Properties

Label 10.24
Level 10
Weight 24
Dimension 21
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 144
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 24 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(144\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{24}(\Gamma_1(10))\).

Total New Old
Modular forms 73 21 52
Cusp forms 65 21 44
Eisenstein series 8 0 8

Trace form

\( 21 q + 2048 q^{2} + 346108 q^{3} - 12582912 q^{4} - 104637535 q^{5} - 530948096 q^{6} - 8876639496 q^{7} + 8589934592 q^{8} - 123508182991 q^{9} + 615607920640 q^{10} + 1576361769972 q^{11} + 1451682168832 q^{12}+ \cdots - 10\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{24}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.24.a \(\chi_{10}(1, \cdot)\) 10.24.a.a 2 1
10.24.a.b 2
10.24.a.c 2
10.24.a.d 3
10.24.b \(\chi_{10}(9, \cdot)\) 10.24.b.a 12 1

Decomposition of \(S_{24}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{24}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{24}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{24}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{24}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{24}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)