Properties

Label 10.24.a
Level $10$
Weight $24$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $4$
Sturm bound $36$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(36\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{24}(\Gamma_0(10))\).

Total New Old
Modular forms 37 9 28
Cusp forms 33 9 24
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(5\)
Minus space\(-\)\(4\)

Trace form

\( 9 q + 2048 q^{2} + 346108 q^{3} + 37748736 q^{4} + 48828125 q^{5} - 2027167744 q^{6} - 8876639496 q^{7} + 8589934592 q^{8} + 273896693533 q^{9} + 100000000000 q^{10} - 42346698492 q^{11} + 1451682168832 q^{12}+ \cdots - 58\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{24}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.24.a.a 10.a 1.a $2$ $33.520$ \(\Q(\sqrt{219241}) \) None 10.24.a.a \(-4096\) \(-18516\) \(97656250\) \(-4415735108\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{11}q^{2}+(-9258-17\beta )q^{3}+2^{22}q^{4}+\cdots\)
10.24.a.b 10.a 1.a $2$ $33.520$ \(\Q(\sqrt{117349}) \) None 10.24.a.b \(-4096\) \(686484\) \(-97656250\) \(-3529595108\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{11}q^{2}+(343242-3\beta )q^{3}+2^{22}q^{4}+\cdots\)
10.24.a.c 10.a 1.a $2$ $33.520$ \(\Q(\sqrt{1492261}) \) None 10.24.a.c \(4096\) \(-91884\) \(-97656250\) \(2146058908\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{11}q^{2}+(-45942-\beta )q^{3}+2^{22}q^{4}+\cdots\)
10.24.a.d 10.a 1.a $3$ $33.520$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 10.24.a.d \(6144\) \(-229976\) \(146484375\) \(-3077368188\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{11}q^{2}+(-76659-\beta _{1})q^{3}+2^{22}q^{4}+\cdots\)

Decomposition of \(S_{24}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{24}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{24}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{24}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{24}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)