1.44208e34 0.530081
\(988\) −1.29091e33 −0.0469019
\(989\) 8.71090e32 0.0312828
\(990\) −1.08403e34 −0.384802
\(991\) 7.07919e33 0.248391 0.124196 0.992258i \(-0.460365\pi\)
0.124196 + 0.992258i \(0.460365\pi\)
\(992\) −3.03960e33 −0.105422
\(993\) 1.11636e32 0.00382724
\(994\) −3.05341e34 −1.03477
\(995\) 2.37328e34 0.795030
\(996\) 8.16320e32 0.0270320
\(997\) −1.40997e34 −0.461545 −0.230773 0.973008i \(-0.574125\pi\)
−0.230773 + 0.973008i \(0.574125\pi\)
\(998\) −1.63387e34 −0.528708
\(999\) −3.00392e34 −0.960914
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.24.a.b.1.1 2
5.2 odd 4 50.24.b.b.49.2 4
5.3 odd 4 50.24.b.b.49.3 4
5.4 even 2 50.24.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.24.a.b.1.1 2 1.1 even 1 trivial
50.24.a.c.1.2 2 5.4 even 2
50.24.b.b.49.2 4 5.2 odd 4
50.24.b.b.49.3 4 5.3 odd 4