Defining parameters
Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 24 \) |
Character orbit: | \([\chi]\) | \(=\) | 10.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{24}(\Gamma_0(10))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 37 | 9 | 28 |
Cusp forms | 33 | 9 | 24 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(5\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{24}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
10.24.a.a | $2$ | $33.520$ | \(\Q(\sqrt{219241}) \) | None | \(-4096\) | \(-18516\) | \(97656250\) | \(-4415735108\) | $+$ | $-$ | \(q-2^{11}q^{2}+(-9258-17\beta )q^{3}+2^{22}q^{4}+\cdots\) | |
10.24.a.b | $2$ | $33.520$ | \(\Q(\sqrt{117349}) \) | None | \(-4096\) | \(686484\) | \(-97656250\) | \(-3529595108\) | $+$ | $+$ | \(q-2^{11}q^{2}+(343242-3\beta )q^{3}+2^{22}q^{4}+\cdots\) | |
10.24.a.c | $2$ | $33.520$ | \(\Q(\sqrt{1492261}) \) | None | \(4096\) | \(-91884\) | \(-97656250\) | \(2146058908\) | $-$ | $+$ | \(q+2^{11}q^{2}+(-45942-\beta )q^{3}+2^{22}q^{4}+\cdots\) | |
10.24.a.d | $3$ | $33.520$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(6144\) | \(-229976\) | \(146484375\) | \(-3077368188\) | $-$ | $-$ | \(q+2^{11}q^{2}+(-76659-\beta _{1})q^{3}+2^{22}q^{4}+\cdots\) |
Decomposition of \(S_{24}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces
\( S_{24}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{24}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{24}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{24}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)